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Abstract

We use a lubrication theory approximation to formulate a model for the reactive spreading
of drops that deposit an autophobic monolayer of surfactant on a surface. The model consists
of a Poisson equation on a moving domain with boundary conditions that depend on the
history of the domain motion. We develop a numerical algorithm for solving the model, using
the immersed interface method and the level set method. Numerical solutions for traveling
drops are qualitatively similar to experimental observations of reactive autophobic spreading.

1 Introduction

When a liquid drop of a solution of the surfactant hexadecanethiol (HDT) in hexadecane is placed
on a gold surface, the drop deposits an HDT monolayer on the gold, which affects the wetting
properties of the surface. For a wide range of HDT concentrations, the drop moves spontaneously
over the surface, a phenomenon called reactive autophobic spreading [2]. The motion of the drop
is caused by the difference between the static contact angles at the front of the drop, where the
liquid spreads out over the gold surface, and the rear of the drop, where the liquid retracts on
the HDT monolayer deposited during its passage. The deposition of self-assembled monolayers
of organic films by drops has significant potential for the preparation of surfaces in a variety of
industrial applications [2, 4, 5].

In this paper, we formulate a model, based on Greenspan’s lubrication theory approximation
[12], that describes the coupling between the motion of a drop and the deposition of a surfactant
monolayer. The model consists of a Poisson equation for the drop height on a moving domain,
together with conditions for the velocity of the domain boundary that incorporate the effect of
surfactant deposition. We develop a numerical scheme to compute solutions of the model, using
an immersed interface method to solve the Poisson equation, and a level set method to evolve the
moving domain. The numerical solutions include traveling drops that are qualitatively similar to
those observed in experiments.



The methods used here can be adapted to treat other problems in which a liquid drop affects
the wetting properties of the surface on which it moves. For example, a solvent drop on a polymer
surface may solvate or swell the surface [1], and in metallurgy a solder drop on a metal substrate
or a molten metal drop on a ceramic substrate may react with the substrate (see [3, 9], for
example). More generally, the level set approach should be useful in a wide variety of problems
involving drop motion, which are often analyzed in a one-dimensional approximation because of
the analytical difficulties in treating the geometry of a two-dimensional wetted region. Similar
methods may also be useful in the study of cell motion in biology. For example, some of our
numerical solutions for the evolution of drops resemble the motile behavior of keratocyte cells in
wound healing [16]. These cells deposit an actin network on the surface over which they move
[23], in an analogous way to the deposition of surfactant by a drop.

2 The model

To model the motion of the drop, we make the following assumptions.

1. The drop has constant mean curvature (t) at each time t.
2. The drop volume @ is constant in time.

3. The drop is thin and the dynamic contact angle 6 is small.

The first assumption can be derived from the incompressible Navier-Stokes equations under
certain approximations, including lubrication theory, and sufficiently slow motion of the drop [12].
The second assumption follows from the incompressibility of the fluid. The third assumption
is consistent with the lubrication theory approximation. We consider a drop that moves on a
horizontal surface, so we neglect the effect of gravity.

We denote the region of the surface wetted by the drop at time ¢ by Q(¢) C R?. The contact
line is the boundary 9(t) of Q(t). We let h(Z,t) > 0 denote the height of the drop at a point
Z € Q(t) at time ¢. Since the drop is thin, we may approximate the mean curvature of the drop
surface by —Ah. The above assumptions imply that the wetted region Q(¢) and the drop height
h(Z,t) satisfy the following equations:

—Ah = k(t), zZ € Q(t),
h =0, Z € 00(t), (2.1)
Since the drop is thin, we approximate the macroscopic dynamic contact angle 8 of the drop by

tan® = |Vh|, or 6 =|Vh|. (2.2)

The second relation above is valid if |Vh| is small and will be used in the perturbation analysis
in the next section. For numerical simulations, we can use either of the relations.

We assume that the outward normal velocity V,, of the contact line depends on the dynamic
contact angle. A convenient choice for this dependence is [6]

K(@—04)™ if0> 04,

V,=4 0 ifOp < 0 < 6y, (2.3)
_K(0r —0)™ if6 <0



Here, 84 > 0 denote the advancing and receding contact angles, respectively, and K > 0, m > 1
are constants.

To model the effect of surfactant deposition, we suppose that the advancing and receding
contact angles are a function of the time 7(Z#,¢) that a point Z has been wetted by the drop up
to time t. For definiteness, we suppose that

O4(Z,t) = 0o F (T(TLM”> . Og(#@t) = 0puF (T(TLM”> : (2.4)

where the constants 0437 and Orjs are the advancing and receding contact angles, respectively, of
the drop on a fully deposited monolayer, T, is a timescale for the deposition of the monolayer,
and F' is a monotone increasing function with F'(0) = 0, if the bare surface is perfectly wetting,
and F(4+00) = 1. The timescale T); depends on the concentration of the surfactant in the drop,
with larger concentrations corresponding to smaller deposition timescales Ths. The deposition
of a monolayer has a negligible effect on the concentration of surfactant, except possibly at low
concentrations and large times, so we assume that Tjs is a constant. For our sharp interface
formulation, the contact angle is only defined at the boundary of the wetted region Q(¢) and it is
the difference between the dynamic contact angle and the advancing and receding contact angles
respectively that drives the motion of the droplet. Of course there can be more complicated
physics involved, such as flow inside the drop, boundary layers and precursor in front of the
wetting boundary, that can affect the deposition of surfactants and the motion of the contact line.
However we neglect them in our present model.

To write an expression for the wetting time 7, we introduce the characteristic function xq
of the wetted region, defined by

Xaw (@) = { 0, if ¢ Q). (2:5)

The wetting time function 7 is given by

r(@,1) = ro(#) + /0 Xoog)(E) ds, (2.6)

where 79(Z) is the wetting time of Z at ¢t = 0.

Equations (2.1)—(2.6) are the model. The main new feature, in comparison with Greenspan’s
equations [12], is the dependence of the advancing and receding contact angles on the wetting
time. We suppose that Q, K, 0an, Ornr, Ty are given parameters, and F' is a given function.
The initial data are the wetted region €2(0), and the wetting time 79(Z). We want to find the
wetted region €2(¢) at later times, together with the drop height A(Z,t), the drop curvature x(t),
and the wetting time 7(Z, t). The amount of surfactant deposited on the surface is determined by
the wetting time.

While (2.1)—(2.6) is a simplified model for the problem, it does contain the essential compo-
nents for the problem within certain realistic parameter range. This is backed up by the agreement
between the experimental data (Figure 17) and our simulations ( Figure 16 and Figure 18).

To identify the dimensionless parameters in the problem, we let L be a characteristic diameter
of the wetted region (t), and H a characteristic height of the drop. A characteristic angle is then
© = H/L, and a characteristic velocity scale associated with the “pulling” of the contact line is

U=KO™.



As a characteristic timescale for the drop motion, we use

L
TD:ﬁ.

Denoting dimensionless variables by a bar, we define
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Transforming (2.1)—(2.6) into the barred variables, then dropping all bars, we find that the di-
mensionless problem is

_AR = k(t), 7 e,
h=0, 7 € 00(t), (2.7)
Jow M@ 1) dA = q,

where the order one parameter ¢ is given by

9= 73 (2.8)
The contact line velocity is given by
(|Vh| —04)™ if |[Vh| > 604,
V=140 if Op < |Vh| < 04, Z € 09(t), (2.9)
—(O0r — |VA|)™ if |[Vh| < O,
0a=fa(r), Or=[fr(7), (2.10)

where 7 is given by (2.6), and the advancing and receding contact angle functions f4, fr are given
by

fa(r) = asF (%) . fa(r) = agF (%) .

Here, the dimensionless parameters a4, ag, T are defined by

qr a0 Orm o Tu

A 0’ R 0’ TD .
The most important parameter is 7', which is the ratio of a timescale T3; for the monolayer
deposition and a timescale Tp for the motion of the drop. Higher surfactant concentrations
correspond to more rapid deposition, and therefore to smaller values of T'.

In most of our solutions, we will neglect contact-angle hysteresis (for reasons stated below),
meaning that 4 = g, and assume a linear relation between the contact line velocity and dynamic
contact angle, corresponding to m = 1 in (2.9). In that case, we may write

Vo = |Vh| - 85, (2.11)
s = f(7), (2.12)

where



and «, T are parameters.

A simple choice of the functions F' and f, which describe a surface that is perfectly wetting
in the absence of a monolayer, is given by

(2.13)

1, ift>1,

t, if0<t<1, at/T, f0<7<T,
F(t) - (r) =
Q, ifr>T.

It is useful to reformulate the problem, both for the analysis and for the numerical computa-
tions, by introducing a scaled height function 1, defined by

h(Z,1)

P(Z,t) = @) (2.14)
Elimination of h from (2.7) gives the following problem for 1:
—Ayp =1, z € Q(t), (2.15)
P =0, Z € 00(t).
Considering the case (2.11), for simplicity, the contact line velocity is determined from
Vo = k|VY| — 05 Z € 09(t), (2.16)

. q
k() = Jo $@, 0 &

where the static contact angle g is given by (2.6) and (2.12). The height function A may be
recovered from 1 and €2 by

Lj) (2.17)
Jaw V(G 0) dg

Finally, we consider in more detail the applicability of the above assumptions to the experi-
ments on reactive autophobic spreading reported in [2]. Hexadecanethiol (HDT) and hexadecane
are organic liquids with similar surface tension and viscosity. Hexadecane is perfectly wetting on
a gold surface, and a pure hexadecane drop spreads out into a thin uniform film, which eventually
breaks up. HDT deposits a self-assembled monolayer (SAM) on a gold surface, and both HDT
and hexadecane are partially wetting on the SAM. When a drop of pure HDT is placed on a gold
surface, it deposits a SAM, then retracts on the SAM into a stationary drop. This phenomenon
is called autophobic pinning. A drop that consists of a solution of HDT in hexadecane, with a
concentration between about 1 uM and 0.1 M, travels across the surface with a roughly constant
shape and velocity until the entire surface is covered by a SAM, or until the HDT in the drop is
depleted.

The drop shown in Fig. 17 from [2] consists of a 1 mM solution of HDT in hexadecane, with a
diameter of approximately 1 mm. After about 1 s of contact with the gold surface, the drop starts
to move, then accelerates until it travels with a constant velocity U of the order 1 mm/s. The
viscosity p and the surface tension o of hexadecane, at 25 C, are approximately u = 3 mPa s and
o = 30 mN/m [22]. The small value of the corresponding capillary number, C = Up/o = 1074,
indicates that surface tension forces dominate viscous forces in the motion of a drop, except in the
immediate vicinity of the contact line [24]. Surfactants on the surface of the drop may play a role



in the experiments, for example by inducing Marangoni effects, but since surfactant deposition
on the solid surface is the primary cause of the drop motion, it is reasonable to begin with a
quasi-static model and assume that the mean curvature of the drop depends only on time.

The measured contact angle at the front of the traveling drop in Fig. 5 of [2] is less than 5°,
while at the rear it is approximately 40°. The rear angle is too large to expect that lubrication
theory applies quantitatively, but in view of the resulting simplifications, it is a valuable qualitative
model. For smaller HDT concentrations, the monolayer at the rear of the drop is not fully
organized, and the receding contact angle is less, so a lubrication theory approximation should be
more accurate.

The deformation and motion of the drop is caused by the large difference between the static
contact angles of the unwetted gold surface onto which the drop spreads and the SAM at the rear
of the drop from which it retracts. This difference is much larger than the difference between
the advancing and receding contact angles of the drop on a fully deposited SAM. The advancing
contact angle of HDT on a fully deposited HDT monolayer is approximately 53°, and the receding
contact angle is approximately 46°. These considerations suggest that it is reasonable to neglect
contact angle hysteresis in a first approximation.

We could use other relations for the dependence of the contact line velocity on the dynamic
contact angle, as well as more detailed models for the fluid flow near the contact line [8, 13, 14, 24,
27]. Our main interest, however, is in studying the global effect of surfactant deposition on the
bulk motion and deformation of the drop, and we will not investigate other contact line models
here.

3 Analytical solutions

In this section, we give some analytical solutions of the model equations that illustrate the reactive
spreading of drops, or that are useful in testing the numerical scheme.

3.1 Circular drops

Equations (2.15)—(2.16) have an exact equilibrium solution for a drop with a circular wetted region
on a surface with constant static contact angle s = 6y > 0. We use polar coordinates (r, ). The
equilibrium radius of the wetted region is r = ag where

a0 = (4—q>l/3. (3.1)

T 90
The scaled height function of the drop is 1 = (), and the mean curvature is kK = Ky, where

8q

Po(r) = 7 (ag — %), Ko = —7.

3.2
4 TaQ, (32)

Two exact solutions for circular wetted regions and the linear stability analysis of the above
equilibrium solutions are given in [12]. The exact solutions are useful for testing our numerical
method. In the first solution, we suppose that the static contact angle 6y is constant, and the
initial shape of the wetted region is a circle whose radius r¢ is different from equilibrium radius



ag in (3.1). The solution is a circular wetted region of radius a(t), with
Lo 2 8q 29 (9 2
¢:Z(a —r?), K= h:@(a —r?). (3:3)

The radius a(t) of the wetted region satisfies the ordinary differential equation,

ap

a =0, [(;)3 - 1] . a(0) = 1. (3.4)

If 7y < ag, the wetted region expands, while if 7y > ay the wetted region contracts, and a(t) — ag
as t — +oo.

The second exact solution describes a circular wetted region moving across a surface whose
static contact angle depends linearly on a Cartesian coordinate z. That is,

05 = 0y (1 — \z), (3.5)

where 6y and X are constants. We assume that 8g > 0 in the wetted region. A solution of (2.7) is
then given by a circular wetted region of radius a(t), whose center is located at (z,y) = (s(t),0),
where
. ag\3 .
=0 (—) — 14 Xs|, $ = Mya. (3.6)
a

Here, ag is defined in (3.1). For small A, the radius approaches a value close to ag and the circle
then moves slowly to the right with velocity $ ~ A@gap.

3.2 Traveling drops

In this subsection, we formulate a free boundary value problem for the shape of the wetted region
of a drop that travels with constant velocity without change of shape. We use the perturbation
method of Greenspan [12] to solve this problem in the case of a nearly circular wetted region on
a partially wetting surface.

We denote the wetted region in a reference frame moving with the drop by 2. We use Cartesian
coordinates Z = (z,y) or £ = (£,7n) on the surface, and suppose that the drop velocity is V = Ve,
where V > 0 and €} is the unit vector in the z-direction.

Given a point Z € 2, we define A\q(Z) to be the length of the horizontal segment to the right
of # which intersects 2. That is,

Ma(@) = L' (Inld]) (3.7)
where £! denotes one-dimensional Lebesgue measure, and Io[7] is the set defined by

Inl(z,y)] = {(&n) € 2:{>rand n=y}.

The wetting time 7(Z) at a point # in the reference frame moving with the drop is given by

(@) = 200




From (2.12), the static contact angle at Z € 91, i.e., the contact line, is
. Ao(T
05(F) = f( ”‘E )). (3.8)

The unit outward normal 7 to the boundary of the wetted region is given in terms of the scaled
height function 7 by

VY

n=———. 3.9
iz (-2
It follows that the normal velocity of the contact line is given by
Yz
Vo=-V . 3.10
Using (3.8) and (3.10) in (2.11) and (2.15), we obtain the free boundary value problem,
—A =1, Z e,
P =0, Z € 09, (3.11)
L Aa(7) L
ko|Vp| +V =f , zZ € 09,
Vg =Ty

where kg is the constant mean curvature of the traveling drop, and Aq is defined in (3.7). The
problem is to find a speed V, a region Q C R?, and a scaled height function ¢ that satisfy (3.11),
where kg is a given constant and f is a given nonnegative, monotonic increasing function.

When the bare surface is partially wetting and the effect of the surfactant is weak, we can
solve this free boundary value problem by perturbing off the circular, equilibrium solution in
(3.1)-(3.2). We suppose that the contact angle function f in (3.11) is given by

f(1) =00 + eg(er), (3.12)

where 6y > 0 is a positive constant, € is a small parameter, and g(¢) is an increasing function of ¢
with g(0) = 0. We use polar coordinates (r,9). When e = 0, an exact solution of (3.11) is given
by Q = Qq, ¥ = 1o(r), and V = 0, where

1 26
Q0 = {(’I", 19) < aO}, ?ﬁO(T) = Z (a% - 7,2) y ap = KD_()O (313)
For small €, we write the equation of the perturbed contact line 92 as
r = ag + eb(9) + O(e?), (3.14)
and look for an asymptotic solution of (3.11) of the form
P = 1ho(r) + ey (r,9) + O(e?),
V =€Vi + 0(e?), (3.15)
Ag = N + 0(6).
Here, Ag is the length function (3.7) of the circular domain €y, which is given by
—2agcosd, if /2 <9 < 3n/2,
Ao#) = | (3.16)
0, if —7/2 <9 <mw/2

8



We use (3.12)—(3.15) in (3.11), Taylor expand the result with respect to ¢, and equate coeffi-

cients of e. After some algebra, we find that

=AY =0, inr < ag,
1
P = anb, on r = ag,
1 A
koW1, = Enob —Vicosd — g (%) , on r = ag.

The first two equations of (3.17) imply that 1, |;=4, is given in terms of b by

1
Qpl'f‘r:ao = Elc[b]’

where the Dirichlet-to-Neumann operator K is defined by

oo ) oo .
Z bpe™ | = Z n|b,e™?.

n=—0oo ] n=—oo

K

The use of (3.18) in the third equation of (3.17) implies that b satisfies
1
30 {b—- Kb} =G(9,W),

where

G(9,V1) =Vicost + g ()\(;/(,19)> .
1

We expand b and G in Fourier series,

o0 o
b= Y b, G= > Gue™.

n=—oo n=—oo

From (3.16) and (3.21), we have G_, = G,, and

1 ™2 (9
G1=—V1—l/ g(ﬂcosﬁ) cos ¥ dv,
0 \%

m 1
(="

N

7r/2 2(1() )
G, = / g (7 cos 19) cosnd dd, if |n| # 1.
0 1

s
The use of equations (3.19) and (3.22) in (3.20) implies that

1
30 (1 —|nl|) by, = Gh.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Thus, equation (3.20) is solvable for b if and only if G; = 0. From (3.23), it follows that the first

order drop velocity Vi satisfies the equation

w/2
Vlzg/ g(@cosﬂ> cos 9 do.
™ Jo I/1

(3.25)



Since the right-hand side of (3.25) is a positive decreasing function of Vi, this equation has a
unique positive solution for V7.

The solution of (3.20) is not unique, since b, is arbitrary. This Fourier coefficient corresponds
to a small translation of the drop, and we set it equal to zero for simplicity. From (3.22) and
(3.24), the location of the contact line is then given by (3.14) with

o
oy = 260 _ L3 G
) Ko “=5 M

1 cos nd.

For example, suppose that the contact angle function f is a linear function of the wetting
time,

f(r) =60y + €. (3.26)

This function is a Taylor approximation of more general contact angle functions in a slow depo-
sition limit on a partially wetting surface. The corresponding function g in (3.12) is

g(t) =t (3.27)
Using (3.27) in (3.25) and solving the resulting equation, we find that Vi = a(l)/ 2. Thus, from
(3.15), the velocity of the traveling drop is

V =eag/? + O(e?). (3.28)

The square-root dependency of the drop velocity on the radius is a consequence of the following
scalings: (a) the drop velocity is proportional to the difference between the static contact angles at
the rear of the drop and the front of the drop; (b) the static contact angle difference is proportional
to the passage time of the drop; (c) the drop passage time is proportional to the radius of the
wetted region and inversely proportional to the drop velocity.

When g is given by (3.27), the perturbation b of the contact line is given by

8at? [1 & —1ym
b(9) = 7”20 {5 + 2:: o —(1)(4)lm2 m— cos Qmﬂ} . (3.29)

m=1

From (3.14) and (3.29), the z-diameter d; and the y-diameter d, of the wetted region are given

860,1/2 86al/2
dy = 209 + —2—(14+2D) + O(€?),  dy =2a9 + —2—(1+25) + O(e?), (3.30)
TKQ )

where
o0

e =™ _ 1
D_mZ:l(2m—1)(4m2—1)’ 5_7;(2m—1)(4m2—1)‘

The numerical values of D and S are D =~ —0.315 and S =~ 0.366. Thus, the mean diameter of
the wetted region is larger than the equilibrium diameter of the circular wetted region of a drop
with the same mean curvature on a surface with uniform static contact angle 6y, and the drop
is elongated in the direction orthogonal to its direction of motion. In Sec. 5.2, we compare this

10



asymptotic solution with a numerical solution for a nearly circular traveling drop (see Fig. 10 and
Table 3).

We cannot obtain a solution for traveling drops on a perfectly wetting surface in this way,
because there is no equilibrium solution in that case. In fact, there cannot be any traveling
drop solutions with smooth contact lines on a perfectly wetting surface. To see this, suppose for
contradiction that the wetted region Q of the traveling drop belongs to the Holder class C%© for
some « > 0. It then follows [11] that the solution of —Ay = 1 for the scaled height function
satisfies ¢ € C%%(2). If the drop travels in the z-direction, then at a top or bottom point of
the contact line 92 where y has an extreme value, then the gradient of ¥ must equal zero, since
otherwise the contact line would move outwards in the y-direction, contradicting the assumption
that the wetted region moves without change of shape. We introduce local orthogonal coordinates
(s,m), where s is arclength along the contact line and n is a coordinate normal to the contact
line. Then since Ay < 0 and 9 = 0 on 0f2, we see that 1,, < 0 at the extreme point, which
implies the contradiction that 1 < 0 inside the wetted region. This argument does not prove the
nonexistence of traveling drops whose contact lines have cusps at the top and bottom edges, for
example, but if such traveling drops exist, any smoothing of the cusps would destroy them.

4 The numerical method

In this section we combine the level set method and the immersed interface method to develop
an Eulerian formulation to capture the shape and motion of reactive spreading drops on a fixed
Cartesian grid. We extend the immersed interface method to solve the Possion equation on an
arbitrary domain and modify the standard level set method to monitor the splitting or merging or
droplets to enforce the volume conservation of each individual droplet instead of the total volume.
The framework of our numerical algorithm can be easily adapted to models of more complicated
physics and contact line dynamics.

We represent the moving contact line 9€2(¢) as the zero level set of a two-dimensional level set
function ¢(%,t), such that

Q) ={Z: p(@t) <0}, 0t)={F: p@1)=0}.

Given the level set function at some time, we solve the Poisson equation in (2.15) for the scaled
height function % by means of an immersed interface method, compute the normal velocity V,, of
the boundary from 1, and update the level set function ¢ by solving a Hamilton-Jacobi equation,

90t+Vn|V(P| =0. (4'1)

An outline of one time step of the algorithm is as follows.

1. Compute the drop height

e Use a modified fast immersed interface method, described in the next subsection, to
solve the Poisson equation for 1,

-AyY = 1, in Q(t),
v = 0, on 0Q(t).

11



e Compute the mean curvature x from volume conservation,

q
fﬂ(t) P dxdy’

K =

where ¢ is the drop volume. If there is more than one drop, then k is evaluated
separately for each connected component of the set on which ¢ is negative.

e The height of the drop is h = Kk 9.
2. Compute the normal velocity at the boundary

¢ Use a weighted least squares interpolation algorithm to compute VA near the boundary,
see [20].
e Evaluate the static contact angle O5(Z,t) at the boundary.

e Compute the normal velocity of the boundary, V,, = |Vh| — 5.

3. Ewolve the contact line by use of a local level set method, and re-initialize if necessary.

There is a subtlety in grid resolution for the wetting time when the static contact angle
is affected by the surfactant deposition. Although the wetting time 7 is continuous in space
according to the definition (2.6), |V71| = ﬁ If the droplet is close to equilibrium solution or the
contact line is moving slowly, we need fine grid resolution to resolve the wetting time and hence
the static contact angle. In our numerical experiments, grid refinements are used to ensure the
convergence. We now give a more detailed description of the immersed interface method and the
level set method.

4.1 Fast Poisson solvers on irregular domains

In order to compute the drop height, we need to solve a Poisson equation on an irregular domain
whose shape varies in time. We use a Poisson solver based on the the fast immersed interface
method (IIM) developed in [20] and a modified version developed in [15]. The modification is
needed because the original IIM in [18, 20] is designed for interface problems that are defined
in the entire domain with discontinuities occur at the interface. The main idea of our method
here is to extend a Poisson equation on an irregular domain €2 to a Poisson equation on a larger,
rectangular domain R D (2. This procedure allows the use of fast Poisson solvers on a fixed
Cartesian grid that does not depend on the shape of the irregular domain. The extension of the
irregular domain 2, which may have several connected components (2;, is illustrated in Fig. 1. In
this sub-section, we will omit the time dependency for simplicity.

We extend the source term in the Poisson equation by zero outside €2, and impose zero Dirichlet
conditions on the boundary OR of the rectangle. We require that the normal derivative of the
solution 1) is continuous across the immersed boundary 02 of the irregular domain, but we
allow a finite jump v in the solution itself. In the language of potential theory, this requirement
is equivalent to the introduction of a double-layer source on 9€2. This extension leads to the

12



following interface problem,

-1 ifZ e,
Avp =
0 ifZeQ,
[n] =0,  on 09, (4.2)

(Y] = v, on 09,
1 =0, on OR,

where 1), denotes the normal derivative of ¥ on 99, and [-] denotes the jump across 9Q. We
choose v so that the solution 1 of (4.2) satisfies the Dirichlet boundary condition

P~ =0, on 09, (4.3)

where ¢~ is the limiting value of 9 on 02 taken from the inside of (2.

To numerically compute the solution of (4.2)—(4.3) for ¢ and v, we discretize the immersed
boundary 992. This boundary is given as the zero level set of a level set function ¢(z,y). The
level set function then is defined as a grid function ¢;; = ¢(z;,y;). Let

i = max{pi-1,j, Pijs Pi+1,> Pij—1s Pirj+1}s (0.4
o™ = min{@i_1,j, Pi,j; Pit1,5, Pij—1, Pij+1}-

We call (z;,y;) as an irregular grid point if i wgf;?” < 0. Otherwise the grid point is a
regular grid point'. We then compute the projections (z*,4*) of the irregular grid points onto the
boundary, as illustrated in Fig. 2. The detailed algorithm for finding the projections is explained

in [15, 21].

We denote the vector of the discretized values of 1 on R by ¥, and the vector of the discretized
values of the jump v at the projections of the irregular grid points that lie inside the wetted region
by V. On an N x N grid, the number of components Ny of ¥ is approximately N2, while the
number of components Ny of V' is of the order N. Using the IIM [18, 19] to discretize the interface
problem (4.2), we get a system of Ny linear equations of the form

AV + BV = F, (4.5)

where A is the discrete Laplacian matrix, using a five point stencil, B is a sparse matrix, and the
vector F7 is a source term, whose components may differ from the values of f at the irregular grid
points. Discretizing the Dirichlet condition (4.3) on the immersed boundary OS2, we get a system
of Ny linear equations of the form

CVU + DV = F,. (4.6)
Thus, we obtain a system of equations for the solution ¥ and the jump V on the boundary,

A B o F
C D v Fy

'"Whether a grid point is regular or irregular depends on the time level. In other words, the label is updated at
different time step.

. (4.7)
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The Schur complement of (4.7) is
(D-CA'B)V =G, (4.8)
where
G=F,—-CA'F.

Equation (4.8) for V is a much smaller system than equation (4.7) for (¥, V). We solve (4.8)
by the generalized minimum residual (GMRES) method. Each iteration of the GMRES method
involves one matrix-vector multiplication by A~!, which we compute by means of a call to a fast
Poisson solver for (4.5) with a specified jump V in the solution. Each iteration also involves one
call to the interpolation scheme to evaluate the residual R = CV + DV — F5 of the boundary
condition (4.6) for the iterate.

This Poisson solver for irregular domains is second order accurate. The number of calls to the
fast Poisson solver on the rectangular domain is equal to the number of GMRES iterations, and
is almost independent of the mesh size, although it may depend on the geometry of the domain.

The method described here applys to multi-connected domain if the boundary of the droplets
is expressed in terms of a single level set function in which the domain is divided by two parts:
the set of ¢(x) > 0, and the set of p(x) < 0.

We illustrate these statements with a numerical example. We solve the Poisson equation
—Ayp =4, in Q, (4.9)
Y =z + 9y + e®cosy, on 012,
on an elliptical domain
Q= {(z,y) : 2%/a* + y*/b* < 1}. (4.10)
The exact solution is
Y(z,y) = 2% + 3 + e cosy.

In Table 1, we show the maximum norm error E(N) of the numerical solution on an N x N
grid for various values of N. We also show the number of irregular grid points 71, the number
of irregular grid points inside the boundary of the ellipse ng, which is equal to the dimension of
(4.8), and the number of GMRES iterations k. The order of convergence is measured by

_ log[E(N)/EQ2N)]

0 log 2

(4.11)

This ratio in The results in Table 1 approaches number 2 as N — oo, which indicates second order
convergence. The number of GMRES iterations decreases slightly as N increases. The stopping
criteria for GMRES iteration is tol = 1078.

4.2 A modified level set method
We use the level set method [25] to compute the motion of the wetted region associated with a

drop. In the usual level set method, there is no need to keep explicit track of topological changes
in the moving region. In our problem, however, if several drops are present, then they move
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I N[ B | O [m [n[k]

32 | 4.21465 103 68 | 36 |9
64 | 8.137110~* [ 23728 | 132 | 68 | 7
128 | 1.7614 10~ | 2.2078 | 268 | 136 | 6
256 | 3.8196 10~° | 2.2053 | 532 [ 268 | 6
512 | 8.5548 10~% | 2.1586 | 1068 | 538 | 5

Table 1: Results of a grid refinement study for the numerical solution of (4.9) on the domain
(4.10) with @ = 0.5 and b = 0.15. Here, N is the number of grid lines in the z and y directions, e
is the maximum norm error of the numerical solution, r is the ratio of successive errors, n; is the
number of irregular grid points, ne is the number of irregular grid points inside the ellipse, and &
is the number of GMRES iterations.

independently of each other. We therefore need to modify the usual level set method so that we
can detect the splitting and merging of drops. The identification of separate drops is not required
when we solve the Poisson equation for 1, but it is required when we use the volume constraint
to calculate the mean curvature of the drops. The use of a single mean curvature for the whole
collection of drops would allow the transfer of fluid volume between physically disconnected drops.
Our modified level set method preserves the volume of each individual drop. When a new drop is
formed from splitting of old drops, or two drops merge together, our algorithm adjusts the mean
curvature automatically with the correct volume.

We use the following algorithm to identify the wetted regions associated with the drops.
Suppose that the grid points are (z;,y;) and the values of the level set function ¢(z;,y;) are
positive in the unwetted region of the surface.

1. Choose any seed grid point (z;,y;) with ¢(z;,y;) < 0. Find all points among its four
neighboring points (2;+1,y;+1) whose level set function value is nonpositive, and tag them.
These points are in the same region as the seed point.

2. Use the newly tagged points as an expanding boundary. Tag their connected but untagged
neighbors whose level set function values are nonpositive.

3. Continue this expansion process until no new neighboring points can be tagged. If all
untagged grid points have positive values for the level set function, then there is only one
drop, and we are done. Otherwise, choose any untagged grid point that has a nonpositive
value for the level set function and repeat the process until no untagged point has nonpositive
level set function values.

We also evaluate the integral pr % (Z) dZ for each disconnected component 2, in the above
identification process. Since each grid point needs to be visited once, the complexity of this
algorithm is linear in the number of grid points. The array of the expanding boundary points
which we use to tag new points is one dimension lower than that of the computational domain. To
make the algorithm more efficient, we only track topological changes for the grid points (z;,y;)
near the contact line that satisfy —Az < ¢(z;,y;) < 0, where Az is the grid size. The CFL
condition for the level set equation ensures that we do not miss any topological changes.
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When we detect that a drop has split into two, we use the above algorithm to identify the
wetted regions Q1 and 9 of the two new drops. Solution of the Poisson equation gives the scaled
height function % on = Q1 U 2s. We then decompose the volume ¢ of the original drop into
two separate volumes ¢g; and g2 such that g1 + g2 = g in the following way,

qfn T) di qu Y(7) d
q = = q2 = o 71—
fn dm fQQp(m) dz

This splitting of the volume is based on the assumption that the mean curvature x and the height
h are continuous with time. Therefore the volume of the i¢th drop is proportional to sz (%) dZ.
When two drops merge we simply identify them as one drop and set the volume of the new drop
equal to the sum of the volumes of the old drops.

After these modifications, we use the local level set method and corresponding numerical
algorithms in [21, 29], see also the narrow band level set method [26] and there references therein,
to update the moving boundary, as follows.

1. Evaluate the normal velocity of the contact line from

q
Ve = k|VY| — 0g, t —_,,
n K’| ¢| S K( ) fQ(t d.'L'

at the projections of the irregular grid points for each individual drop.

2. Extend the velocity off the front to a neighboring computational tube that contains the
contact line. In our implementation, we solve the following convection equation using an
upwinding scheme to solve

oV, Vgo .
= 4.12

see for example, [15, 29], where sign(y) denotes the sign of ¢. Another approach that can
be used is the fast marching method [26].

3. Re-initialize the level set function if necessary by solving

8@
ot

see [28, 29] for example. Note that there are other extension and reinitilization methods,
particularly the fast marching method in the literature, see [26] and the references therein.

+ (IVel = 1)sign(p) = 0, (4.13)

4. Adjust the time step according to the computed velocity.

5 Numerical experiments

In our numerical simulations, we embed the wetted region in a square, —2 < z, y < 2, or
—15<z, y<15,0or 0 <z y <1 The spatial step size Az is the same in both the z and y
directions. Most solutions are computed on a 100 x 100, 200 x 200, or 300 x 300 grid. The time
step At in the level set method is At = Az/(8.1). The tolerance for the GMRES iteration is 1078.
We use § = |Vh| for most of simulations except for Fig. 12 and Fig. 18 in which 6 = tan=1(|Vh|)
is used. The difference in the results obtained from the two different formula is hardly noticeable.
The computations were performed on an Ultra-1 Sun workstation.
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5.1 Drop motion without surfactant

In this subsection we present examples of drops moving on surfaces whose static contact angle is
constant in time. We assume that the contact line velocity

Vp,=0-0g (5.1)

depends linearly on the dynamic contact angle 6. In Fig. 3, we show two numerical solutions of
drops with circular wetted regions approaching their equilibrium radius on a uniform surface with
a static contact angle of g = 0.2. The drop volume is ¢ = 0.057, and the equilibrium radius (3.1)
is ag = 1. The analytical solution is given in (3.3)—(3.4). In Fig. 3 (a), the initial radius is greater
than one, and the drop contracts, while in Fig. 3 (b), the initial radius is less than one, and the
drop expands.

We use this simple example to check the order of accuracy of our numerical algorithms. We
carried out a grid refinement study for a fixed time (¢ = 0.5) and the final state (¢ = 5) of the
expanding wetted region shown in Fig. 3 (b). We summarize the results in Table 2. where we
show the maximum error E(¢) in the radius, defined as follows. Let S(L) be the set of irregular
grid points and let (z};(t),y;;(t)) denote the projection of (z;,y;) € S on the boundary. Then

B(t) = ‘;1{3’)‘{ @)+ ) -] } (5.2)

where a(t) is the exact radius described in Section 3.1. As t gets large, a(t) approaches to ag, the
equilibrium radius. We use the numerical solution at ¢ = 0.5, and at ¢ = 5, which is very close
to the steady state solution, to check the order. The order of convergence parameter O is defined
in (4.11). The results in Table 2 confirm that the computed position is accurate to order (Az)2.
In Fig. 4, we show the history of the error between 0 < ¢ < 0.5. The magnitude of the error is
0(107%) and does not change very much with time.

| N[ Et=05 ] O | | N| Et=5 | O |
40 | 1.3596 10—+ 40 | 1.1039 103
80 | 2.3127 10° | 2.5555 80 | 1.3798 10~* | 3.000
160 | 4.6955 10~° | 2.3002 160 | 3.5897 10~° | 1.9426
320 | 1.1679 10~% | 2.0074 320 | 9.3392 1075 | 1.9425

Table 2: A grid refinement study for an expanding circle. Here, N is the number of z and y grid
lines, E(t) is the maximum error in the radius at ¢ = 0.5 and ¢ = 5, defined in (5.2), and O is the
order of convergence parameter, defined in (4.11). The results confirm second order accuracy.

In Fig. 5, we show a numerical simulation of the motion of drops with circular wetted regions
on a surface whose static contact angle g is given by (3.5). The exact solution is given by (3.6).
When X is small, as shown in Fig. 5(a), the drop moves slowly to the right, while the radius of
the circular wetted region approaches to the value ay = (0.2)1/3 = 0.585--- given by (3.1). If A
is not small, the radius of the wetted region changes more rapidly, as shown in Fig. 5(b).

Since we use the level set method to capture the moving contact lines, we can “automatically”
handle the merging or splitting of drops in our numerical computations. Note that topological
changes and singularities are really challenging questions physically, mathematically and numeri-
cally, because most of the continuous models and numerical computations are not very faithful at
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that instant. However, for a well-posed system, which is true for our problem from linear stability
analysis, we can expect that the topological transition and its effect on the whole system is very
localized both in time and space. It is beyond the scope of this paper to address these issues
either physically or mathematically. We just try to show that using the level set method such
topological changes can be handled in a simple way if the model is still true, and hopefully our
method can provide a good continuation after topological changes. Also it may not be possible
to resolve topological changes and singularities to arbitrary accuracy on any finite grid. However
the resolution should be better and more fine features can be revealed when the grid becomes
finer.

In Fig. 6, we start with a drop with an initial dumbbell like wetted region on a surface with
uniform static contact angle g = 0.2(radian). The surface plot of the solution to the normalized
Poisson equation —A1 = 1 with 1y = 0 at the boundary is shown in Fig. 8. The real shape of
the drop is scaled by its volume as in (2.17). Therefore, depending on the drop volume ¢ and
the geometry of the contact line, the wetted region may expand, partially expand and partially
contract, or contract. If the drop has a relatively large volume, ¢ = (0.05)7(0.5), the initial
contact angle is larger than the static contact angle everywhere along the contact line, the wetted
region expands, and kinks develop in the contact line, as shown in Fig. 6. Eventually, the wetted
region becomes circular with an equilibrium radius ag = 0.5. If, however, the drop has a relatively
small volume, ¢ = (0.05)7(0.2)3, the initial contact angle is smaller than the static contact angle
at some places along the contact line, and the wetted region contracts at those places. In the
solution shown in Fig. 7, the portion of the contact line near the thin neck (concave part) has
a contact angle that is smaller than the static contact angle and retracts, and the initial drop
splits into two small drops. As explained in Sec. 4.2, we take special care to redistribute the
total volume to each new drop and to make sure each drop conserves its own volume. Due to the
symmetry in our example, these two drops are equal and their wetted regions eventually converge
to a disc of radius ag = 0.2 * (0.5)'/3 = 0.16. Fig. 8 is the surface plot of the solution to the
normalized Poisson equation —A = 1 with 9 = 0 at the boundary of the initial dumbbell in
Fig. 7.

Next we show the merging of two drops. We start with two drops whose wetted regions are
ellipses,

(z—0.35)>  (y—0.5)?

N ) (z —0.65)% (y—0.5)?
0.22 0.142 7’

=1 .
0.122 + 0.242 (5:3)

Again if the volumes of the two drops are large enough they will expand. Fig. 9 shows the evolution
of the wetted region in such a case. When the two drops merge we have to sum their volumes
and conserve the volume for the newly formed drop. While we have not attempted to model
the physical processes involved in detail, our numerical scheme appears to capture a physically
reasonable evolution process for the wetted region, in a quasi-static regime where the adjustment
of the drop surface to one of constant mean curvature is much faster than other processes, even
after the merging or splitting of drops.

5.2 Drop motion with surfactant
In this subsection, we present numerical solutions that include the effect of surfactant deposition.

To explain our choice of initial data, we first discuss the initiation of traveling drops. In experi-
ments (see Fig. 17 obtained from [2]), a circular drop placed on an unwetted gold surface expands
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initially, then part of the advancing contact line pins and peels back, after which the contact
line retracts on the SAM that the drop has deposited, thus setting the drop into motion. The
direction in which the drop moves is arbitrary, and depends on where the contact line first pins.
The macroscopic solution therefore depends very sensitively on small-scale effects that lead to pin-
ning. Possible physical mechanisms for pinning include random thermal or mechanical vibrations,
surface heterogeneities and roughness, and the deposition of a SAM ahead of the macroscopic
contact line by vapor or a thin precursor film [10, 17]. An understanding of these phenomena
requires a detailed study of the solid-liquid—vapor—surfactant system near the contact line, which
we will not attempt in this paper.

According to the macroscopic model we use here, the wetted region of a drop placed on an
initially unwetted, perfectly wetting surface always expands and spreads out over the surface. As
a result, the motion of the contact line is never influenced by the effects of surfactant deposition.
This exact solution is, however, sensitive to perturbations that cause part of the contact line to
begin retracting. In our numerical solutions, we perturb the wetted region in a controlled way
by introducing nonzero initial data for the wetting time on part of the surface, meaning that
part of the surface is covered by surfactant. This initial data mimics a partially wetting surface
heterogeneity that can set the drop into motion. Once the drop moves onto an initially unwetted
part of the surface, the nonzero initial wetting time has no further direct influence on the drop,
and the drop motion is sustained by the interaction of the drop with its own SAM.

First, we compare the asymptotic solution for a nearly circular traveling drop on a partially
wetting surface, derived in Sec. 3.2, with a numerical solution. We use the static contact angle

Os = 0y + 627', (54)
where 0y = 0.2 and € = 0.05. The wetting time 7 is given by

t
H@ 1) = o(F) + /O Xonge) (@) ds, (5.5)

where ¥ = (z,y). We suppose that the left-half plane z < 1z, where o = —0.585, has been
wetted, with initial wetting time

=AMz —xp), ifx—x9 <O,
[ e e .

0, ifx —xzg >0,

where A = 6.538. The initial contact line is a circle centered at (z,0). As shown in Fig. 10,
the wetted region moves into the right-half plane x > x(, and approaches a fixed, approximately
elliptical shape that travels with constant velocity. In Table 3, we compare the numerically
computed values of the drop velocity and the diameters of the wetted region with the values
computed in Sec. 3.2 by perturbation theory. We compute the asymptotic values from (3.28) and
(3.30), neglecting the order €? terms, using the numerically computed curvature of the traveling
drop, which is k9 = 0.79, with associated radius ag = 0.506 defined in (3.13). There is excellent
quantitative agreement.

In Fig. 11 and Fig. 122, we show numerical solutions in which the contact line velocity is given
by (5.1), and the static contact angle g is given by

fs — /T, f0<7<T,
1, ifr>T.
In our implementation, we use an adaptive time step. We save the level set function at every certain steps to

analyze the results. Therefore the data shown on the figures are the results at recorded time which can be arbitrary
non-negative real numbers.

(5.7)
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Vv dy dy
Asymptotic | 0.0356 | 1.055 | 1.211
Numerical | 0.0364 | 1.06 1.22

Table 3: A comparison of the asymptotic values of the velocity V and the x and y diameters d,
and dy of the wetted region with values obtained from the numerical solution shown in Fig. 10.

The only difference between Fig. 11 and Fig. 12 is that § = |Vh| in Fig. 11 and § = tan~!(|Vh|)
in Fig. 12. The difference is hardly noticeable.

The wetting time 7 is given by (5.5), with an initial wetting time (5.6) where A = 0.1 and
zo = 0. The initial contact line is a circle centered at (0,0). We show solutions for various values
of the deposition timescale T'. In Fig. 11 (a)—(b), where T' = 0.5, and Fig. 11 (c), where T' = 5.0,
the wetted region moves to the right into the initially unwetted right-half plane, because of the
initial wetting time gradient, and distorts because of the effects of surfactant deposition. The
wetted region continues moving to the right with an approximately constant velocity. The shape
of the wetted region is roughly constant, except for the formation of thin liquid trails at the top
and bottom edges in Fig. 11 (b). In Fig. 11 (d), where T' = 50, the wetted region expands, and
we do not see the formation of a traveling drop on the timescale of our numerical solutions. This
behavior is in qualitative agreement with the experiments, where a drop of a sufficiently dilute
solution of HDT expands and spreads out across the entire surface.

The distortion of the wetted region into a traveling crescent shape seen in Fig. 11 (a)—(c) is
qualitatively similar to experimental observations of reactive autophobic spreading. The shape of
the traveling drop in Fig. 11 (b) for 7' = 0.5 is strikingly similar to the experimentally observed
shape of the drop shown in Fig. 5 (c) of [2]. The liquid trails that form at the edges of the wetted
region in the numerical solution are more oblique than the ones observed in the experiment,
presumably because the contact lines pin in the experiment. The trails may not be fully resolved
in our numerical solutions. They do not appear in the coarser grid solutions, and on intermediate
grids we may see the formation of only one of the trails. The trails persist under grid refinement,
however, as illustrated in Fig. 15 (a)-(b) below.

In Fig. 13, we show a plot of the drop height at different times for the case T = 5, and in
Fig. 14, we show a colormap of the wetting time. The wetting time color map indicates the
amount of surfactant deposited by the drop, with a wetting time of 7 > 5 corresponding to a fully
organized SAM.

In Fig. 15, we show a set of solutions with different initial data for the wetting time. The
contact line velocity is given by (5.1), and the static contact angle is given by (5.7). The initial
wetting time is

1—[(z—zo+70)% + 92/, if (z —zo+10)% + 92 < €,
To(z,y) = _ (5.8)
0, otherwise.
The initial location of the contact line is
(z — z0)* +y° =1p. (5.9)

This initial data corresponds to a partially wetting, circular surface heterogenity, centered at
o — 70, located at the left edge of a circular wetted region, centered at zy. In the solutions, the
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radius of the heterogeneity is € = 0.1, and the radius of the wetted region is ry = 0.5. The overall
shapes of the wetted regions are similar to those of the wetted regions in Fig. 11.

Finally, we show some numerical solutions that include contact angle hysteresis. The contact
line velocity is given by (2.9):

(0 —64)" if0>64,
V=40 if0p <0 <04, (5.10)
—(0r—0)" if 6 <0Op.

We observe a variety of different behaviors, depending of the choice of the exponent m, and the
expressions for 84 and 8. We will present a few illustrative solutions without attempting to
explore all of the possible behaviors. We suppose that the advancing and receding contact angles
are given by

aat/T, if0<71<T, art/T, if0<71<T,

a4, ifr>T, QaR, ifr>T, (5.11)

where a4 = 1.2, ag = 1.0. The solutions for m = 1 appear similar to the previous solutions for
m = 1 without contact angle hysteresis. The solutions for m = 3 evolve more slowly than the
ones for m = 1, and the wetted regions deform less. This is presumably because § — 4, or 6 — 0p,
is less than 1 at the contact line, so the cubic power law dependence with m = 3 in (5.10) leads
to smaller contact line velocities that the linear dependence with m = 1.

Finally, we show a grid refinement analysis for the example above in Fig. 18 to see how well
our method deal with the less regular flow. The mesh lines are taken as N = 50, 100, 200, and
300. All the simulations are qualitatively and quantitatively similar in terms of the position and
the size of the droplet. But only reasonably fine grids (N = 200,300 in this case) can capture the
fine structure of the tail.

6 Conclusions

We have formulated a model for the reactive autophobic spreading of drops, and developed a
numerical scheme, based on the level set method and the immersed interface method, to compute
numerical solutions of this model. The numerical solutions of traveling drops agree qualita-
tively with experimental observations, and quantitatively with analytical solutions of the model
equations. Further work is required to make quantitative comparisons between experimental mea-
surements and numerical solutions, to use more detailed models of the fluid hydrodynamics and
surfactant transport near the contact line, and to extend our numerical scheme to solve these
more detailed models.
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provided information on cell motion. The work of J. K. Hunter was partially supported by the
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Figure 1: A sketch of the extension from an irregular to a rectangular domain. In this illustration,
there are two drops with corresponding wetted regions 1 and s.

26



@.4) <0 o(z,y) >0
p(z,y) <

@
(,’L’Z,y]) ($i+17yj)

o(z,y) =0

Figure 2: The projection (z*,y*) of an irregular grid point (z;,y;) on the boundary, where
o(zi,y;) <O0.

27



2 r,=0.75
2 ‘
15F g
15F b
s i
s i
05t g
05t i
ok i
ok i
o5t
_ost i
s i
s i
-15} g
-1.5F b
iy s s s s s ‘ ‘
2  -15 -1 -05 0 05 1 15 2 > ‘ ‘ ‘ ‘ s s ‘
2 -15 -1 -05 0 05 1 15 2

Figure 3: The evolution of a circular contact line on a uniform surface with contact line velocity
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radius is ag = 1. (a) A contracting circle with an initial radius of o = 1.5. (b) An expanding
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30



t=0.1125

09

0.8

0.1r

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

ine velocity

face with contact 1
(0.05)7(0.5)%. The region expands

101 01 a sur

f a dumbbell shaped wetted reg

ion o
form static contact angle fg

: The evoluti

Figure 6

(5.1)

0.2, and volume g =

, & unl

outward.

31



t=0 t=1.255
1 1
0.8 0.8
SN AN
..... g E *
0.4 TN 0.4 NN
0.2 0.2
% 05 1 % 05 1
t=2.255 t=5
1 1
08 08
0.6 ',/"> <"\‘ 06 l/""\\ /""\\
i i b ;
04 M ey 04 \.,_/ \,,/’
0.2 02
% 05 1 % 05 1

Figure 7: The evolution of a dumbbell shaped wetted region on a surface with contact line velocity
(5.1), a uniform static contact angle fs = 0.2, and volume g = (0.05)7(0.2)3. The region contracts
and splits.

32



“‘m
” H\\\{\

|

N\l
i |

il “t\\

0 o
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Figure 10: The motion of the contact line on a surface with contact line velocity (5.1), and static
contact angle (5.4)—(5.5), with 6y = 0.2 and € = 0.05. The volume of the drop is ¢ = 0.017. The
initial wetting time is given by (5.6) with A = 6.538 and zp = —0.585. The initial location of the
contact line is a circle in the left-half plane centered at (—0.585, 0) with radius 0.585. The drop
approaches an elliptically shaped traveling drop.
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Figure 11: The motion of the contact line on a surface with contact line velocity (5.1). The static
contact angle is given by (5.7), the wetting time by (5.5), and the initial wetting time by (5.6),
with A = 0.1 and ¢ = 0. The initial location of the contact line is a circle in the left-half plane
centered at (—0.5, 0) with radius 0.5, and the volume of the drop is ¢ = 0.017. The solutions are
shown for various deposition timescales: (a)-(b) T' = 0.5; (¢) T'= 5; (d) T = 50. The solutions
in (a), (c), (d) were computed on a 100 x 100 grid, and the solution in (b) was computed on a
400 x 400 grid. The contact lines move from left to right in (a)-(c), and expand in (d). The times
at which the contact lines are plotted are shown in the figures.
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Figure 12: The motion of the contact line on a surface with contact line velocity (5.1). The
parameters are exact the same as in Fig. 11 except now the dynamic contact angle of the drop is
given by tan @ = |Vh|. We can see that the motion of the contact line is similar to that in Fig. 11.

The only noticeable difference is in the position of the contact line in (c).
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Figure 13: The height h of the drop at different times for the solution in Fig. 11 (c).
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Figure 14: A colormap of the wetting time 7 for the solution in Fig. 11 (c).
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Figure 15: The motion of the contact line on a surface with contact line velocity (5.1) and (5.7).
In (a)—(c), we use T = 0.5 and ¢ = 0.1/7. In (d), we use T = 5.0, and ¢ = 0.1/7. In (a), (b), (d)
the initial location of the contact line is a circle (5.9) of radius o = 0.5 centered at (xg,0) with
zo = —0.5. The initial wetting time is given by (5.8) with e = 0.1. In (c), we use the same data
as in (a), except that g = 0. The solution shown in (a) is computed on a 200 x 200 grid, and the

solutions shown in (b)—(d) are computed on a 300 x 300 grid.
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Figure 16: Numerical solutions with contact angle hysteresis. The contact line velocity is given by
(5.10), and the advancing and receding contact angles are given by (5.11) with oy = 1.2, ap = 1.
The drop volume is ¢ = 0.01577. The solutions are computed on a 200 x 200 grid except in (d)
which is computed on a 300 x 300 grid. (a) T =0.5, m =1; (b) T = 0.5, m = 3; (¢c) T = 5,

m=1;(d) T=5,m=3.
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Figure 17: An experiment result from [2]. The caption from [2] reads: Drops of 1 mM HDT in
hezadecane moved, and were not pinned, across the surface of bare gold at rates of ~ lmm/s.
The volume of these drops was ~ pL. (A) The drop shape after 1.267 s of contact with the bare
gold surface. (B) The drop 0.067 s later than A, begins to dewet the gold because SAM formation
results in a finite contact angle between the drop and the surface. (C) The drop 2,000 s later than
B, pushed forward at a steady rate of 1 mm/s. The results agree with the simulations in Fig. 16,
Fig. 18, and some of simulations in Fig. 15 qualitatively.
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Figure 18: A grid refinement analysis with 50 x 50, 100 x 100, 200 x 200, and 300 x 300 grids.
The contact line velocity is given by (5.10), and the advancing and receding contact angles are
given by (5.11) with a4 = 1.2, ag =1, T =5, m = 3. The drop volume is ¢ = 0.01577. We use
the relation tan @ = |Vh|. We see similar qualitative and quantitative behavior, but the find grid
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gives better resolution for the tails.
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