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We derive the incompressible Euler equations for the flow of an inviscid,
incompressible fluid, describe some of their basic mathematical features, and
provide a perspective on their physical applicability. We explain the impor-
tance of vorticity in understanding the dynamics of an inviscid, incompressible
fluid. We also formulate boundary conditions at an impermeable boundary and
a free surface.

1. EULER EQUATIONS

The incompressible Euler equations are the following PDEs for (~u, p):

~ut + ~u · ∇~u+∇p = 0, (1)
∇ · ~u = 0. (2)

This system models the flow of an inviscid, incompressible fluid with con-
stant density. We have set the density equal to one without loss of gener-
ality. The vector-valued function ~u(~x, t) is the velocity of the fluid and the
scalar-valued function p(~x, t) is the pressure.

We denote the number of space-dimensions by d = 2, 3. Then (1)–(2) is
a system of (d+1)-PDEs. In Cartesian coordinates, with ~x = (x1, . . . , xd),
~u = (u1, . . . , ud), the component form of the equations is

∂ui

∂t
+

d∑
j=1

uj
∂ui

∂xj
+

∂p

∂xi
= 0, 1 ≤ i ≤ d,

d∑
j=1

∂uj

∂xj
= 0.
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In particular, we use the notation

~u · ∇ =
d∑

j=1

uj
∂

∂xj
.

Equation (1) is Newton’s second law, stating that the acceleration of a
fluid particle is proportional to the pressure-force acting on it. Equation
(2) is the incompressibility condition, stating that the volume of any part
of the fluid does not change under the flow.

We briefly describe a few important qualitative properties of the Euler
equations.

Nonlinear The advection of the velocity field by itself leads to the non-
linear term ~u · ∇~u, which makes a general analysis of the equations very
difficult. Although Euler first presented these equations in 1755,1 many
fundamental questions about them remain unanswered. In three space-
dimensions it is not even known whether solutions of the equations are
defined for all time or if they form singularities.

Conservative Smooth solutions of the Euler equations satisfy the of con-
servation of kinetic energy,(

1
2
|~u|2
)

t

+∇ ·
(

1
2
|~u|2 ~u+ p~u

)
= 0,

which follows by taking the scalar product of the momentum equation (1)
with ~u, and using the incompressibility equation (2) to rewrite the result in
divergence form. The Euler equations are invariant under the time-reversal
t 7→ −t, ~u 7→ −~u, and therefore may be solved equally well (or badly)
forward and backward in time. Furthermore, they have a Hamiltonian
structure, which is somewhat disguised by the use of spatial instead of
material coordinates.2

Scale-invariant Every term in the Euler equations is proportional to a
first-order derivative in space or time, so for any constant λ > 0 the equa-
tions are invariant under rescalings ~x 7→ λ~x, t 7→ λt. Physically, this invari-
ance reflects the fact that a fluid modeled by the Euler equations behaves
the same at all length-scales, however small or large. This scale-invariance
is a mathematical idealization, but one may hope that it is applicable to
flows that vary over length-scales that are much larger or much smaller
than any other length-scales in the problem.

1Copies of Euler’s papers at available online at http://www.eulerarchive.com.
2Arnol’d (1966) gave an elegant geometric Hamiltonian formulation of the incompress-

ible Euler equations as an Euler-Poisson equation on the infinite-dimensional Lie group
of volume-preserving diffeomorphisms.
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1.1. Compressible Euler equations
The compressible Euler equations describe the flow of an inviscid com-

pressible fluid. In addition to the velocity and pressure, the density of the
fluid appears in these equations as a dependent variable. The controlling
dimensionless parameter for compressible flows is the Mach number

M =
U

c0
,

where U is a typical flow speed and c0 is a typical sound speed.
The incompressible equations can be derived from the compressible equa-

tions in the limitM → 0.3 Thus, the incompressible equations are generally
applicable to fluid flows whose speed is much less than the speed of sound.
For example, the speed of sound in air at standard temperature and pres-
sure is 340m s−1, and the incompressible equations can be used to model
the flow past an aircraft that flies at speeds of less than about 100 m s−1.
We will consider only incompressible flows.

2. NAVIER-STOKES EQUATIONS

The conservation of energy and scale-invariance of the Euler equations
are the result of neglecting viscous effects. The inclusion of (Newtonian)
viscosity, with a coefficient of kinematic viscosity ν > 0, leads to the in-
compressible Navier-Stokes equations,

~ut + ~u · ∇~u+∇p = ν∆~u,
∇ · ~u = 0.

Here, the Laplacian ∆~u of a vector is defined componentwise in Cartesian
coordinates, meaning that4

∆ (u1, . . . , ud) = (∆u1, . . . ,∆ud) .

Since the fundamental work of Leray (1934), it has been known that
there is a global-forward-in-time weak solution of the initial value problem
for the three-dimensional incompressible Navier-Stokes equations. It is
not known, however, whether the Leray solutions are unique, or whether
the solutions for suitable general smooth initial data remain smooth for

3The incompressible limit is somewhat subtle. For example, in the compressible Euler
equations the pressure is a thermodynamic variable, and it is a function of any other
pair of thermodynamic variables, such as density and temperature. In the incompressible
equations the pressure is an arbitrary function that plays the role of a Lagrange multiplier
enforcing the constant-volume constraint.

4This componentwise equation does not hold in general curvilinear coordinates.
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all time.5 This open problem is one of the Clay Mathematics Institute
Millennium Problems

http://www.claymath.org/millennium/Navier-Stokes Equations/

though perhaps you would be better off trying to solve one of the easier
problems, such as the Riemann hypothesis.

The kinematic viscosity ν has dimensions L2/T , where L = length and
T = time, as can be seen by comparing the dimensions of ~ut and ν∆~u.
Physically, ν is the diffusivity of velocity or momentum — in time T mo-
mentum diffuses a distance of the order

√
νT . For water at room tempera-

ture and pressure, we have ν ≈ 1 mm2 s−1, so direct viscous effects diffuse
momentum a distance of the order 1 mm in 1 s.

According to kinetic theory, the kinematic viscosity ν of a gas is of the
order `v, where ` is the mean-free path and v is the mean thermal speed of
the molecules (of the same order of magnitude as the sound speed). Thus,
viscosity is a vestige in the continuum limit of the molecular nature of
the fluid. The Euler equations, corresponding to ν = 0, set the molecular
length-scales to zero, which accounts for their scale-invariance.

If U is a typical flow speed and L is a typical length-scale over which a
flow varies, then we may define a dimensionless parameter Re, called the
Reynolds number, by

Re =
UL

ν
.

For example, if we consider the flow of water with a speed of the order
1 m s−1 in a tank that is 1m long, then we find that the Reynolds number
is Re = 106.

The Reynolds number is inversely proportional to the kinematic viscos-
ity ν, and one might hope that we can neglect the viscous term ν∆~u in
the Navier-Stokes equations in comparison with the inertial term ~u · ∇~u
when the Reynolds number is sufficiently large. The Navier-Stokes equa-
tions are, however, a singular perturbation of the Euler equations, since
the viscosity ν multiplies the term that contains the highest-order spatial
derivatives. As a result, the zero-viscosity, high-Reynolds’ number limit
of the Navier-Stokes equations is an extremely difficult one (turbulence,
boundary layers,. . . ).

As with the Euler equations, there is a compressible generalization of
the Navier-Stokes equations. The compressible Navier-Stokes equations
are more complicated than either the compressible Euler equations or the

5Presumably, if one could prove the global existence of suitable weak solutions of the
Euler equations, then one could deduce the global existence and uniqueness of smooth
solutions of the Navier-Stokes equations.
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incompressible Navier-Stokes equations, and we confine our attention to
the incompressible Euler equations.

3. THE INITIAL VALUE PROBLEM

Equation (1) provides an evolution equation for the velocity ~u, and (2)
provides an implicit equation for the pressure p. The lack of an evolution
equation for p is a significant issue in the analysis and numerical solution
of the incompressible Euler equations.

One way to obtain an explicit equation for the pressure is to take the
divergence of (1), which eliminates the time-derivative ~ut. Using (2) to
simplify the result, we find that p satisfies

−∆p = tr (∇~u)2 , (3)

where tr denotes the trace. In components, we have

tr (∇~u)2 =
d∑

i,j=1

∂ui

∂xj

∂uj

∂xi
.

With the addition of suitable boundary conditions, equation (3) determines
p in terms of the velocity ~u at the same instant of time.

As a result of the ellipticity of the PDE (3) for the pressure, a change in
the velocity field near one spatial point instantly affects the pressure, and
therefore the acceleration of the fluid, everywhere else. Physically, this fact
is a result of the incompressible limit in which the sound speed becomes
infinite relative to the flow speed, so that sound waves can carry pressure
disturbances instantly across the entire fluid.

Perhaps the most basic problem for (1)–(2) is the initial-value problem
on Rd with the initial condition

~u(~x, 0) = ~u0(~x), (4)

where ~u0 : Rd → Rd is a given smooth velocity field that decays to zero
sufficiently rapidly as |~x| → ∞ and satisfies ∇ · ~u0 = 0. We also require
that

∇p→ 0 as |~x| → ∞. (5)
We do not impose an initial condition on the pressure, since there is no
evolution equation for p.

Using a Green’s function representation to solve equations (3), (5) for p
and computing the gradient of the result, we find that

∇p(~x, t) = −Cd

∫
Rd

~x− ~y

|~x− ~y|d
tr [∇~u(~y, t)]2 d~y,
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where the constant Cd is given (in 2 or 3 space-dimensions) by

C2 =
1
2π
, C3 =

1
4π
.

Thus, the velocity ~u satisfies the integro-differential evolution equation

~ut(~x, t) + ~u · ∇~u(~x, t) = Cd

∫
Rd

~x− ~y

|~x− ~y|d
tr [∇~u(~y, t)]2 d~y,

which is supplemented with the initial condition (4).
We may also write this equation as

~ut + P [~u · ∇~u] = 0, (6)

where P is the Leray projection that maps a vector field to its zero-
divergence part. Explicitly, if ~v is a smooth, square-integrable vector field
on Rd, then we may write ~v uniquely as the sum of a square-integrable
divergence-free vector field ~w and a gradient (the Hodge decomposition):

~v = ~w +∇ϕ, where ∇ · ~w = 0.

The Leray projection of ~v is then P~v = ~w. Since ~w and ∇ϕ are smooth
and square-integrable, the divergence theorem implies that∫

Rd

(~w · ∇ϕ) d~x = 0.

Thus, P is an orthogonal projection on L2(Rd).
In two space-dimensions there exist global smooth solutions of the initial-

value problem (4), (6). It is not known to this day, however, whether or not
there exist global-in-time smooth — or weak — solutions of the initial-value
problem in three space-dimensions.6

The main obstacle to the existence of solutions in three space-dimensions
is the formation of singularities in the vorticity ~ω = ∇×~u. Beale, Kato, and
Majda (1984) proved that a smooth solution of the incompressible Euler
equations breaks down on a time-interval [0, T∗] if and only if∫ T

0

‖ω‖∞(t) dt→∞ as T ↑ T∗,

6Weak solutions may be quite singular, and, in particular, they do not necessarily
conserve kinetic energy. There are examples of weak solutions of the incompressible
Euler equations, constructed by Scheffer (1993) and Schnirelman (1997), in which the
velocity is initially zero, becomes nonzero in a compact spatial region, and then returns
to zero.
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where ‖ω‖∞ denotes the spatial L∞-norm of the vorticity,

‖ω‖∞(t) = sup
~x∈R3

|~ω(~x, t)| .

There have been a number of attempts to detect the formation of singu-
larities numerically. While the results show a very rapid intensification of
vorticity, there is — at the moment — no conclusive numerical evidence
of a singularity. The physical mechanism for the increase and conceivable
formation of singularities in the vorticity is vortex stretching, which we
discuss further below.

4. KINEMATICS

Kinematics refers to the description of the motion of a system, in our
case an incompressible fluid. Dynamics, which we consider in the next
section, refers to the effect of forces acting on the system.

A motion ~X of a continuous body moving in Rd is a function

~X : Rd × R → Rd.

We write ~x = ~X(~a, t) for the location ~x of the particle ~a at time t. We call
~x the spatial or Eulerian coordinate of the particle and ~a the material or
Lagrangian coordinate. (Both types of coordinates were, in fact, introduced
by Euler.)

For fixed ~a, the curve ~x(t) = X(~a, t) defines a particle path, which can
be visualized by placing a spot of non-diffusing dye in the fluid.

We may specify the Lagrangian coordinate ~a of a material particle in
any convenient way; for example, we can use the position of the particle at
t = 0, in which case ~X(~a, 0) = ~a. In elasticity, one often uses the location of
the particle in an unstressed configuration as the material coordinate, but
since fluid particles can be rearranged without the creation of stress (the
‘particle relabeling symmetry’, realized by stirring a bucket of water), there
is no unique unstressed reference configuration of a fluid, even modulo rigid
motions.

We assume that ~X is a smooth function and that, for each t ∈ R, the
function ~X(·, t) is a diffeomorphism of Rd, meaning that it is invertible and
differentiable as many times as we require and that the derivative D~a

~X,
with components

∂Xi

∂aj
,
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is nonsingular. Roughly speaking, the last condition means that the motion
does not crush a nonzero material volume to zero volume.7

The velocity ~U of a material particle ~a at time t is given by

~U(~a, t) = ~Xt(~a, t),

where the partial derivative with respect to t is taken holding ~a fixed. The
corresponding spatial velocity ~u(~x, t) is defined by

~u
(
~X(~a, t), t

)
= ~U(~a, t).

Conversely, given a smooth spatial velocity ~u(~x, t), we may reconstruct
the motion ~X(~a, t) by solving the system of ODEs

~Xt(~a, t) = ~u
(
~X(~a, t), t

)
,

with, for example, the initial condition

~X(~a, 0) = ~a.

This system of ODEs is, in general, nonlinear and is typically not explicitly
solvable. For example, even very simple spatial velocity fields may lead
to chaotic solutions for the particle paths, a phenomenon called ‘chaotic
advection’.

If f : Rd × R → R is a function of spatial coordinates (~x, t), we define a
corresponding function F : Rd × R → R of material coordinates (~a, t) by

F (~a, t) = f( ~X(~a, t), t).

We denote the partial derivative of f with respect to t with ~x held fixed (the
rate of change of f at a given spatial point) by ft or ∂tf , and the partial
derivative of F with respect to t with ~a held fixed (the rate of change of
f following a particle path) by Ft. We call this derivative the material
time-derivative of f and denote it by Df/Dt.

According to the chain rule,

Df

Dt
( ~X(~a, t), t) = ft( ~X(~a, t), t) + ~Xt(~a, t) · ∇f( ~X(~a, t), t)

= ft( ~X(~a, t), t) + ~u(X(~a, t), t) · ∇f( ~X(~a, t), t).

7These assumptions may need to be reconsidered for weak solutions of the Euler
equations in which the smoothness of the motion breaks down.
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We may therefore express the material time-derivative in terms of spatial
derivatives as

D

Dt
=

∂

∂t
+ ~u · ∇.

For example, the Euler equations (1)–(2) may be written as

D~u

Dt
+∇p = 0, ∇ · ~u = 0.

If P ⊂ Rd is a bounded open set with smooth boundary ∂P, we define

Pt = {X(~a, t) : ~a ∈ P}

to be the spatial region occupied at time t by the material particles in P.
We call Pt a material volume.

We will need the following result from multi-variable calculus, which may
be thought of as a generalization of the Leibnitz rule for differentiating one-
dimensional integrals with variable endpoints.

Theorem 4.1 (Reynolds’ transport theorem). Suppose that ~X : Rd ×
R → Rd is a smooth motion such that ~X(·, t) is a diffeomeorphism of Rd

for each t ∈ R. Let P ⊂ Rd be a smooth bounded open set, and define
Pt = ~X(P, t). If f : Rd × R → R is a smooth function, then

d

dt

∫
Pt

f d~x =
∫
Pt

ft d~x+
∫

∂Pt

f~u · ~n dS, (7)

where ~n denotes the unit outward normal on ∂Pt, and ~u is the spatial
velocity field associated with X.

Proof. Making the change of variables ~x = X(~a, t) in the integral, we
get ∫

Pt

f(~x, t) d~x =
∫
P
f( ~X(~a, t), t)J(~a, t) d~a,

where

J = detD~a
~X (8)

is the Jacobian of the transformation.
Since P is independent of t, we may compute the derivative of an integral

over P by differentiating the integrand with respect to t with ~a held fixed,
so that

d

dt

∫
Pt

f d~x =
∫
P

D

Dt
(fJ) d~a. (9)
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To simplify the right-hand side of this equation, we need to compute the
derivative of a determinant. Let F (t) be a non-singular second-order tensor
depending smoothly on t. Then

d

dt
detF (t) = lim

h→0

detF (t+ h)− detF (t)
h

= detF (t) lim
h→0

det
[
F−1(t)F (t+ h)

]
− 1

h

= detF (t) lim
h→0

1
h

{
det
[
I + hF−1(t)

dF

dt
(t)
]
− 1
}

= detF (t) tr
[
F−1(t)

dF

dt
(t)
]
.

In the last equation tr denotes the trace, and we used the fact that

det [I + hA] = 1 + htrA+O(h2) as h→ 0,

as is clear from looking at the expansion of the determinant on the left-hand
side. (’Derivative of determinant is trace.’)

Applying this result to the Jacobian J in (8), exchanging the order of
the material time-derivative and the derivative with respect to ~a = ~A(~x, t),
using the fact that

(
D~x

~A
)

( ~X(~a, t), t) =
(
D~a

~X
)−1

(~a, t)

and the chain rule, we get

DJ

Dt
= Jtr

[(
D~a

~X
)−1 (

D~a
~Xt

)]
= Jtr

[(
D~x

~A
)(

D~a
~U
)]

= Jtr (D~x~u) .

Since tr (D~x~u) = ∇ · ~u, we conclude that

DJ

Dt
= J∇ · ~u.
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Using this equation in (9), and transforming the integration variable back
to ~x in the result, we get

d

dt

∫
Pt

f d~x =
∫
P

{
J
Df

Dt
+ f

DJ

Dt

}
d~a

=
∫
P

{
Df

Dt
+ f∇ · ~u

}
Jd~a

=
∫
Pt

{
Df

Dt
+ f∇ · ~u

}
d~x.

Expressing the material time-derivative in terms of spatial derivatives, and
using a vector identity, we have

Df

Dt
+ f∇ · ~u = ft + ~u · ∇f + f∇ · ~u

= ft +∇ · (f~u) .

Hence,

d

dt

∫
Pt

f d~x =
∫
Pt

{ft +∇ · (f~u)} d~x. (10)

Using the divergence theorem in this equation, we get (7).

5. DERIVATION OF THE EULER EQUATIONS

The incompressible Euler equations (1)–(2) follow from the conservation
of mass and momentum, together with the assumption that the density of
the fluid is constant

First, we derive the equation of conservation of mass. We consider a fluid
with possibly non-constant spatial density ρ(~x, t). The mass contained in
a material volume Pt is then given by∫

Pt

ρd~x.

If the mass of the material volume does not change as the fluid moves, then

d

dt

∫
Pt

ρd~x = 0.

Hence, using (10), we get that∫
Pt

{ρt +∇ · (ρ~u)} d~x = 0.
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Since this equation holds at any fixed time for an arbitrary smooth region
Pt, we conclude that8

ρt +∇ · (ρ~u) = 0. (11)

Next, we derive the equation of conservation of momentum. We suppose
that two types of forces act on the fluid: (a) a body force ~F per unit volume;
(b) a surface pressure force.

The body force may be an external force acting of the fluid — for ex-
ample, gravity or the Coriolis force in a rotating fluid. The surface force is
the force exerted by one part of the fluid on another part, and arises from
direct inter-molecular forces as well as the transport of momentum across
surfaces by the thermal motion of molecules. In modeling an inviscid fluid,
we assume that the surface force is a pressure force that acts across a sur-
face in the inward normal direction with a magnitude per unit surface area
equal to the pressure p.9

The total momentum of a material volume Pt is∫
Pt

ρ~u d~x.

The requirement that the rate of change of momentum of a material volume
is equal to the force acting on it (Newton’s second law) then leads to the
equation

d

dt

∫
Pt

ρ~u d~x = −
∫

∂Pt

p~n dS +
∫
Pt

~F d~x.

Using (10), which may be applied componentwise, and the divergence the-
orem, we find that∫

Pt

{
(ρ~u)t +∇ · (ρ~u⊗ ~u) +∇p− ~F

}
d~x = 0,

where the tensor product ~u⊗~u is the second-order tensor with components
uiuj . The component form of this equation is

∫
Pt

 ∂

∂t
(ρui) +

d∑
j=1

∂

∂xj
(ρuiuj) +

∂p

∂xi
− Fi

 d~x = 0.

8In detail, suppose that the integrand were nonzero at some point ~x0. Since we
assume smoothness, the integrand is continuous, so there would be a ball of nonzero
radius containing ~x0 in which the integrand is bounded away from zero. The integral
over this ball would be nonzero, proving the result.

9A force per unit surface area is called a stress.
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Since this equation holds at any fixed time for an arbitrary smooth region
Pt, we conclude that

(ρ~u)t +∇ · (ρ~u⊗ ~u) +∇p = ~F . (12)

We now assume that the fluid has constant density ρ0. The conservation
of mass equation (11) then reduces to (2), which expresses conservation of
volume. Using (2), we may write the conservation of momentum equation
(12) as

ρ0 (~ut + ~u · ∇~u) +∇p = ~F .

Setting ~F = 0 and normalizing ρ0 = 1, we get (1).
Finally, we generalize the incompressible Euler equations to nonuniform

fluids.10 The conservation of mass equation (11) may be written as

Dρ

Dt
+ ρ∇ · ~u = 0.

Thus, the incompressibility condition of conservation of volume under the
flow (∇ · ~u = 0) is equivalent to the condition that the density of a ma-
terial particle does not change in time (Dρ/Dt = 0). The corresponding
incompressible Euler equations for (ρ, ~u, p) may then be written as

ρ
D~u

Dt
+∇p = 0,

Dρ

Dt
= 0, ∇ · ~u = 0.

6. LOCAL KINEMATICS

A differentiable velocity field may be approximated locally as a superpo-
sition of a constant velocity field and a linear velocity field,

~u(~x+ ~h, t) = ~u(~x, t) +∇~u(~x, t)~h+ o(~h) as ~h→ 0.

The notation D~u for the derivative of ~u would be more consistent with
general mathematical use, but the notation ∇~u is standard in continuum
mechanics. The component form of this equation is

ui(~x+ ~h, t) = ui(~x, t) +
d∑

j=1

∂ui

∂xj
(~x, t)hj + o(~h) as ~h→ 0.

10For example, saline water with variable salt density. We assume that the diffusion
of mass from one material particle to another is negligible, otherwise additional surface
terms would enter into the conservation of mass equation.
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We write the velocity-gradient ∇~u in terms of its symmetric and anti-
symmetric parts as ∇~u = D +W , where

D =
1
2
(
∇~u+∇~uT

)
, W =

1
2
(
∇~u−∇~uT

)
,

and FT denotes the transpose of F . In components,

Dij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, Wij =

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
.

We then have

~u(~x+ ~h, t) = ~u(~x, t) +D(~x, t)~h+W (~x, t)~h+ o(~h) as ~h→ 0.

This equation provides a local representation of the velocity field near a
fixed point ~x at time t as a superposition of a constant field ~u(~x, t), a strain
D(~x, t)~h, and a rotation W (~x, t)~h.

We consider the case of three space-dimensions for definiteness. The rate-
of-strain, or stretching, tensor D is symmetric, so it has three orthogonal
real eigenvectors ~e1, ~e2, ~e3, with real (not necessarily distinct) eigenvalues
λ1, λ2, λ3. The origin ~h = 0 is a stagnation point of the velocity field
D~h, meaning that the velocity is zero there. The velocity in the direction
~ei is directed radially outward from the origin if λi > 0, corresponding to
stretching, and radially inward if λi < 0, corresponding to compression.

Note that trD = ∇ · ~u. For incompressible flow, we have ∇ · ~u = 0, so

λ1 + λ2 + λ3 = 0,

meaning that stretching in one direction must be balanced by compression
in another.

The spin tensor W is antisymmetric, and

W~h =
1
2
~ω × ~h,

where

~ω = ∇× ~u (13)

is the vorticity. The velocity field W~h therefore corresponds to a local
rotation of the fluid with angular velocity equal to ~ω/2.
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7. VORTICITY

The vorticity ~ω = ∇× ~u is the key quantity in an analysis of the motion
of an incompressible, inviscid fluid. It is convenient to consider three-
dimensional and two-dimensional flows separately.

7.1. Three-dimensional flows
We take the curl of the momentum equation (1), which eliminates the

pressure, and use (2) to simplify the result. We find that ~ω satisfies the
vorticity equation

~ωt + ~u · ∇~ω = ~ω · ∇~u. (14)

The left-hand side of this equation is the material time-derivative of the
vorticity and describes the advection of vorticity by the fluid flow. The
right-hand side is a vortex-stretching term. It describes the possible in-
tensification of vorticity by stretching of the fluid, analogous to the way in
which an ice-skater spins faster as she pulls in her arms.

Since ~ω · ∇~u = ~ω ·D + ~ω ·W , and

~ω ·D = D~ω, ~ω ·W = −W~ω = −1
2
~ω × ~ω = 0,

we may write (14), in somewhat unfortunate notation, as

D~ω

Dt
= D~ω.

Thus, the vorticity ~ω of a material particle increases when the vorticity
is aligned with an eigenvector of the rate-of-strain tensor D with positive
eigenvalue, and decreases when the vorticity is aligned with an eigenvector
of the rate-of-strain tensor with negative eigenvalue.

This fact provides a possible mechanism (‘geometric depletion’) for the
avoidance of blow-up in the vorticity. One might hope that an intensifica-
tion of vorticity destroys the alignment of the vorticity with eigenvectors of
D whose eigenvalues are positive. There is some numerical and analytical
evidence that this is what occurs, but — at the moment — no proof that
it prevents the vorticity from blowing up.

7.2. Two-dimensional flows
For two-dimensional flows, we have

~u = (u1(x1, x2, t), u2(x1, x2, t), 0) ,
~ω = (0, 0, ω(x1, x2, t)) ,
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where the scalar vorticity ω is given by

ω =
∂u2

∂x1
− ∂u1

∂x2
.

It follows that ~ω · ∇~u = 0, and ω satisfies the transport equation

ωt + ~u · ∇ω = 0. (15)

The absence of vortex-stretching is a crucial simplification for two-dimensional
flows in comparison with three-dimensional flows, and explains in large part
why they are much better understood.

8. STREAM FUNCTION-VORTICITY FORMULATION

A useful way of writing the incompressible Euler equations is in terms
of a stream function and the vorticity.

8.1. Two-dimensional flows
In R2, or any other simply connected two-dimensional domain, the in-

compressibility condition,

∂u1

∂x1
+
∂u2

∂x2
= 0,

implies that there is a scalar-valued function ψ(x1, x2, t) such that

u1 =
∂ψ

∂x2
, u2 = − ∂ψ

∂x1
.

We also write this equation as

~u = −∇⊥ψ,

where

∇⊥ =
(
− ∂

∂x2
,
∂

∂x1

)
.

We call ψ a stream function because, at any instant of time, the velocity
~u is tangent to the streamlines ψ = constant. Note that for time-dependent
flows the streamlines do not coincide with the particle paths.

The two-dimensional incompressible Euler equations may be rewritten
in terms of ψ and ω as

ωt −
(
∇⊥ψ

)
· ∇ω = 0,

−∆ψ = ω.
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This formulation may be thought of as a transport equation for an ‘active’
scalar ω that is advected with a velocity ~u, depending on ω, given by

~u = ∇⊥
(
∆−1ω

)
.

For example, on R2, using the free-space Green’s function of the Lapla-
cian, we have

ψ(~x, t) = − 1
2π

∫
R2

log |~x− ~y|ω(~y, t) d~y,

where we assume that ω decays sufficiently rapidly at infinity. It follows
that ~u = −∇⊥ψ is given in terms of ω by the integral operator

~u(~x, t) =
∫

R2

~K2(~x− ~y)ω(~y, t) d~y,

where

~K2(~x) =
1
2π

(−x2, x1)
|~x|2

.

8.2. Three-dimensional flows
In three space-dimensions, the incompressibility condition ∇ · ~u = 0

implies that, in a simply connected domain, there exists a vector-valued
function ~ψ such that ~u = ∇× ~ψ and ∇ · ~ψ = 0. For two-dimensional flows,
~ψ = (0, 0, ψ) where ψ is the stream function. The corresponding stream
function-vorticity equations are

~ωt + ~u · ∇~ω = ~ω · ∇~u,
−∆~ψ = ~ω, ~u = ∇× ~ψ.

The fact that the vorticity and the stream function are vectors in three
dimensions makes these equations less useful than in the two-dimensional
case.

There is a similar representation in R3 to the one given above in R2 for
the velocity as a singular integral operator acting on the vorticity. In R3,
we have

∇× ~u = ~ω, ∇ · ~u = 0.

The solution of this linear system for ~u is

~u(~x, t) =
∫

R3

~K3(~x− ~y)~ω(~y, t) d~y, (16)
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where ~K3(~x) : R3 → R3 is defined by

~K3(~x)~h =
1
4π

~x× ~h
|~x|3

.

The vorticity equation (14) and the representation (16) give a singular
integro-differential equation for the vorticity ~ω.

Equation (16) is mathematically identical to the Biot-Savart law for
the magnetic field ~B generated by a steady current ~J . In suitable units,
Maxwell’s equations imply that

∇× ~B = ~J, ∇ · ~B = 0,

which have exactly the same form as the equations that relate an incom-
pressible velocity field ~u to its vorticity ~ω.

9. IRROTATIONAL FLOWS

One consequence of the vorticity equation (14) is that if a material par-
ticle has zero vorticity initially, then its vorticity remains zero for all time.
(Normal pressure forces cannot create rotation.) In particular, if the ini-
tial data ~u0 in (4) satisfies ∇ × ~u0 = 0, then the solution ~u of the Euler
equations (1)–(2) satisfies ∇× ~u = 0.

We call a flow whose vorticity is identically zero an irrotational flow.
On Rd, or any other simply-connected domain, it follows that there exists
a scalar-valued function ϕ(~x, t), called the velocity potential, such that
~u = ∇ϕ.

For irrotational flows, we may write the momentum equation (1) as

∇
{
ϕt +

1
2
|∇ϕ|2 + p

}
= 0.

This equation is satisfied by the pressure

p = −ϕt −
1
2
|∇ϕ|2 + P, (17)

where P (t) is an arbitrary function of integration that depends only on
time. Equation (17) is called Bernoulli’s law.

For steady (time-independent) flows with ϕt = 0 and P = constant,
Bernoulli’s law implies that high velocities lead to low pressures. This fact
can have dramatic effects; for example, cavitation may occur in a liquid
when the pressure drops below the vapor pressure.
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An irrotational flow ~u = ∇ϕ remains irrotational in the presence of a con-
servative body force ~F = −∇Φ, such as gravity, in which case Bernoulli’s
equation becomes

p = −ϕt −
1
2
|∇ϕ|2 − Φ + P. (18)

The Coriolis force in a rotating fluid is not conservative, and consequently
generates vorticity. This accounts for the profound effect of the earth’s
rotation on flows in the atmosphere and the ocean.

The incompressibility condition (2) is satisfied for an irrotational flow if

∆ϕ = 0,

meaning that the velocity potential ϕ is a harmonic function. Thus, for
irrotational flows, the nonlinear incompressible Euler equations reduce to a
linear Laplace equation. Note also that the time-dependence of such flows is
parametric, and the velocity field is determined simultaneously throughout
the fluid at each instant of time.

9.1. Paradoxes of irrotational flow
The fact that vorticity cannot be generated in the interior of an inviscid,

incompressible fluid with uniform density has a number of consequences
that are contradicted by experience. For example, it implies that the fluid
cannot exert any drag or lift forces on a solid body that moves through it
starting from rest (d’Alembert’s paradox11).

The resolution of this, and other, paradoxes depends on an understanding
of the effects of viscosity. Prandtl (1905) observed that, for flows with large
Reynolds number, a viscous boundary layer containing vorticity forms on
the surface of a solid body. This boundary layer may ‘separate’, and then
the vorticity it contains is advected into the interior of the fluid. Boundary
layers, and the phenomenon of boundary layer separation, lead to difficult
issues which are still far from being understood mathematically.

Despite these difficulties, there are many physical problems (such as flow
past a streamlined body) for which inviscid, irrotational flow theory pro-
vides a excellent mathematical model. On the other hand, many (but
not all) inviscid flows that contain vorticity are highly unstable, leading in

11D’Alembert published his paradox in 1752, as a result of a competition held in 1750
by the Academy of Berlin on the theory of the resistance of fluids. According to René
Dugas in A History of Mechanics (1955), the prize for the competition was not awarded
because the Academy required participants to demonstrate that their calculations agreed
with experiment, and d’Alembert was embittered by this decision. In the same paper,
d’Alembert wrote down the two-dimensional equations for fluid motion several years
before Euler, but his derivation of them was so long and tortuous that he recieved little
credit.
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practice to turbulent flows that are not well-understood, but which are pre-
sumably modeled by the Navier-Stokes equations.12 A systematic analysis
of turbulence is, perhaps, the major unsolved question in classical physics.

9.2. Two-dimensional irrotational flows
Incompressible, irrotational flow is particularly simple to analyze in two

space dimensions because we can introduce both a velocity potential ϕ and
a stream function ψ. Explicitly, we have

u1 =
∂ϕ

∂x1
, u2 =

∂ϕ

∂x2
; u1 =

∂ψ

∂x2
, u2 = − ∂ψ

∂x1
.

It follows that ϕ, ψ satisfy the Cauchy-Riemann equations. Therefore, if
we introduce a complex spatial variable z = x1 + ix2 and a complex-valued
function F : C → C given by

F (z) = ϕ(x1, x2) + iψ(x1, x2),

then F is analytic, with derivative F ′(z) = u1(x1, x2)− iu2(x1, x2).
This formulation enables us to solve many two-dimensional incompress-

ible irrotational flow problems by the use of complex variable techniques
such as conformal mapping.

10. BOUNDARY CONDITIONS

So far, we have considered fluids that move in Rd. If the fluid moves
in a (possibly time-dependent) spatial region Ωt ⊂ Rd, then we need to
impose conditions on the boundary ∂Ωt. We consider here two types of
boundaries: (a) impermeable boundaries; (b) free surfaces.

10.1. Impermeable boundaries
Perhaps the simplest type of boundary is an impermeable wall, such

as the side of a wave-tank or the hull of a ship. If the boundary ∂Ω is
stationary, then the appropriate boundary condition for an inviscid fluid is

~u · ~n = 0 on ∂Ω,

where ~n is the unit outward normal to the boundary. This ‘no-flow’ condi-
tion states that the fluid does not flow through the boundary. An inviscid
fluid can ‘slide’ over an impermeable boundary, and the tangential velocity

12It is conceivable that the infinite Reynolds number limit of turbulent flows leads to
weak solutions of the Euler equations that conserve mass and momentum but dissipate
kinetic energy.
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is, in general, nonzero. An attempt to specify it would lead to an over-
determined problem for the Euler equations.

The Navier-Stokes equation contain second-order spatial derivatives and
therefore they require additional boundary conditions. On a solid station-
ary boundary ∂Ω, the appropriate condition is the ‘no-slip’ condition that

~u = 0 on ∂Ω,

meaning that a viscous fluid ‘sticks’ to the boundary.
Thus, the motion of an inviscid, incompressible fluid in a bounded, sta-

tionary, impermeable container Ω ⊂ Rd is described by the following IBVP
for ~u : Ω× R → Rd and p : Ω× R → R:

~ut + ~u · ∇~u+∇p = 0, ∇ · ~u = 0, in Ω,
~u · ~n = 0 on ∂Ω,
~u = ~u0 on t = 0,

where ~u0 : Ω → Rd is a given divergence-free initial velocity. Note that
the solution for p(~x, t) is not unique. We may add an arbitrary function
of time P (t) to any solution for the pressure and obtain another solution.
Physically, this corresponds to the fact that the motion of an incompressible
fluid in a rigid container is not affected by an instantaneous compression
or expansion.

If the boundary moves with velocity ~V , then we replace these boundary
conditions by ~u · ~n = ~V · ~n for Euler, and ~u = ~V for Navier-Stokes.

10.2. Free surfaces
A free surface is a boundary whose location is not known a priori. The

solution of free-surface problems for PDEs is, in general, very difficult. One
has to determine both the solution of the PDE — in an unknown domain
which may vary in time — and the location of the free surface. Since the
location of the free surface is not specified in advance, we usually require
more boundary conditions than in the case of a fixed boundary. One can
think of these as providing boundary conditions for the PDE, together with
conditions that determine the location of the free surface.

Many types of free surface problems arise in fluid mechanics. For exam-
ple, the Stefan problem for the melting of ice; the Hele-Shaw problem for
flow in a porous medium; and the motion of a shock wave in a compressible
fluid. Here, we consider only free surfaces problems of the type that arise
in ‘water waves’. The free surface is then an interface that separates one
fluid from another, such as the surface of a swimming pool or the ocean
that separates air from water

We distinguish between two types of free-surface boundary conditions: a
kinematic condition which states that the free surface moves with the fluid;
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and a dynamic condition that expresses a balance of forces across the free
surface.

10.2.1. Kinematic condition

The kinematic condition on a free surface is the same as the bound-
ary condition on a moving impermeable surface, and states that the fluid
velocity ~u satisfies

~u · ~n = ~V · ~n, (19)

on the free surface, where ~n is a unit normal to the surface and ~V is the
velocity of the surface.

To write this boundary condition in a more convenient form, we suppose
that the free surface has the equation F (~x, t) = 0. We assume that F is a
smooth function and ∇F 6= 0, which ensures that this equation defines a
smooth surface.

A unit normal and the normal velocity are given in terms of F by

~n =
∇F
|∇F |

, ~V = − Ft

|∇F |
~n.

Using these expressions in (19), we find that the kinematic boundary con-
dition may be written as

DF

Dt
= 0 on F = 0, (20)

meaning that material particles on the surface remain on the surface.
For a surface that is a graph with equation

x3 = f(x1, x2, t), (21)

the condition (20) becomes

ft + u1fx1 + u2fx2 = u3 on x3 = f(x1, x2, t).

The assumption that the free surface is a graph can be unduly restric-
tive; for example, it fails when a surface wave ‘turns over’ and begins to
break. Wave-breaking illustrates another fundamental difficulty in free sur-
face problems: there may be very complex topological changes as drops of
fluid pinch off.

10.2.2. Dynamic condition
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The simplest dynamic condition on a free surface is that the stresses on
either side of the surface are equal. For inviscid fluids, this means that the
pressure is continuous across the free surface.13 That is, we have [p] = 0,
where [p] denotes the jump in p across the surface.

In the case of an air-water interface, we can often neglect the motion
of the air, because of its much smaller density, and treat it as a fluid with
constant pressure p0. The dynamic boundary condition for the water is then
p = p0. For irrotational flows, with the choice P = p0 for the function of
integration in Bernoulli’s equation (18), we find that the velocity potential
ϕ satisfies the condition

ϕt +
1
2
|∇ϕ|2 + Φ = 0

on the free surface.
If surface tension is taken into account, then according to the Young-

Laplace law the jump in pressure across the free surface is proportional to
the mean curvature H of the surface, so that

[p] = −2σH, (22)

where σ is the coefficient of surface tension. The sign of the mean curvature
is chosen so that pressure forces tend to flatten the interface, meaning that
the pressure is greater in a fluid whose surface is convex.

Surface tension has the dimensions of force/length or energy/area. It
arises physically from the molecular energy of the interface. A surface of
minimal area (for example, a soap film on a wire frame) has zero mean
curvature, and cannot support a pressure difference. The Young-Laplace
law expresses a balance between the pressure forces acting on the interface,
which stretch it, and the contraction of the interface toward a surface with
minimal local surface area and interfacial energy.

The assumption that σ is constant is reasonable in many cases, although
variations in fluid composition and temperature, or the effect of surfactants,
may lead to changes in the values of σ. For example, the Marangoni effect
(‘tears of wine’) is the result of variations in the surface tension.

The surface tension of a clean air-water interface at standard temperature
and pressure is σ ≈ 0.07 Nm−1. In comparing the relative strength of
gravitational and surface-tension forces for an air-water interface, we may
form from the surface tension σ, the density of water ρ0 ≈ 103 Kg m−3, and

13For viscous fluids, one must also consider the tangential stresses.
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the acceleration due to gravity g ≈ 10 m s−2 a capillary lengthscale,√
σ

ρ0g
≈ 3 mm.

This lengthscale gives an idea of the water waves for which surface tension
plays an important role, namely small ripples whose wavelengths are of the
order of millimeters. The propagation of longer water waves, like waves on
a beach, is dominated by gravity, and the propagation of very short water
waves — or waves in a gravity-free environment, like the space station —
is dominated by surface tension.

The mean curvature

H =
1
2

(κ1 + κ2)

is the mean of the principal curvatures κ1, κ2 of the surface. The principal
curvatures at a point on the surface are the maximum and minimum curva-
tures of curves on the surface through the point. The principal curvatures
may have the same sign, as in the case of a sphere, or opposite signs, as in
the case of a hyperboloid.

To define the principal curvatures more precisely, we consider a unit
normal vector-field ~n on the surface, which is unique up to a sign.14 For
any point ~x on the surface, we define the shape operator S(~x) to be the
linear map that takes a vector ~v tangent to the surface at ~x to the negative
covariant derivative −(~v·∇~n)(~x) of the normal vector field in the direction ~v
evaluated at ~x.15 Since ~n is a unit vector field, this derivative is orthogonal
to ~n(~x) and hence is tangent to the surface at ~x. The shape operator S(~x)
is thus a linear map on the two-dimensional tangent space of the surface at
~x. One can show that this map is symmetric, so it has two real eigenvalues.
These eigenvalues are the principal curvatures of the surface at ~x, and

H =
1
2
trS.

In the case of a surface that is a graph with equation (21), we find that

H =
1
2
∇h ·

(
∇hf√

1 + |∇hf |2

)
,

where ∇h = (∂x1 , ∂x2) denotes the horizontal gradient.

14We assume that the surface is orientable.
15The negative sign is not essential, but is conventional in the definition of the shape

operator.
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For example, if the fluid in x3 > f(x1, x2, t) has constant pressure p0,
then the pressure p(~x, t) of the fluid in x3 < f(x1, x2, t) satisfies the bound-
ary condition

p = p0 − σ∇h ·

(
∇hf√

1 + |∇hf |2

)
on x3 = f(x1, x2, t).

11. FURTHER READING

Chorin and Marsden [3] provides a quick introduction to fluid mechanics.
Batchelor [1] gives an extensive, traditional discussion of incompressible
fluid mechanics. Majda and Bertozzi [6] is a more mathematically oriented
account. Landau and Lifshitz [5] describes fluid mechanics from the point of
view of physics. Gurtin [4] gives a clear introduction to general continuum
mechanics. For water waves and wave propagation, see Whitham [9].

Marchioro and Pulvirenti is an introduction to the mathematical theory
of the incompressible Euler equations, also described in [6]. The lecture
notes of Bressan and Donadello [2] provide a concise account.

Finally, no one should study fluid mechanics without looking at the won-
derful pictures in [8].
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