
CHAPTER 1

Measures

Measures are a generalization of volume; the fundamental example is Lebesgue
measure on Rn, which we discuss in detail in the next Chapter. Moreover, as
formalized by Kolmogorov (1933), measure theory provides the foundation of prob-
ability. Measures are important not only because of their intrinsic geometrical and
probabilistic significance, but because they allow us to define integrals.

This connection, in fact, goes in both directions: we can define an integral
in terms of a measure; or, in the Daniell-Stone approach, we can start with an
integral (a linear functional acting on functions) and use it to define a measure. In
probability theory, this corresponds to taking the expectation of random variables
as the fundamental concept from which the probability of events is derived.

In these notes, we develop the theory of measures first, and then define integrals.
This is (arguably) the more concrete and natural approach; it is also (unarguably)
the original approach of Lebesgue. We begin, in this Chapter, with some prelimi-
nary definitions and terminology related to measures on arbitrary sets. See Folland
[4] for further discussion.

1.1. Sets

We use standard definitions and notations from set theory and will assume the
axiom of choice when needed. The words ‘collection’ and ‘family’ are synonymous
with ‘set’ — we use them when talking about sets of sets. We denote the collection
of subsets, or power set, of a set X by P(X). The notation 2X is also used.

If E ⊂ X and the set X is understood, we denote the complement of E in X
by Ec = X \ E. De Morgan’s laws state that(⋃

α∈I
Eα

)c
=
⋂
α∈I

Ecα,

(⋂
α∈I

Eα

)c
=

∞⋃
α∈I

Ecα.

We say that a collection

C = {Eα ⊂ X : α ∈ I}

of subsets of a set X, indexed by a set I, covers E ⊂ X if⋃
α∈I

Eα ⊃ E.

The collection C is disjoint if Eα ∩ Eβ = ∅ for α 6= β.
The Cartesian product, or product, of sets X, Y is the collection of all ordered

pairs

X × Y = {(x, y) : x ∈ X, y ∈ Y } .
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1.2. Topological spaces

A topological space is a set equipped with a collection of open subsets that
satisfies appropriate conditions.

Definition 1.1. A topological space (X, T ) is a set X and a collection T ⊂ P(X)
of subsets of X, called open sets, such that

(a) ∅, X ∈ T ;
(b) if {Uα ∈ T : α ∈ I} is an arbitrary collection of open sets, then their

union ⋃
α∈I

Uα ∈ T

is open;
(c) if {Ui ∈ T : i = 1, 2, . . . , N} is a finite collection of open sets, then their

intersection
N⋂
i=1

Ui ∈ T

is open.

The complement of an open set in X is called a closed set, and T is called a topology
on X.

1.3. Extended real numbers

It is convenient to use the extended real numbers

R = {−∞} ∪ R ∪ {∞}.

This allows us, for example, to talk about sets with infinite measure or non-negative
functions with infinite integral. The extended real numbers are totally ordered in
the obvious way: ∞ is the largest element, −∞ is the smallest element, and real
numbers are ordered as in R. Algebraic operations on R are defined when they are
unambiguous e.g. ∞ + x = ∞ for every x ∈ R except x = −∞, but ∞ −∞ is
undefined.

We define a topology on R in a natural way, making R homeomorphic to a
compact interval. For example, the function φ : R→ [−1, 1] defined by

φ(x) =


1 if x =∞
x/
√

1 + x2 if −∞ < x <∞
−1 if x = −∞

is a homeomorphism.
A primary reason to use the extended real numbers is that upper and lower

bounds always exist. Every subset of R has a supremum (equal to ∞ if the subset
contains ∞ or is not bounded from above in R) and infimum (equal to −∞ if the
subset contains −∞ or is not bounded from below in R). Every increasing sequence
of extended real numbers converges to its supremum, and every decreasing sequence
converges to its infimum. Similarly, if {an} is a sequence of extended real-numbers
then

lim sup
n→∞

an = inf
n∈N

(
sup
i≥n

ai

)
, lim inf

n→∞
an = sup

n∈N

(
inf
i≥n

ai

)
both exist as extended real numbers.
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Every sum
∑∞
i=1 xi with non-negative terms xi ≥ 0 converges in R (to ∞ if

xi =∞ for some i ∈ N or the series diverges in R), where the sum is defined by

∞∑
i=1

xi = sup

{∑
i∈F

xi : F ⊂ N is finite

}
.

As for non-negative sums of real numbers, non-negative sums of extended real
numbers are unconditionally convergent (the order of the terms does not matter);
we can rearrange sums of non-negative extended real numbers

∞∑
i=1

(xi + yi) =

∞∑
i=1

xi +

∞∑
i=1

yi;

and double sums may be evaluated as iterated single sums

∞∑
i,j=1

xij = sup

 ∑
(i,j)∈F

xij : F ⊂ N× N is finite


=

∞∑
i=1

 ∞∑
j=1

xij


=

∞∑
j=1

( ∞∑
i=1

xij

)
.

Our use of extended real numbers is closely tied to the order and monotonicity
properties of R. In dealing with complex numbers or elements of a vector space,
we will always require that they are strictly finite.

1.4. Outer measures

As stated in the following definition, an outer measure is a monotone, countably
subadditive, non-negative, extended real-valued function defined on all subsets of
a set.

Definition 1.2. An outer measure µ∗ on a set X is a function

µ∗ : P(X)→ [0,∞]

such that:

(a) µ∗(∅) = 0;
(b) if E ⊂ F ⊂ X, then µ∗(E) ≤ µ∗(F );
(c) if {Ei ⊂ X : i ∈ N} is a countable collection of subsets of X, then

µ∗

( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

µ∗(Ei).

We obtain a statement about finite unions from a statement about infinite
unions by taking all but finitely many sets in the union equal to the empty set.
Note that µ∗ is not assumed to be additive even if the collection {Ei} is disjoint.
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1.5. σ-algebras

A σ-algebra on a set X is a collection of subsets of a set X that contains ∅ and
X, and is closed under complements, finite unions, countable unions, and countable
intersections.

Definition 1.3. A σ-algebra on a set X is a collection A of subsets of X such that:

(a) ∅, X ∈ A;
(b) if A ∈ A then Ac ∈ A;
(c) if Ai ∈ A for i ∈ N then

∞⋃
i=1

Ai ∈ A,
∞⋂
i=1

Ai ∈ A.

From de Morgan’s laws, a collection of subsets is σ-algebra if it contains ∅ and
is closed under the operations of taking complements and countable unions (or,
equivalently, countable intersections).

Example 1.4. If X is a set, then {∅, X} and P(X) are σ-algebras on X; they are
the smallest and largest σ-algebras on X, respectively.

Measurable spaces provide the domain of measures, defined below.

Definition 1.5. A measurable space (X,A) is a non-empty set X equipped with
a σ-algebra A on X.

It is useful to compare the definition of a σ-algebra with that of a topology in
Definition 1.1. There are two significant differences. First, the complement of a
measurable set is measurable, but the complement of an open set is not, in general,
open, excluding special cases such as the discrete topology T = P(X). Second,
countable intersections and unions of measurable sets are measurable, but only
finite intersections of open sets are open while arbitrary (even uncountable) unions
of open sets are open. Despite the formal similarities, the properties of measurable
and open sets are very different, and they do not combine in a straightforward way.

If F is any collection of subsets of a set X, then there is a smallest σ-algebra
on X that contains F , denoted by σ(F).

Definition 1.6. If F is any collection of subsets of a set X, then the σ-algebra
generated by F is

σ(F) =
⋂
{A ⊂ P(X) : A ⊃ F and A is a σ-algebra} .

This intersection is nonempty, since P(X) is a σ-algebra that contains F , and
an intersection of σ-algebras is a σ-algebra. An immediate consequence of the
definition is the following result, which we will use repeatedly.

Proposition 1.7. If F is a collection of subsets of a set X such that F ⊂ A where
A is a σ-algebra on X, then σ(F) ⊂ A.

Among the most important σ-algebras are the Borel σ-algebras on topological
spaces.

Definition 1.8. Let (X, T ) be a topological space. The Borel σ-algebra

B(X) = σ(T )

is the σ-algebra generated by the collection T of open sets on X.
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1.6. Measures

A measure is a countably additive, non-negative, extended real-valued function
defined on a σ-algebra.

Definition 1.9. A measure µ on a measurable space (X,A) is a function

µ : A → [0,∞]

such that

(a) µ(∅) = 0;
(b) if {Ai ∈ A : i ∈ N} is a countable disjoint collection of sets in A, then

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

In comparison with an outer measure, a measure need not be defined on all
subsets of a set, but it is countably additive rather than countably subadditive.
A measure µ on a set X is finite if µ(X) < ∞, and σ-finite if X =

⋃∞
n=1An

is a countable union of measurable sets An with finite measure, µ(An) < ∞. A
probability measure is a finite measure with µ(X) = 1.

A measure space (X,A, µ) consists of a set X, a σ-algebra A on X, and a
measure µ defined on A. When A and µ are clear from the context, we will refer to
the measure space X. We define subspaces of measure spaces in the natural way.

Definition 1.10. If (X,A, µ) is a measure space and E ⊂ X is a measurable
subset, then the measure subspace (E, A|E , µ|E) is defined by restricting µ to E:

A|E = {A ∩ E : A ∈ A} , µ|E (A ∩ E) = µ(A ∩ E).

As we will see, the construction of nontrivial measures, such as Lebesgue mea-
sure, requires considerable effort. Nevertheless, there is at least one useful example
of a measure that is simple to define.

Example 1.11. Let X be an arbitrary non-empty set. Define ν : P(X) → [0,∞]
by

ν(E) = number of elements in E,

where ν(∅) = 0 and ν(E) =∞ if E is not finite. Then ν is a measure, called count-
ing measure on X. Every subset of X is measurable with respect to ν. Counting
measure is finite if X is finite and σ-finite if X is countable.

A useful implication of the countable additivity of a measure is the following
monotonicity result.

Proposition 1.12. If {Ai : i ∈ N} is an increasing sequence of measurable sets,
meaning that Ai+1 ⊃ Ai, then

(1.1) µ

( ∞⋃
i=1

Ai

)
= lim
i→∞

µ(Ai).

If {Ai : i ∈ N} is a decreasing sequence of measurable sets, meaning that Ai+1 ⊂ Ai,
and µ(A1) <∞, then

(1.2) µ

( ∞⋂
i=1

Ai

)
= lim
i→∞

µ(Ai).
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Proof. If {Ai : i ∈ N} is an increasing sequence of sets and Bi = Ai+1 \ Ai,
then {Bi : i ∈ N} is a disjoint sequence with the same union, so by the countable
additivity of µ

µ

( ∞⋃
i=1

Ai

)
= µ

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

µ (Bi) .

Moreover, since Aj =
⋃j
i=1Bi,

µ(Aj) =

j∑
i=1

µ (Bi) ,

which implies that
∞∑
i=1

µ (Bi) = lim
j→∞

µ(Aj)

and the first result follows.
If µ(A1) <∞ and {Ai} is decreasing, then {Bi = A1 \Ai} is increasing and

µ(Bi) = µ(A1)− µ(Ai).

It follows from the previous result that

µ

( ∞⋃
i=1

Bi

)
= lim
i→∞

µ(Bi) = µ(A1)− lim
i→∞

µ(Ai).

Since
∞⋃
i=1

Bi = A1 \
∞⋂
i=1

Ai, µ

( ∞⋃
i=1

Bi

)
= µ(A1)− µ

( ∞⋂
i=1

Ai

)
,

the result follows. �

Example 1.13. To illustrate the necessity of the condition µ(A1) < ∞ in the
second part of the previous proposition, or more generally µ(An) < ∞ for some
n ∈ N, consider counting measure ν : P(N)→ [0,∞] on N. If

An = {k ∈ N : k ≥ n},
then ν(An) =∞ for every n ∈ N, so ν(An)→∞ as n→∞, but

∞⋂
n=1

An = ∅, ν

( ∞⋂
n=1

An

)
= 0.

1.7. Sets of measure zero

A set of measure zero, or a null set, is a measurable set N such that µ(N) = 0.
A property which holds for all x ∈ X \N where N is a set of measure zero is said
to hold almost everywhere, or a.e. for short. If we want to emphasize the measure,
we say µ-a.e. In general, a subset of a set of measure zero need not be measurable,
but if it is, it must have measure zero.

It is frequently convenient to use measure spaces which are complete in the
following sense. (This is, of course, a different sense of ‘complete’ than the one used
in talking about complete metric spaces.)

Definition 1.14. A measure space (X,A, µ) is complete if every subset of a set of
measure zero is measurable.
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Note that completeness depends on the measure µ, not just the σ-algebra
A. Any measure space (X,A, µ) is contained in a uniquely defined completion
(X,A, µ), which the smallest complete measure space that contains it and is given
explicitly as follows.

Theorem 1.15. If (X,A, µ) is a measure space, define (X,A, µ) by

A = {A ∪M : A ∈ A, M ⊂ N where N ∈ A satisfies µ(N) = 0}
with µ(A ∪ M) = µ(A). Then (X,A, µ) is a complete measure space such that
A ⊃ A and µ is the unique extension of µ to A.

Proof. The collection A is a σ-algebra. It is closed under complementation
because, with the notation used in the definition,

(A ∪M)c = Ac ∩M c, M c = N c ∪ (N \M).

Therefore
(A ∪M)c = (Ac ∩N c) ∪ (Ac ∩ (N \M)) ∈ A,

since Ac ∩N c ∈ A and Ac ∩ (N \M) ⊂ N . Moreover, A is closed under countable
unions because if Ai ∈ A and Mi ⊂ Ni where µ(Ni) = 0 for each i ∈ N, then

∞⋃
i=1

Ai ∪Mi =

( ∞⋃
i=1

Ai

)
∪

( ∞⋃
i=1

Mi

)
∈ A,

since
∞⋃
i=1

Ai ∈ A,
∞⋃
i=1

Mi ⊂
∞⋃
i=1

Ni, µ

( ∞⋃
i=1

Ni

)
= 0.

It is straightforward to check that µ is well-defined and is the unique extension of
µ to a measure on A, and that (X,A, µ) is complete. �
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