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Waves with constant, nonzero linearized frequency form an interesting class
of nondispersive waves whose properties differ from those of nondispersive hy-
perbolic waves. We propose an inviscid Burgers-Hilbert equation as a model
equation for such waves, and give a dimensional argument to show that it mod-
els Hamiltonian surface waves with constant frequency. Using the method of
multiple scales, we derive a cubically nonlinear, quasilinear, nonlocal asymp-
totic equation for weakly nonlinear solutions. We show that exactly the same
asymptotic equation describes surface waves on a planar discontinuity in vortic-
ity in two-dimensional inviscid, incompressible fluid flows. Thus, the Burgers-
Hilbert equation provides an effective equation for these waves. We describe
the Hamiltonian structure of the Burgers-Hilbert and asymptotic equations,
and show that the asymptotic equation may be also be derived by means of
a near-identity transformation. We derive a semi-classical approximation of
the asymptotic equation, and show that spatially periodic, harmonic travel-
ing waves are linearly and modulationaly stable. Numerical solutions of the
Burgers-Hilbert and asymptotic equations are in excellent agreement in the
appropriate regime. In particular, the lifespan of small-amplitude smooth so-
lutions of the Burgers-Hilbert equation is given by the cubically nonlinear
timescale predicted by the asymptotic equation.
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1. INTRODUCTION

In this paper, we study a class of nonlinear waves whose linearized fre-
quency is nonzero and independent of the magnitude of their wavenumber.
We call such waves constant-frequency waves; they arise in wave motions
that depend only upon space-time parameters with the dimensions of time
(but, for example, no length, velocity or acceleration parameters). A spe-
cific physical example of such a wave motion is provided by the surface
waves that propagate on a vorticity discontinuity in a two-dimensional,
inviscid, incompressible fluid flow.

Constant-frequency waves are nondispersive, but their qualitative behav-
ior is different from that of the more familiar nondispersive waves whose
linearized phase speed is independent of the magnitude of their wavenum-
ber. We refer to the latter waves as nondispersive hyperbolic waves, since
they are often described by hyperbolic partial differential equations (with-
out lower-order terms).

A linear constant-frequency wave has an arbitrary spatial profile that
oscillates periodically in time, whereas a linear nondispersive hyperbolic
wave has an arbitrary profile that propagates with constant speed. Weakly
nonlinear effects lead to a slow distortion of these profiles; but, as we will ex-
plain, the resonant nonlinear effects are cubic for constant-frequency waves,
whereas they are quadratic for hyperbolic waves.

A useful model equation for unidirectional, constant-frequency, Hamil-
tonian waves is provided by

ut +
(

1
2
u2

)
x

= H[u]. (1)

In (1), and below, we use H to denote the spatial Hilbert transform, defined
by

H
[
eikx

]
= −i(sgn k)eikx

where sgn is the usual sign-function. We summarize our notation and
definitions in the Appendix.

Equation (1) consists of an inviscid Burgers equation for u(x, t) with a
lower-order, nonlocal, linear, oscillatory term. Positive wavenumber solu-
tions of the linearized equation ut = H[u] have frequency equal to 1, while
negative wavenumber solutions have frequency equal to −1. Thus, (1) de-
scribes a single, real-valued nonlinear wave whose linearized frequency is
constant. We call (1) the inviscid Burgers-Hilbert equation, or, for brevity,
the Burgers-Hilbert equation. Marsden and Weinstein [12] wrote down (1)
as a quadratic approximation for the motion of the boundary of a vortex
patch, but they did not analyze it.



CONSTANT-FREQUENCY WAVES 3

Weakly nonlinear solutions of (1) have the form

u(x, t) ∼ ψ(x, t)e−it + ψ∗(x, t)eit, (2)

where ψ(x, t) is a small, complex-valued amplitude-function that varies
slowly in time1 and ∗ denotes the complex conjugate. The amplitude ψ
contains only positive wavenumber spatial components, meaning that

Pψ = ψ, (3)

where P = 1
2 (I + iH) denotes the projection on to positive wavenumber

components. As we will show, both by the method of multiple scales and by
a symplectic near-identity transformation of the Hamiltonian of (1), ψ(x, t)
satisfies the following cubically nonlinear, nonlocal asymptotic equation:

ψt = P∂x
[
ψ |∂x|n− n |∂x|ψ

]
n = |ψ|2 . (4)

Here, ∂x denotes the partial derivative with respect to x and |∂x| = H∂x has
symbol |k|. We remark that, since Pψ = ψ, we may write |∂x|ψ = −i∂xψ in
(4), but there is no similar identity for |∂x|n, since n contains both positive
and negative wavenumber components. This equation for the complex wave
amplitude ψ may also be written in an equivalent real form, which is given
in (51) below.

The spectral form of (4) for the spatial Fourier transform ψ̂(k, t) of ψ(x, t)
is

ψ̂t(k, t) + ik

∫
δ(k + k2 − k3 − k4)Λ (k, k2, k3, k4)

ψ̂∗(k2, t)ψ̂(k3, t)ψ̂(k4, t) dk2dk3dk4 = 0 (5)

for k > 0, with ψ̂(k, t) = 0 for k ≤ 0. In (5), δ denotes the delta-function,
the integrals are taken over kj > 0, and the interaction coefficient Λ is
given by

Λ(k1, k2, k3, k4) = 2 min {k1, k2, k3, k4} . (6)

An alternative, but equivalent, expression for Λ is given in (49).
An interesting physical example of constant-frequency waves arises in

two-dimensional incompressible, inviscid fluid flows. A planar discontinu-
ity in vorticity that separates two linear shear flows with constant, but
different, vorticities is linearly stable.2 Small disturbances of the vorticity

1We omit the explicit introduction of a small parameter in (2).
2This stability contrasts with the Kelvin-Helmholtz instability of a vortex sheet, across

which the tangential fluid velocity is discontinuous.
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discontinuity, with fluid velocity perturbations that decay away from the
discontinuity, oscillate with a constant frequency that is proportional to the
jump in vorticity. The constant frequency of these waves is a consequence
of the fact that the only dimensional parameters on which the wave motion
depends are the vorticities of the half-spaces, and these have the dimension
of frequency.

Remarkably, when weakly nonlinear effects are taken into account, the
complex amplitude of the displacement of the vorticity discontinuity sat-
isfies an asymptotic equation of exactly the same form as the equation
(4) arising from the Burgers-Hilbert equation. Thus, the Burgers-Hilbert
equation, with a suitably renormalized nonlinear coefficient given in (34)
below, captures not only the nonresonant quadratically nonlinear dynam-
ics of a vorticity discontinuity but also the resonant cubically nonlinear
dynamics. This apparent coincidence is explained, in part, by dimen-
sional analysis, which shows that (1) is an appropriate model equation
for constant-frequency surface waves, just as the inviscid Burgers equation
is an appropriate model for constant-velocity bulk waves.

A planar vorticity discontinuity may be thought of as providing a local
approximation to the curved boundary of a vortex patch, so the asymptotic
equation (4) is relevant to the dynamics of vortex patches [3, 11, 13]. We
note that a spectral form of a related asymptotic equation was derived by
Dritschel [5] for weakly nonlinear deformations of a circular vortex patch.

Equation (4) has a great deal of structure. In this paper, we describe its
Hamiltonian form, and derive some conserved quantities. The only explicit
solution we know of is the harmonic, spatially-periodic traveling-wave

ψ(x, t) = Aeikx−iωt (7)

where A ∈ C, k > 0, and the frequency ω satisfies the nonlinear dispersion
relation

ω = |A|2k2. (8)

As we show, this solution is linearly and modulationaly stable.
Numerical computations show that solutions of the asymptotic equation

(4) develop singularities in finite time in which the derivative ψx blows
up. This singularity formation corresponds to the breakdown of smooth
solutions of the inviscid Burgers-Hilbert equation. A numerical comparison
shows that there is excellent agreement between solutions of the asymp-
totic equation and small-amplitude solutions of the Burgers-Hilbert equa-
tion, and that the singularity formation time of the asymptotic equation
provides an accurate approximation for the singularity formation time of
the Burgers-Hilbert equation.

Thus, smooth solutions of the Burgers-Hilbert equation with small initial
data have a cubically nonlinear lifespan, which is longer than the quadrat-
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ically nonlinear lifespan of smooth solutions of the inviscid Burgers equa-
tion. This extension in lifespan is a result of the averaging to zero of the
quadratic Burgers nonlinearity over a period of the temporal oscillations
induced by the Hilbert transform.

We will consider the nature of the singularities in solutions of the asymp-
totic equation and the continuation of smooth solutions by weak solutions
after a singularity forms in subsequent work.

We conclude the introduction by outlining the contents of the paper.
In Section 2, we discuss constant-frequency waves in the context of the
general theory of nonlinear waves. In Section 3, we carry out a dimensional
analysis of Hamiltonian wave motions which shows that the Burgers-Hilbert
equation (1) provides an appropriate model equation for unidirectional,
constant-frequency surface waves. In Section 4, which can be read directly
after this introduction, we use the method of multiple scales to derive the
asymptotic equation (4) from (1). In Section 5, we derive (4) for surface
waves on a vorticity discontinuity. In Section 6, we study the Hamiltonian
structure of (4), and write it in equivalent spectral and real forms. In
Section 7 we show that (4) can also be derived from (1) by the use of
a near-identity transformation. In Section 8, we derive a semi-classical
approximation for (4), and show that harmonic solutions are both linearly
and modulationaly stable. Finally, in Section 9, we present and compare
some numerical solutions of (1) and (4).

2. CONSTANT-FREQUENCY WAVES

In this section, we discuss constant-frequency waves in the context of
the general theory of nonlinear waves in a uniform medium ([14], [15]). For
simplicity, we consider a unidirectional wave motion with a single mode
propagating freely in space. Abusing notation slightly, we write the lin-
earized dispersion relation between the frequency ω and the wavenumber
k of the waves as ω = ω(k), where ω : R → R is an odd function for
real-valued wave-fields.

We begin by recalling some well-known facts about dispersive and nondis-
persive hyperbolic waves. Waves are dispersive if ω′′ 6= 0, where the prime
denotes a derivative with respect to k. According to the linearized theory, a
small-amplitude wave spreads out into a locally harmonic wave-train. Over
longer times, weakly nonlinear effects come into play, and the complex am-
plitude of the wave typically satisfies the cubically nonlinear Schrödinger
(NLS) equation.

Nondispersive hyperbolic waves have a dispersion relation of the form
ω = c0k where c0 is a constant wave-speed. According to the linearized
theory, a wave consists of an arbitrary spatial wave-profile that propagates
at constant velocity without distortion. Over longer times, weakly nonlin-
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ear effects distort the wave-profile, and the profile of a bulk wave typically
satisfies the quadratically nonlinear inviscid Burgers equation [2, 7].

The degree of nonlinearity in the weakly nonlinear equations is a conse-
quence of the resonances allowed by the linearized dispersion relation. The
quadratically nonlinear effects on nondispersive hyperbolic waves arise from
three-wave resonances among harmonics, of the form

ω1 = ω2 + ω3, k1 = k2 + k3.

Since ω = c0k, this resonance condition is satisfied for any kj such that
k1 = k2 + k3. As a result, the quadratically nonlinear self-interaction of
an initially spatially-harmonic wave with wavenumber k generates higher
harmonics nk, for all integers n.3 The resulting harmonic ‘cascade’ is well-
described by the inviscid Burgers equation.

By contrast, three-wave resonances of dispersive waves do not occur,4

but four-wave resonances of the form

ω = ω + ω − ω, k = k + k − k

always occur. These resonances lead to cubically nonlinear effects on the
amplitude of a single harmonic, although they do not generate new har-
monics. The combined effect of this nonlinear self-interaction with weak
dispersion is described by the cubic NLS equation.

Constant-frequency waves have a linearized dispersion relation of the
form

ω = ω0 sgn k (9)

where ω0 is a nonzero constant.5 They are nondispersive, since ω′′ = 0
for k 6= 0, and, according to the linearized theory, a wave consists of an
arbitrary spatial profile that oscillates with frequency ω0. Over long times,
weakly nonlinear effects distort this profile. Three-wave resonances do not
occur, since ω0 6= ω0 + ω0, but four-wave resonances occur among any
spatial harmonics with positive wavenumbers k1, k2, k3, k4 such that

k1 = k2 + k3 − k4. (10)

The corresponding condition for the frequencies is satisfied automatically.
Thus, cubically nonlinear interactions among different spatial harmonics

3We assume throughout this discussion that all relevant nonlinear interaction coeffi-
cients are nonzero.

4Except in non-generic cases, such as second-harmonic resonance, which we do not
consider.

5The general nondispersive case, in which ω = ω0 + c0k, can be reduced to (9) by
means of a Galilean transformation.
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generate new spatial harmonics, leading to a wide wavenumber spectrum,
but a narrow frequency spectrum. As a result, the complex wave-amplitude
function that describes the spatial profile of the wave typically satisfies a
cubically nonlinear asymptotic equation, such as (4), which may be spa-
tially nonlocal. The nonlinear dynamics of constant-frequency waves is
therefore fundamentally different from that of either dispersive waves or
nondispersive hyperbolic waves.

3. DIMENSIONAL ANALYSIS

From the perspective of dimensional analysis, constant-frequency waves
arise in systems that are invariant under space-time scalings (x, t) 7→ (λx, t),
which implies that the wave motion does not depend on any length or ve-
locity parameters, only time parameters. By contrast, nondispersive hy-
perbolic waves arise in systems that are invariant under scalings (x, t) 7→
(λx, λt), which implies that the wave motion does not depend on any length
or time parameters, only velocity parameters.

In this section, we carry out a dimensional analysis of general Hamil-
tonian constant-frequency waves which explains why (1) provides an ap-
propriate model equation for surface waves, such as waves on a vorticity
discontinuity.

We consider a Hamiltonian wave motion [15] that depends upon two
dimensional parameters: a frequency ω0 and a density ρ0. We use M , L,
T to denote the dimensions of mass, length, time, respectively, and denote
the dimensions of a quantity X by [X]. Then [ω0] = 1/T , [ρ0] = M/Ln

where n is the number of space dimensions.
We denote canonically conjugate wave amplitudes by {a(k), a∗(k)}, and

suppose that they are parametrized by a wavenumber vector k ∈ Rd. Thus,
d = n for bulk waves, and d = n−1 for waves that propagate along a surface
of codimension one.

Taylor expanding the Hamiltonian H in powers of the amplitude a, we
get

H (a, a∗) =
∫
ω0a(k)a∗(k) dk

+
1
2

∫
δ (k1 − k2 − k3)V (k1, k2, k3) a∗(k1)a(k2)a(k3) dk1dk2dk3

+
1
2

∫
δ (k1 + k2 − k3)V ∗ (k1, k2, k3) a(k1)a∗(k2)a∗(k3) dk1dk2dk3

+O
(
|a|4
)
,

where V (k1, k2, k3) = V (k1, k3, k2). We omit “creation” and “annihila-
tion” terms in H proportional to a∗(k1)a∗(k2)a∗(k3) and a(k1)a(k2)a(k3),
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respectively. These terms are nonresonant for the linearized dispersion
relation (9) and they can be removed by a near-identity transformation.

Since H is an energy, we have [H] = ML2/T 2, which implies that

[a] =
(
M

T

)1/2

L1+d/2, [V ] =
(
M

T

)1/2

L3(1+d/2)+n.

It follows that

V (k1, k2, k3) = (ρ0ω0)1/2W (k1, k2, k3) ,

where [W ] = Lν with

ν =
n− d+ 2

2
.

The inverse wavenumber provides the only lengthscale for a constant-frequency
wave-motion, so W is a homogeneous function of degree (−ν), meaning that

W (λk1, λk2, λk3) = λ−νW (k1, k2, k3) for all λ > 0.

In particular, we have ν = 1 for bulk waves and ν = 3/2 for surface waves.
Next, we specialize to unidirectional waves and consider some examples

of bulk and surface waves that are consistent with this dimensional scaling
argument.

3.1. Unidirectional waves
A unidirectional wave may be described by complex-canonical variables

{a(k), a∗(k) | 0 < k <∞} .

We consider a cubic Hamiltonian,

H(a, a∗) =
∫ ∞

0

ω0a(k)a∗(k) dk

+
1
2

∫ ∞
0

∫ k

0

V (k, k − ξ, ξ) a∗(k)a(k − ξ)a(ξ) dkdξ

+
1
2

∫ ∞
0

∫ ∞
0

V ∗ (k, ξ, k + ξ) a(k)a∗(ξ)a∗(k + ξ) dkdξ,

and suppose that all higher-degree terms are zero.
The complex canonical form of Hamilton’s equation,

iat =
δH
δa∗

, (11)
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leads to the following equation for a(k, t),

iat(k, t) = ω0a(k, t) +
1
2

∫ k

0

V (k, k − ξ, ξ)a(k − ξ, t)a(ξ, t) dξ

+
∫ ∞

0

V ∗(k, ξ, k + ξ)a(k + ξ, t)a∗(ξ, t) dξ,

where k > 0. Defining a(−k, t) = a∗(k, t), and V (−k1, k2, k3) = V ∗(k1, k2, k3),
we may write this equation in convolution form as

i(sgn k)at(k, t) = ω0a(k, t) +
∫ ∞
−∞

V (k, k − ξ, ξ)a(k − ξ, t)a(ξ, t) dξ,

where −∞ < k <∞.

3.2. Bulk waves
The three-wave interaction coefficients of constant-frequency bulk waves

are symmetric, homogeneous functions of degree 1. A simple choice for
them is

V (k1, k2, k3) = (ρ0ω0)1/2 (k1k2k3)1/3

where kj > 0. The corresponding Hamiltonian equation is

i(sgn k)at(k, t) = ω0a(k, t)

+ (ρ0ω0)1/2 |k|1/3
∫ ∞
−∞
|k − ξ|1/3|ξ|1/3a(k − ξ, t)a(ξ, t) dξ.

Introducing a non-canonical variable

u(x, t) = (ρ0ω0)1/2
∫ ∞
−∞
|k|1/3a(k, t)eikx dk,

we get

ut +
1
2
H |∂x|2/3

(
u2
)

= ω0H[u].

This equation therefore provides a model Hamiltonian equation for constant-
frequency bulk waves. We observe that the nonlinear term is nonlocal.

3.3. Surface waves
The three-wave interaction coefficients of constant-frequency surface waves

are symmetric, homogeneous functions of degree 3/2. A simple choice for
them is

V (k1, k2, k3) = (ρ0ω0)1/2 (k1k2k3)1/2 .
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The corresponding Hamilton’s equation is

i(sgn k)at(k, t) = ω0a(k, t)

+ (ρ0ω0|k|)1/2
∫ ∞
−∞
|k − ξ|1/2|ξ|1/2a(k − ξ, t)a(ξ, t) dξ.

Introducing the non-canonical variable

u(x, t) = (ρ0ω0)1/2
∫ ∞
−∞
|k|1/2a(k, t)eikx dk,

we get the Burgers-Hilbert equation,

ut +
(

1
2
u2

)
x

= ω0H[u]. (12)

The Hamiltonian form of (12) is

ut = J
[
δH
δu

]
, (13)

where the constant Hamiltonian operator J is given by

J = −∂x (14)

and the Hamiltonian functional H is

H[u] =
∫ {

1
2
ω0u|∂x|−1[u] +

1
6
u3

}
dx. (15)

We may normalize ω0 = 1 in (12) by the rescaling t 7→ ω0t. By making
a spatial reflection x 7→ −x, u 7→ −u, if necessary, which transforms ω0 7→
−ω0 in (12), we may ensure that this rescaling preserves the time-direction.

As shown in [2], a similar dimensional analysis of nondispersive hyper-
bolic waves depending on a wave speed c0 implies that the bulk-wave in-
teraction coefficients are homogeneous of degree 3/2, leading to an inviscid
Burgers equation

ut + c0ux +
(

1
2
u2

)
x

= 0.

This analysis explains why the local inviscid Burgers nonlinearity is ap-
propriate for surface waves depending on a frequency ω0 (for example,
nonlinear waves on a vorticity discontinuity), and bulk waves depending on
a speed c0 (for example, nonlinear sound waves).
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4. THE BURGERS-HILBERT EQUATION

In this section, we use the method of multiple scales to show that weakly
nonlinear solutions of (1) satisfy the asymptotic equation (4). Before do-
ing so, we briefly compare (1) with some other nonlinear, nonlocal wave
equations that have been studied previously.

The inviscid Burgers equation with a lower-order source term consisting
of a spatial convolution with an odd, integrable function g : R→ R,

ut +
(

1
2
u2

)
x

= g ∗ u, (16)

provides a useful model for nonlinear waves with general dispersion rela-
tions of the form ω = iĝ(k) (see §13.14 of Whitham [14], [8, 9, 10], and
§3.4.1 of [7], for example). One difference between (16) and (1) is that
convolution with an integrable function is a bounded linear operator on
L1, whereas the Hilbert transform is a singular integral operator that is
unbounded on L1. A more significant difference for the problems consid-
ered here, however, is that (16) is dispersive, whereas (1) is nondispersive.
As a result, the long-time behavior of small-amplitude solutions of (1) is
different from that of (16).

Equation (1) also differs from the Benjamin-Ono equation,

ut +
(

1
2
u2

)
x

+ H [u]xx = 0,

which contains a higher-order, nonlocal, linear dispersive term.
The nonlinear, nonlocal equation

ut = uH[u],

introduced in [4] as a one-dimensional model for vortex stretching, includes
a Hilbert transform in the nonlinearity, as does the equation

ut =
(

1
2
u2

)
xx

+ H [uH [u]xx]

introduced in [6] as a model for nonlinear Rayleigh waves, and derived in [1]
for surface waves on a tangential discontinuity in magnetohydrodynamics.

4.1. Linearized equation
The linearization of (1) is

ut = H[u]. (17)
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For definiteness, we consider solutions u : R × R → R; with appropriate
modifications, similar results apply to spatially periodic solutions u : T ×
R→ R.

The dispersion relation of (17) is ω = sgn k, and the general solution is

u(x, t) =
∫ ∞

0

[
ψ̂(k)eikx−it + ψ̂∗(k)e−ikx+it

]
dk,

where ψ̂ : (0,∞)→ C is arbitrary. Equivalently, we have

u(x, t) = ψ(x)eit + ψ∗(x)e−it

where ψ : R→ C is given by

ψ(x) =
∫ ∞

0

ψ̂(k)eikx dk.

It follows that Pψ = ψ, where P is the projection onto positive wavenum-
bers defined in (A.5). Writing

ψ(x) =
f(x) + ig(x)

2

where f , g are real-valued functions, we find that g = H[f ], and

u(x, t) = f(x) cos t+ H[f ](x) sin t.

Thus, the spatial profile of the solution of (17) oscillates in time between
f and H[f ], where f is an arbitrary function.

Another way to understand this solution is to write v = H[u] and take
the Hilbert transform of (17). Using the fact that H2 = −I, we find that

ut = v, vt = −u.

Thus, the linearized wave-motion consists of simple harmonic oscillators at
each point of space. Oscillations at different points are coupled together
only by the fact their velocity is the spatial Hilbert transform of their
displacement. Although the phase velocity ω/k = 1/|k| of the waves is
nonzero, the group velocity ω′ is zero, and the waves do not transport
energy.

4.2. Weakly nonlinear waves
Next, we consider weakly nonlinear solutions of (1). Using the method

of multiple scales, we look for an asymptotic solution of the the form

u(x, t; ε) = εu1(x, t, ε2t) + ε2u2(x, t, ε2t) + ε3u3(x, t, ε2t) +O
(
ε4
)
. (18)
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We use (18) in (1), expand the result in power series with respect to ε,
and equate coefficients of ε, ε2, ε3. We find that u1(x, t, τ), u2(x, t, τ),
u3(x, t, τ) satisfy

u1t = H [u1] , (19)

u2t +
(

1
2
u2

1

)
x

= H [u2] , (20)

u3t + u1τ + (u1u2)x = H [u3] . (21)

The solution of (19) for u1 is

u1(x, t, τ) = F (x, τ)e−it + F ∗(x, τ)eit, (22)

where F (·, τ) : R→ C satisfies

P[F ] = F. (23)

We use (22) in (20) and solve the resulting equation for u2. We find that

u2(x, t, τ) = G(x, τ)e−2it +M(x, τ) +G∗(x, τ)e2it, (24)

where

G = −
(

1
2
iF 2

)
x

, M = −iH [FF ∗] . (25)

We obtain an equation for F from the requirement that (21) is solvable
for u3. To state this requirement, we consider the following equation for
u(x, t):

ut = H[u] +B(x)e−int, (26)

where n = 0, 1, 2, . . . and B : R→ C.

Proposition 4.1. If n2 6= 1, then (26) is uniquely solvable for every
B ∈ L2(R). If n = 1, then (26) is solvable for B ∈ L2(R) if and only if

P[B] = 0 (27)

where P is defined in (A.5).

Proof. A solution of (26) has the form

u(x, t) = A(x)e−int
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where A satisfies

inA+ H[A] = −B. (28)

Taking the Hilbert transform of this equation, and using the fact that
H2 = −I, we get

A− inH[A] = H[B]. (29)

If n2 6= 1, the unique solution of (28)–(29) is

A =
inB −H [B]

n2 − 1
.

If n = 1, the system (28)–(29) is solvable if and only if H[B] = iB. From
(A.7), this means that B satisfies (27). In that case, the solution is

A =
1
2
iB + C

where C(x) is an arbitrary function such that P [C] = C.

We use (22)–(25) in (21) and compute the coefficient of the nonhomo-
geneous term proportional to e−it. Imposing the solvability condition in
Proposition 4.1 and simplifying the result, we find that that (21) is solvable
for u3 if and only if F (x, τ) satisfies

Fτ = P
[
FH [FF ∗]x + iFF ∗Fx

]
x
. (30)

Equation (30) with F = ψ and τ = t is equivalent to (4).

5. SURFACE WAVES ON A VORTICITY DISCONTINUITY

In this section, we study surface waves on an interface between two half-
spaces with constant vorticities in a two-dimensional, inviscid, incompress-
ible fluid shear flow. We suppose that the unperturbed interface is located
at y = 0, and denote the vorticities in y > 0 and y < 0 by −α+ and −α−,
respectively, where α+ 6= α−.

We will derive the following asymptotic solution for the perturbed loca-
tion y = η(x, t; ε) of the vorticity discontinuity:

η(x, t; ε) = ε
{
F (x, ε2t)e−iω0t + F ∗(x, ε2t)eiω0t

}
+O

(
ε2
)

(31)

as ε→ 0, where F (x, τ) satisfies P[F ] = F and

Fτ = γ0P
[
FH [FF ∗]x + iFF ∗Fx

]
x

. (32)
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The frequency parameters ω0, γ0 in (31)–(32) are given by

ω0 =
α+ − α−

2
, γ0 =

α2
+ + α2

−
α+ − α−

. (33)

Equation (32) with F = ψ, and γ0τ = t is equivalent to the asymptotic
equation (4).

After accounting for the coefficients, we find that (32) is identical to the
asymptotic equation derived in Section 4 for the Burgers-Hilbert equation

ηt +
(

1
2
β0η

2

)
x

= ω0H[η] (34)

where

β2
0 =

α2
+ + α2

−
2

.

We note that either choice of sign for β0 in (34) leads to the same asymptotic
equation (32). This is because the transformation η 7→ −η corresponds to
a half-period phase shift in the linearized oscillations, which does not affect
the averaged, long-time dynamics.

Since (34) leads to the same asymptotic equation as the one derived
from the primitive fluid equations, it provides an effective equation for the
motion of a planar vorticity discontinuity with slope of the order ε over
times of the order ω−1

0 ε−2. The coefficient β0 in (34) is not equal to the
coefficient α0 of the quadratic nonlinearity in the equations of motion for
a vorticity discontinuity, which, from (43) below, is given by

α0 =
α+ + α−

2
. (35)

Instead, β0 describes the combined effect of both quadratic and cubic non-
linearities. For example, if the shear flow is symmetric and α+ = −α−,
then β0 = α+, even though α0 = 0; while if the flow in the lower-half space
is irrotational and α− = 0, then β0 = α+/

√
2 and α0 = α+/2.

In the remainder of this section, we derive (32).

5.1. Formulation of the problem
First, we formulate equations that describe surface waves on a vorticity

discontinuity. The equations are summarized in (41) below.
Consider a velocity perturbation (u, v) of an unperturbed shear flow

(αy, 0), where (x, y) are spatial coordinates and α is a constant shear
rate. The two-dimensional incompressible Euler equations for (u, v) and
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the pressure p are

ut + (αy + u)ux + v (α+ uy) + px = 0,
vt + (αy + u) vx + vvy + py = 0,
ux + vy = 0.

Since the vorticity is advected by the perturbed flow, and the unperturbed
vorticity is constant (equal to −α), it is consistent to assume that the flow
perturbations are irrotational.

We therefore introduce a velocity potential ϕ(x, y, t) such that

u = ϕx, v = ϕy

and a streamfunction ψ(x, y, t) such that

u = ψy, v = −ψx.

Then the incompressibility condition implies that

∆ϕ = 0, (36)

and an integration of the momentum equations gives

ϕt + α (yϕx − ψ) +
1
2
|∇ϕ|2 + p = 0. (37)

Next, we consider perturbations of a shear flow given by (α+y, 0) in y > 0
and (α−y, 0) in y < 0, where the shear rates α± are distinct constants. The
unperturbed flow has a jump in vorticity across y = 0. We assume that
the flow perturbations are irrotational, and write the perturbed location of
the interface where the vorticity jumps as

y = η(x, t).

We assume that the interface is a graph, and do not attempt to continue the
solution past any time where the interface ‘breaks’. We use the notation

α =
{
α+ if y > η(x, t),
α− if y < η(x, t),

with similar notation for other quantities that jump across the interface.
The kinematic boundary condition states that the interface moves with

the fluid, meaning that

ηt + (αη + ϕx) ηx − ϕy = 0 on y = η(x, t)±. (38)
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The dynamic boundary condition states that the pressure is continuous
across the interface, meaning that

[p] = 0 (39)

where

[f ] (x, t) = f
(
x, η(x, t)+, t

)
− f

(
x, η(x, t)−, t

)
denotes the jump in a quantity f(x, y, t) across y = η(x, t). Using (37) in
(39), we get [

ϕt + α (yϕx − ψ) +
1
2
|∇ϕ|2

]
= 0. (40)

Finally, we require that the flow perturbation and the pressure decay
to zero away from the interface. This condition, together with (36), (38),
(40), gives

∆ϕ = 0 in y > η(x, t), y < η(x, t),
ηt + (αη + ϕx) ηx − ϕy = 0 on y = η(x, t)±,[
ϕt + α (yϕx − ψ) +

1
2
|∇ϕ|2

]
= 0, (41)

ϕ(x, y, t)→ 0 as y → ±∞,

where ψ is the harmonic conjugate of ϕ such that ψ → 0 as y → ±∞.

5.2. Linearized equations
Linearizing (41) around the unperturbed solution ϕ = 0, η = 0, we get

∆ϕ = 0 in y > 0 and y < 0,
ηt − ϕy = 0 on y = 0±,
[ϕt − αψ] = 0,
ϕ(x, y, t)→ 0 as |y| → ∞,

where [·] now denotes a jump across y = 0, and

α =
{
α+ if y > 0,
α− if y < 0.

Taking the jump of the kinematic boundary condition ηt − ϕy = 0 across
y = 0, we get

[ϕy] = 0.
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The Fourier solutions of ∆ϕ = 0 that decay as y → ±∞ are

ϕ(x, y, t) =
{
Â+(k)eikx−|k|y−iωt in y > 0,
Â−(k)eikx+|k|y−iωt in y < 0,

where k ∈ R. We write these solutions as

ϕ(x, y, t) = Â(k)eikx−σ|k|y−iωt,

where Â = Â±, and

σ =
{

+1 if y > 0,
−1 if y < 0.

The corresponding streamfunction and interface displacement are

ψ(x, y, t) = B̂(k)eikx−σ|k|y−iωt,
η(x, t) = F̂ (k)eikx−iωt,

where

Â(k) = iσ sgn(k)B̂(k), F̂ (k) =
k

ω
B̂(k). (42)

Using these solutions in the jump conditions and eliminating Â, we find
that [

{σω sgn(k)− α} B̂
]

= 0,
[
B̂
]

= 0.

It follows that B̂ is continuous across y = 0, and

ω = ω0 sgn(k),

where the frequency ω0 is given in (33).
Superposing Fourier solutions, we get the linearized solution with general

spatial dependence,

ϕ(x, y, t) = A(x, y)e−iω0t +A∗(x, y)eiω0t

ψ(x, y, t) = B(x, y)e−iω0t +B∗(x, y)eiω0t,

η(x, t) = F (x)e−iω0t + F ∗(x)eiω0t.

Here, the complex amplitudes A, B, F consist of positive wavenumbers,

A(x, y) =
∫ ∞

0

Â(k)eikx−σky dk,

B(x, y) =
∫ ∞

0

B̂(k)eikx−σky dk,

F (x) =
∫ ∞

0

F̂ (k)eikx dk,
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and, from (42),

A(x, y) = i sgn(y)B(x, y), F (x) =
i

ω0
Bx(x, 0).

We remark that the linearized tangential fluid velocity U on the interface
is the sum of the x-velocity components of the unperturbed shear flow and
the flow perturbation, so

U = αη + ϕx|y=0 .

We compute from the linearized solution that U is continuous across the
interface, as it must be, and is given by

U(x, t) = α0η(x, t) (43)

where α0 is defined in (35). Thus, since η(x, t) has zero mean with respect
to t, the time-averaged translation of the interface in the x-direction is
zero according to the linearized theory. In the symmetric case α0 = 0, the
linearized x-velocity is identically zero. In the general case, the advection
of the interface in one direction for positive displacements is canceled by
its advection in the opposite direction for negative displacements. There
is, however, a nonlinear Stokes drift of the interface that is second-order in
the amplitude.

For use in the asymptotic expansion, we state a solvability condition for
the nonhomogeneous linearized problem,

∆ϕ = 0 in y > 0 and y < 0,
[ϕy] = f(x)e−inω0t on y = 0, (44)
[ϕt − αψ] = g(x)e−inω0t on y = 0,
ϕ(x, y, t)→ 0 as |y| → ∞.

Proposition 5.1. If n2 6= 1, then (44) is solvable for ϕ for any functions
f, g ∈ L2(R). If n = 1, then (44) equation is solvable if and only if

P [α0f + g] = 0, (45)

where α0 is defined in (35) and P is defined in (A.5).

Proof. We write ϕ(x, y, t) = Φ(x, y)e−inω0t, take the Fourier transform
of (44) with respect to x, and solve the resulting equations. The details are
omitted.
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5.3. Weakly nonlinear waves
We look for an asymptotic solution of (41), depending on a small param-

eter ε, of the form

ϕε(x, y, t) = εϕ1(x, y, ε2t, t) + ε2ϕ2(x, y, ε2t, t) + ε3ϕ3(x, y, ε2t, t) + . . . ,

ψε(x, y, t) = εψ1(x, y, ε2t, t) + ε2ψ2(x, y, ε2t, t) + ε3ψ3(x, y, ε2t, t) + . . . ,

ηε(x, t) = εη1(x, ε2t, t) + ε2η2(x, ε2t, t) + ε3η3(x, ε2t, t) + . . . .

The velocity potentials ϕn and streamfunctions ψn satisfy

∆ϕn = 0, ψny = ϕnx, ψnx = −ϕny.

Expansion and simplification of the boundary conditions yields the follow-
ing perturbation equations: at the order ε,

η1t − ϕ1y = 0,
[ϕ1t − αψ1] = 0;

at the order ε2,

η2t − ϕ2y + αη1η1x + η1xϕ1x − η1ϕ1yy = 0,[
ϕ2t − αψ2 + η1ϕ1ty +

1
2
|∇ϕ1|2

]
= 0;

and, at the order ε3,

η3t − ϕ3y + η1τ + α (η1η2x + η2η1x) + η1xϕ2x + η2xϕ1x + η1η1xϕ1xy

−η1ϕ2yy − η2ϕ1yy −
1
2
η2
1ϕ1yyy = 0,[

ϕ3t − αψ3 + ϕ1τ + η2ϕ1ty + η1ϕ2ty +
1
2
η2
1ϕ1tyy

−1
2
αη2

1ψ1xx +∇ϕ1 · ∇ϕ2 + η1∇ϕ1 · ∇ϕ1y

]
= 0.

Here, all boundary conditions and jumps are evaluated at y = 0.
The solution of the first-order equations is

ϕ1(x, y, τ, t) = A(x, y, τ)e−iω0t +A∗(x, y, τ)eiω0t,

ψ1(x, y, τ, t) = B(x, y, τ)e−iω0t +B∗(x, y, τ)eiω0t,

η1(x, τ, t) = F (x, τ)e−iω0t + F ∗(x, τ)eiω0t,

where B(x, y, τ) is continuous across y = 0 with P[B(x, 0, τ)] = 0, and

A(x, y, τ) = iσB(x, y, τ), F (x, τ) = − i

ω0
Bx(x, 0, τ).
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Using these expressions in the second-order equations and solving the
result, we get

ϕ2(x, y, τ, t) = C(x, y, τ)e−2iω0t +M(x, y, τ) +A∗(x, y, τ)e2iω0t,

ψ2(x, y, τ, t) = D(x, y, τ)e−2iω0t +N(x, y, τ) +D∗(x, y, τ)e2iω0t,

η2(x, τ, t) = G(x, τ)e−2iω0t +G∗(x, y, τ)e2iω0t,

where

D(x, y, τ) = − α

2ω2
0

B2
x(x, y, τ),

N(x, y, t) = − β

ω2
0

Bx(x, y, τ)B∗x(x, y, τ)

G(x, τ) =
iα0

2ω3
0

{
B2
x(x, 0, τ)

}
x
,

with

β =
{
α− if y > 0,
α+ if y < 0, C = iσD, Mx = Ny, My = −Nx.

We use these expression in the third-order equations, collect terms pro-
portional to e−iω0t, and impose the solvability condition (45). After writing
this condition in terms of F and simplifying the result, we find that F (x, τ)
satisfies (32).

6. THE ASYMPTOTIC EQUATION

In this section, we describe the formal Hamiltonian structure of the
asymptotic equation (4), and derive equivalent spectral and real forms.

6.1. Hamiltonian structure
We denote by ψ,ψ∗ : R → C complex-conjugate functions that satisfy

the constraints

P[ψ] = ψ, Q[ψ∗] = ψ∗, (46)

where P, Q are the projections onto positive, negative wavenumber com-
ponents defined in (A.5), (A.6), respectively. The constraints may also be
written as Q[ψ] = 0, P[ψ∗] = 0.

If H(ψ,ψ∗) is a functional of (ψ,ψ∗), then the functional derivative of H
with respect to ψ∗ is given by

δH
δψ∗

= P[h]
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where h : R→ C is any function such that

d

dε
H (ψ,ψ∗ + εϕ∗)

∣∣∣∣
ε=0

=
∫
hϕ∗ dx

for all ϕ∗ : R→ C with Q[ϕ∗] = ϕ∗. Hamilton’s equation is

ψt = J
[
δH
δψ∗

]
(47)

where J = −∂x is the Hamiltonian operator in (14).

Proposition 6.1. Equation (4) has the Hamiltonian form (47) where
H is given by

H (ψ,ψ∗) =
∫ {

i

4
ψψ∗ (ψψ∗x − ψ∗ψx)− 1

2
ψψ∗ |∂x| [ψψ∗]

}
dx. (48)

Proof. Computing the functional derivative of (48) with respect to ψ∗

and using the result in (47), we get (4).

6.2. Spectral form
Equation (4) has a particularly simple spectral form (5). This equa-

tion describes the evolution of a nonlinear wave due to four-wave resonant
interactions (10) with the interaction coefficient Λ in (6).

Proposition 6.2. The function ψ(x, t) satisfies (3)–(4) if and only if
its Fourier transform ψ̂(k, t) is equal to zero for k ≤ 0 and satisfies (5) for
k > 0 where Λ is defined in (6).

Proof. Suppressing an explicit indication of the t-variable, we have

ψ(x) =
∫ ∞

0

ψ̂(k)eikx dx, ψ∗(x) =
∫ ∞

0

ψ̂∗(k)e−ikx dx.

Using these expressions in (48), and evaluating the x-integral, we get

H(ψ̂, ψ̂∗) =
∫ {

1
4

(k2 + k4)− 1
2
|k2 − k4|

}
ψ̂(k1)ψ̂(k2)ψ̂∗(k3)ψ̂∗(k4)

ei(k1+k2−k3−k4)x dxdk1dk2dk3dk4

= 2π
∫ {

1
4

(k2 + k4)− 1
2
|k2 − k4|

}
ψ̂(k1)ψ̂(k2)ψ̂∗(k3)ψ̂∗(k4)

δ (k1 + k2 − k3 − k4) dk1dk2dk3dk4.
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The integrals here are taken over the range kj > 0. Symmetrizing this
expression, we get

H = π

∫
δ (k1 + k2 − k3 − k4) Λ (k1, k2, k3, k4)

ψ̂(k1)ψ̂(k2)ψ̂∗(k3)ψ̂∗(k4) dk1dk2dk3dk4

where k1, k2, k3, k4 > 0 and

Λ(k1, k2, k3, k4) =
1
2

{
k1 + k2 + k3 + k4

−
(
|k1 − k3|+ |k1 − k4|+ |k2 − k3|+ |k2 − k4|

)}
. (49)

Only the values of Λ(k1, k2, k3, k4) on k1 + k2 = k3 + k4 are relevant, and
by symmetry we may suppose k1 ≥ k3 ≥ k4 ≥ k2. In that case,

Λ(k1, k2, k3, k4) =
1
2

(3k2 − k1 + k3 + k4) = 2k2.

Hence, we see that Λ is given by (6).
Writing (47) in terms of ψ̂, we get

ψ̂t = −ik 1
2π

δH
δψ̂∗

.

We therefore get the spectral form of the asymptotic equation given in (5).
One can also verify this result directly by taking the Fourier transform of
(4).

6.3. Real form
Next, we write the complex equation (4) for ψ in an equivalent real form.

We define

v(x, t) = ψ(x, t)e−it + ψ∗(x, t)eit. (50)

The function v corresponds to the leading-order approximation for u in the
expansion (18), and to the leading order approximation for the displace-
ment η of a vorticity discontinuity in (31).

Proposition 6.3. A complex-valued function ψ(x, t) such that P[ψ] = ψ
satisfies (4) if and only if the real-valued function v(x, t) in (50) satisfies

vt + ∂x

{
1
6
|∂x|

[
v3
]
− 1

2
v |∂x|

[
v2
]

+
1
2
v2 |∂x| [v]

}
= H[v]. (51)
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Proof. Since P[ψ] = ψ, we have from (50) that

ψe−it = P[v], ψ∗eit = Q[v], (52)

where the projections P, Q are defined in (A.5), (A.6).
Differentiating (50) with respect to t, we get

vt = (ψt − iψ) e−it + (ψ∗t + iψ∗) eit. (53)

Defining

n = ψψ∗, (54)

and using (A.7), we may write (4) as

ψt =
1
2

(I + iH)
[
ψH[n]x + inψx

]
. (55)

We use (55) in (53), use (52) to eliminate ψ, ψ∗ in terms of v, and simplify
the result. We find that

vt = H[v] +
1
2
∂x

{
vH[n]x −H[nvx]− nH[v]x −H

[
H[v]H[n]x

]}
. (56)

Using the convolution identity (A.3) with w = nx in (56) we get

vt = H[v] +
1
2
∂x

{
2vH[n]x −H[nv]x + nxH[v]− nH[v]x

}
. (57)

It follows from (52), (54), (A.3), and (A.7) that

n =
1
4
(
v2 + H[v]2

)
, H[n] =

1
2
(
H
[
v2
]
− vH[v]

)
.

Using these expressions in (57) and simplifying the result, we get

vt = H[v]− 1
8
∂2
x

{
H
[
v3 + vH[v]2

]
+ v2H[v]− 1

3
H[v]3

}
+

1
2
∂x

{
vH

[
v2
]
x
− v2H[v]x

}
. (58)

Using the identity (A.4) in (58), writing H∂x = |∂x|, and simplifying the
result, we get (51).
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Conversely, given a real-valued function v(x, t) that satisfies (51), we
define a complex-valued function ψ(x, t) = eitPv(x, t). Then v satisfies
(50) and Pψ = ψ. Reversing the steps above, we find that ψ satisfies (4).

The Hamiltonian form of (51) is

vt = J
[
δK
δv

]
(59)

where J is given in (14) and

K(v) =
∫ {

1
2
v|∂x|−1[v] +

1
6
v3 |∂x| [v]− 1

8
v2 |∂x|

[
v2
]}

dx. (60)

6.4. Symmetries of the equation
The Hamiltonian in (48) has the following obvious symmetries and asso-

ciated conserved quantities.

1. Time translation invariance, ψ(x, t) 7→ ψ(x, t + ε), generated by the
Hamiltonian H.

2. Space translation invariance, ψ(x, t) 7→ ψ(x + ε, t), generated by the
momentum

P =
∫
ψψ∗ dx.

3. Phase translation invariance, ψ(x, t) 7→ e−iεψ(x, t), generated by the
action

S =
∫
ψ∗ |∂x|−1

ψ dx.

We may check directly that these quantities are conserved. For the mo-
mentum, using (4), we find after some computations that

∂tn = ∂x
{

2n |∂x|n+ in (ψ∗∂xψ − ψ∂xψ∗)− n |∂x|n
}

−ψP∂x (ψ∗ |∂x|n− in∂xψ∗)− ψ∗Q∂x (ψ |∂x|n+ in∂xψ)
+n∂x |∂x|n.

Assuming that the appropriate boundary terms vanish, the spatial inte-
gral of the right-hand side of this equation is zero, since ∂x |∂x| is skew-
symmetric and, from (46) and (A.9),∫

ψP[f ] dx =
∫

Q[ψ]f dx = 0,
∫
ψ∗Q[f ] dx =

∫
P[ψ∗]f dx = 0
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for an arbitrary function f . Thus, the momentum P is conserved.
For the action, we write

ψ |∂x|−1
ψ∗ + ψ∗ |∂x|−1

ψ = iψ∗∂−1
x ψ − ψ∂−1

x ψ∗,

and compute that

∂t
(
ψ∗∂−1

x ψ − ψ∂−1
x ψ∗

)
= 2in∂xn+ ∂x

{(
ψ∗∂−1

x ψ − ψ∂−1
x ψ∗

)
|∂x|n

− in
[(
∂−1
x ψ

)
(∂xψ∗) + (∂xψ)

(
∂−1
x ψ∗

)]}
+ψP (ψ∗ |∂x|n− in∂xψ∗)
−ψ∗Q (ψ |∂x|n+ in∂xψ)
−
(
∂−1
x ψ

)
P∂x (ψ∗ |∂x|n− in∂xψ∗)

+
(
∂−1
x ψ∗

)
Q∂x (ψ |∂x|n+ in∂xψ) .

The right-hand side integrates to zero as before, and we conclude that S
is conserved.

Equation (47) also has a less obvious translational symmetry, which is
stated in the following proposition.

Proposition 6.4. If ψ0 ∈ C, then

H [ψ0 + ψ] = H [ψ] .

Moreover, if ψ(x, t) is a solution of (4), then so is

ψ̃(x, t) = ψ0 + ψ(x, t).

Proof. Let

ψ = ψ0 + ψ̃, n = n0 + ψ∗0ψ̃ + ψ0ψ̃
∗ + ñ,

where

n0 = ψ0ψ
∗
0 , ñ = ψ̃ψ̃∗.

Then we find that

ψ |∂x|n+ in∂xψ = ψ2
0 |∂x|ψ∗ + n0

[
|∂x| ψ̃ + i∂xψ̃

]
+ ψ∗0

[
|∂x| ψ̃ + i∂xψ̃

]
+ψ0

[
|∂x| ñ+ iψ̃∗∂xψ̃ + ψ̃ |∂x| ψ̃∗

]
+ψ̃ |∂x| ñ+ iñ∂xψ̃.
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The term proportional to ψ∗ projects to zero under P. Moreover, since
Qψ̃ = 0, we have |∂x| ψ̃ + i∂xψ̃ = 0, and

|∂x| ñ+ iψ̃∗∂xψ̃ + ψ̃ |∂x| ψ̃∗ = |∂x| ñ+ i∂xñ.

This term also projects to zero, so that

P∂x (ψ |∂x|n+ in∂xψ) = P∂x
(
ψ̃ |∂x| ñ+ iñ∂xψ̃

)
.

Thus, ψ̃ satisfies (4) if and only if ψ does.

Similarly, the real Hamiltonian K(v) in (60) is invariant under transla-
tions v(x, t) 7→ v0 + v(x, t).

The symmetry in Proposition 6.4 depends critically upon a cancelation
in the Hamiltonian (48); it does not hold for Hamiltonians whose densities
involve different linear combinations of the terms iψψ∗(ψψ∗x − ψ∗ψx) and
ψψ∗ |∂x| [ψψ∗].

6.5. The initial value problem
Using |∂x|ψ = −i∂xψ, we write the initial-value problem for (4) as

ψt = P∂x
[
ψ |∂x|n+ in∂xψ

]
(61)

ψ(x, 0) = ψ0(x). (62)

We require that the initial data ψ0 satisfies the constraint

P[ψ0] = ψ0. (63)

Acting on (61) by Q, and using the fact that QP = 0, we get ∂tQ[ψ] = 0.
Thus, if the initial data ψ0 satisfies (63), then a smooth solution ψ(·, t)
satisfies the same constraint for all times t.

Energy methods imply the short-time existence of smooth solutions of
(61)–(63), but we will not give the analysis here.

We may interpret (61) as analogous to the Leray projection of the in-
compressible Euler equations, with P corresponding to the orthogonal pro-
jection onto divergence-free fields and Q corresponding to the orthogonal
projection onto gradients. Introducing a complex-valued constraint func-
tion π(x, t), analogous to the pressure gradient, we may write (61)–(62)
as

ψt = ∂x

[
ψ |∂x|n+ in∂xψ

]
+ π,

P[ψ] = ψ, Q[π] = π,

ψ(x, 0) = ψ0(x)
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where ψ0 satisfies (63). It follows from these equations that ψ satisfies
(61), and π is given in terms of ψ by

π = −Q∂x
[
ψ |∂x|n+ in∂xψ

]
.

7. NEAR-IDENTITY TRANSFORMATION

In this section, we derive the real form (51) of the asymptotic equation
(4) from the Burgers-Hilbert equation (1) by use of a near-identity trans-
formation. This transformation removes the quadratically nonlinear terms
from (1), which is possible because they are nonresonant, leading to the
cubically nonlinear terms in (51).

We denote the Poisson bracket associated with J = −∂x in (14) by

{F ,G} =
∫
δF
δu

J
[
δG
δu

]
dx.

Introducing an amplitude parameter ε, and normalizing ω0 = 1, we write
the Hamiltonian (15) for the Burgers-Hilbert equation (12) as

H = H2 + εH3,

where Hj is homogeneous of degree j in u, and

H2(u) =
∫

1
2
u|∂x|−1[u] dx, H3(u) =

∫
1
6
u3 dx. (64)

We define a symplectic, near-identity transformation v 7→ u(ε) by

uε = J
[
δF
δu

]
, u(0) = v,

where

F = F3 + εF4,

with Fj homogeneous of degree j in u.
Then, since

Hε = {H,F} ,
a Taylor expansion with respect to ε gives

H [u(ε)] = H2(v) + ε
(
H3 + {H2,F3}

)
(v)

+ε2
(
{H2,F4}+ {H3,F3}+

1
2
{{H2,F3} ,F3}

)
(v) +O(ε3).
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To eliminate the cubically nonlinear terms from H(u), we choose

F3(v) = −1
6

∫
H[v]3 dx.

Then, using (A.3) and the fact that the Hilbert transform is a skew-adjoint
isometry on L2, we compute that

{H2,F3} = −H3,

and

H (u(ε)) = H2(v) + ε2K4(v) +O
(
ε3
)
, (65)

where

K4 = {H2,F4}+ H̃4, (66)

with

H̃4(v) =
1
12

∫ {
2
3
v3 |∂x| [v]−

(
H[v]2 +

1
2
v2

)
|∂x|

[
v2
]}

dx. (67)

To simplify the forth-degree terms, we choose

F4(v) =
∫ {

1
6
vxH[v]H

[
v2
]
− 1

8
H[v]2

(
v2
)
x

}
dx.

After some algebra, we compute that

{H2,F4} (v) =
∫ {

1
12
(
H[v]2 − v2

)
H
[
v2
]
x
− 1

3
H
[
vH[v]

]
vxH [v]

+
1
6
(
v3H[v]x + vxH[v]3

)}
dx. (68)

The convolution theorem (A.3), with w = v, implies that

H
[
vH[v]

]
=

1
2
(
H[v]2 − v2

)
.

Using this identity in (68), simplifying the result, and writing H∂x = |∂x|,
we find that

{H2,F4} (v) =
1
12

∫ {
H[v]2 |∂x|

[
v2
]
−v2 |∂x|

[
v2
]
+

4
3
v3 |∂x| [v]

}
dx. (69)
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Using (67) and (69) in (66), and simplifying the result, we get

K4(v) =
∫ ∞
−∞

{
1
6
v3 |∂x| [v]− 1

8
v2 |∂x|

[
v2
]}

dx. (70)

After neglecting terms of higher order than the quartic terms, setting
the amplitude parameter ε equal to one, and using (64), (70) in (65), we
see that the near-identity transformation v 7→ u defined by F transforms
the Hamiltonian equations (13)–(15) into (59)–(60).

8. LINEARIZED STABILITY OF PERIODIC WAVES

The harmonic-wave solution (7)–(8) is the constant-frequency analog of
the Stokes-wave solution for a weakly nonlinear dispersive waves. A signif-
icant difference, however, is that the dependence on the wave amplitude A
appears as a coefficient of the dispersive term, rather than as a shift in the
frequency.

A single positive-wavenumber harmonic is an exact solution of (4) be-
cause four-wave resonant interactions of the form k+k−k do not generate
any new spatial harmonics. On the other hand, resonant interactions in-
volving more than one harmonic generate infinitely many new harmonics
(for example, 3k = 2k + 2k − k, 4k = 3k + 2k − k, and so on).

8.1. Linearized stability
To study the linearized stability the solution (7)–(8), we normalize A =

k = ω = 1, without loss of generality, and write

ψ(x, t) = ei(x−t) [1 + ϕ(x, t)] . (71)

Using this expression in (4), and linearizing the result with respect to ϕ,
we get

ϕt − iϕ = e−ixP
[
eix
(
|∂x| [m]−m+ iϕx − ϕ

)]
x

where m = ϕ+ ϕ∗. We write this equation as

ϕt − iϕ = ∂̃xP̃
[
|∂x| [ϕ∗]− ϕ∗ + |∂x| [ϕ] + iϕx − 2ϕ

]
where

∂̃x = e−ix∂xe
ix = ∂x + iI, P̃ = e−ixPeix.

The Fourier transform ψ̂(k, t) is supported in 0 < k < ∞, so from (71)
ϕ̂(k, t) is supported in −1 < k <∞. It follows that P̃[ϕ] = ϕ, and therefore

ϕt − iϕ = ∂̃xP̃
[
|∂x| [ϕ∗]− ϕ∗

]
+ (∂x + i) (|∂x| [ϕ] + iϕx − 2ϕ) .
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To compute the action of P̃ on ϕ∗, we decompose ϕ as

ϕ(x, t) = ξ(x, t) + η(x, t)

where

ξ(x, t) =
∫ 1

−1

ϕ̂(k, t)eikx dk, η(x, t) =
∫ ∞

1

ϕ̂(k, t)eikx dk.

Then

∂̃xP̃
[
|∂x| [ϕ∗]− ϕ∗

]
= (∂x + iI)

[
|∂x| [ξ∗]− ξ∗

]
,

and

ϕt + 3ϕx− i |∂x| [ϕ] + iϕ = |∂x| [ϕ]x + iϕxx + (∂x + i) (|∂x| [ξ∗]− ξ∗) . (72)

Projecting (72) onto Fourier components with 1 < k <∞, and using the
fact that |∂x| [η] = −iηx, we get

ηt + 2ηx + iη = 0.

Thus, perturbations with wavenumber k > 1 are independent of the other
modes. They are stable, with velocity 2 and frequency 1.

Projecting (72) onto Fourier components with −1 < k < 1, we get

ξt + 3ξx − i |∂x| [ξ] + iξ = |∂x| [ξ]x + iξxx + (∂x + i) (|∂x| [ξ∗]− ξ∗) . (73)

Thus, if 0 < k < 1, the k and (−k) modes are coupled through their
interaction with the unperturbed wave.

To solve (73), we write

ξ(x, t) = µ(x, t) + ν∗(x, t)

where

µ(x, t) =
∫ 1

0

ϕ̂(k, t)eikx dk, ν(x, t) =
∫ 1

0

ϕ̂∗(−k)eikx dk.

Then H[µ] = −iµ, H[ν] = −iν and

|∂x| [ξ] = −iµx + iν∗x.

Using this equation in (73), projecting the result onto Fourier components
with 0 < k < 1 and −1 < k < 0, respectively, and simplifying the result,
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we get

µt + 2µx + iµ+ i
(
∂2
x + 1

)
ν = 0,

νt + 4νx − iν + 2iνxx + i (∂x − i)2 µ = 0.

We look for Fourier solutions of this system of the form

µ(x, t) = Meikx−iωt, ν(x) = Neikx−iωt

where 0 < k < 1. Then[
−ω + 2k + 1 1− k2

−(1− k)2 −ω − 1 + 4k − 2k2

] [
M
N

]
= 0.

Setting the determinant of the matrix in this equation equal to zero, and
introducing the phase speed c = ω/k, we get

c2 + 2(k − 3)c+ 6− 2k − k2 = 0.

The solutions are real, with

c = (3− k)±
√

1 + 2(1− k)2. (74)

It follows that the harmonic solutions (7)–(8) of (4) are linearly stable to
small perturbations.

We remark that in this analysis, unlike the analogous analysis of disper-
sive waves using the NLS equation, the perturbations are not assumed to
be of long wavelength relative to the wavelength of the carrier wave. Their
frequency is, however, close to the frequency of the carrier wave.

8.2. Semi-classical solutions
To derive a semi-classical approximation for (4) it is convenient to pro-

ceed informally. The same results can be obtained by the explicit intro-
duction of a small parameter.

We write

ψ(x, t) = a(x, t)eiS(x,t) (75)

where a, S are real-valued functions. Using (75) in (4), we get

iaSt + at = e−iSP
[
eiS
{
a |∂x|

[
a2
]
− a3Sx + ia2ax

}]
x
. (76)

We suppose that the phase S varies much more rapidly than a, so that the
spectrum of ψ is concentrated near Sx. Assuming that Sx > 0, we have for
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any slowly varying function b that

P
[
beiS

]
∼ beiS .

We may therefore approximate (76) as

iaSt + at = iSx
{
a |∂x|

[
a2
]
− a3Sx + ia2ax

}
+
{
a |∂x|

[
a2
]
− a3Sx + ia2ax

}
x
.

Expanding derivatives and equating real and imaginary parts in this equa-
tion we get

St + a2S2
x = Sx |∂x|

[
a2
]

+ aaxx + 2a2
x,

at + 4Sxa2ax + a3Sxx =
(
a |∂x|

[
a2
])
x
.

Introducing n = a2 and k = Sx, we may write these equations as

kt +
(
k2n

)
x

=
(
k |∂x| [n] +

1
2
nxx +

n2
x

4n

)
x

, (77)

nt +
(
2kn2

)
x

= 2n |∂x| [n]x + nx |∂x| [n] . (78)

The terms on the right-hand side of (77)–(78) are small in the semi-
classical limit. The leading order semi-classical equations are therefore

kt +
(
k2n

)
x

= 0, (79)

nt +
(
2kn2

)
x

= 0. (80)

These equations form a hyperbolic system for (k, n):[
k
n

]
t

+
[

2kn k2

2n2 4kn

] [
k
n

]
x

= 0. (81)

The eigenvalues λ and eigenvectors R of the matrix in (81) are given by

λ = γkn, R =
[

k
(γ − 2)n

]
where

γ = 3±
√

3.

The hyperbolicity of the semi-classical equations means that periodic wave-
trains are modulationally stable, and is consistent with the linearized stabil-
ity of periodic waves. The characteristic velocities λ = 3±

√
3 of (79)–(80)
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at kn = 1 agree with the velocities in c = 3 ±
√

3 at k = 0 in (74), both
of which limits describe linearized, long-wave perturbations of the solution
ψ(x, t) = eix−it.

Riemann invariants ϕ of (81) are given by

ϕ(k, n) = kn(γ−2)/2.

It follows that {(k, n) : k > 0, n > 0} is an invariant region for smooth
solutions of (81), consistent with the assumption made in deriving the
system that k, n > 0.

The characteristics of (81) are genuinely nonlinear for kn 6= 0, with

∇λ ·R = βkn, β = 9± 5
√

3. (82)

Thus, semi-classical solutions steepen until the higher-order dispersive terms
on the right hand side of (77)–(78) become important.

The dominant long-wave dispersive terms in (77)–(78) are the ones pro-
portional to |∂x| [n]x = H[u]xx. Omitting the explicit introduction of a
small parameter, we find that small-amplitude long-wave perturbations of
k, n about k = 1, n = 1 are given by

k(x, t) = 1 + u(x, t) + . . . , n(x, t) = 1 + (γ − 2)u(x, t) + . . .

where u(x, t) satisfies a Benjamin-Ono equation

ut + γux + βuux = αH[u]xx (83)

with

α = 1± 2
√

3
3
.

The nonlinear coefficient β agrees with the genuine-nonlinearity coefficient
in (82), while the linear dispersive coefficient α agrees with the long-wave
expansion of the linearized phase velocity (74), which is c = γ−α|k|+O(k2)
as k → 0.

The soliton solutions of (83) are

u(x, t) =
4α
β

[
a

(x− ct)2 + a2

]
where a is a large, positive parameter, and

c = γ +
α

a
.
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For the (+)-branch, with α > 0, the solitons travel faster than periodic
long waves, while for the (−)-branch, with α < 0, the solitons travel slower
than periodic long waves. The solitons have the same phase velocity as a
periodic short wave with wavenumber close to κ = 4± 2

√
3. This suggests

that solitary waves corresponding to the BO-solitons may not exist in the
full asymptotic equation due to the radiation of short waves, but we will
not pursue that question further here.

9. NUMERICAL SOLUTIONS

We used a pseudo-spectral method to numerically integrate both the
Burgers-Hilbert equation (1) and the asymptotic equation (4). We com-
puted the spatial derivatives and the Hilbert transform spectrally, and
carried out the time-integration by means of a fourth order Runge-Kutta
scheme. The numerical solutions show that small-amplitude solutions of
the Burgers-Hilbert equation are well-described by the corresponding so-
lutions of the asymptotic equation. They also show that solutions of the
asymptotic equation steepen and form a singularity.

Using 212 points for x ∈ [0, 2π], we could integrate the equations quickly
in MATLAB up to the formation-time of the singularity, which will be
discussed below. For both equations, energy was conserved to within a
relative error of less than 10−7 for the duration of the integration; and,
for the asymptotic equation, the momentum and action were conserved to
within a relative error of less than 10−8.

We performed several integrations of the Burgers-Hilbert equation with
the same initial profile scaled to different amplitudes:

u(x, 0) = A

{
cosx+

1
2

cos
[
2
(
x+ 2π2

)]}
(84)

where A is a real constant. This data has maximum negative slope

ε = |minux(x, 0)|

where ε = cA with c ≈ 1.225.
A linear timescale Th for (1) is given by the period Th = 2π of solutions

of the linearized equation (17). A nonlinear timescale Tb is given by the
shock formation time Tb = 1/ε for the inviscid Burgers equation. Thus,

2πε =
Th
Tb

is an appropriate parameter for measuring the effect of nonlinearity on
solutions of the Burgers-Hilbert equation. If ε is small, which is the regime
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in which the asymptotic equation applies, then singularities form over the
course of many oscillations; while if ε is large, they form quickly relative to
the period of an oscillation.

For smaller amplitude data, with 2πε ≤ 1.2, the solutions evolve in
a qualitatively similar fashion. Over shorter times, they approximately
oscillate with period 2π between a profile and its Hilbert transform. Over
longer times, the profile deforms and steepens until a singularity in the
derivative ux develops.

Figure 1 shows a numerical solution of (1) for the initial data (84) with
A = 10−2 and ε ≈ 1.2 × 10−2. In the top frame of figure 1, the solid line
is the initial data and the dashed line is the solution at t = π/2. Since
A is small, the dashed line is almost equal to the Hilbert transform of the
solid line. In the bottom frame of figure 1, the solid line shows the solution
u(x, t) at t = 2π n with n = 104, just prior to the development of the
singularity, and the dashed line shows the solution at t = 2π n+ π/2. The
dashed curve is again almost equal to the Hilbert transform of the solid
curve.

Several snapshots in time of u(x, t) are shown in figure 2 where the times
of each slice are integer multiples of the linearized oscillation period. The
singularity develops ahead of a large peak in u. Although the this peak
steepens in a similar way to what happens for the inviscid Burgers equation,
the Burgers-Hilbert equation has an additional fast oscillation. When the
solution is steep in one phase of the oscillation, it has a cusp or filament in
the other phase.

As the singularity forms, the solution of the Burgers-Hilbert equation de-
velops a structure on a smaller spatial scale than occurs in shock-formation
for the Burgers equation. We show a magnification of the region around
the singularity in figure 3. The solid lines show the solution at the times
Ts−2π, Ts and Ts+2π, where the singularity-formation time Ts was deter-
mined numerically. The dashed lines show the solution at times Ts − 1.5π,
Ts + 0.5π and Ts + 2.5π. In both phases, the wave-profile forms a small
dip ahead of its steepest part, followed by a corner, or ‘knee’, after which
the profile becomes relatively flat. The integration can be continued to
times slightly beyond the development of the singularity, presumably be-
cause de-aliasing in the pseudo-spectral method introduces a small amount
of numerical dissipation and dispersion.

For larger amplitude data, with 2πε ≥ 1.7, the qualitative nature of the
solution is dramatically different. The characteristic time of the nonlinear
term, Tb = 1/ε < 3.7, is then significantly less than the period 2π of the
linear term. The solutions do not oscillate between one profile and its
Hilbert transform; instead, they quickly develop shocks in much the same
way as for Burgers equation, albeit modified by the linear Hilbert transform
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term. In this regime, the asymptotic equation no longer provides a good
approximation for the evolution of u.

The transition between these two qualitatively different regimes is re-
markably rapid. For example, when 2πε = 1.154, the singularity forms at
time Ts ≈ 77.9 in the twelfth oscillation of period 2π; but when 2πε = 1.731,
the singularity forms at Ts ≈ 3.94 in the first oscillation. Thus, once the
data is small enough that a singularity does not form in the first few os-
cillations, the effect of the nonlinearity becomes much weaker as a result
of the alternation between compression and expansion in each oscillation,
leading to a greatly increased lifespan of smooth solutions.

Figure 4 shows a log-log plot of the numerically computed singularity-
formation time Ts against 2πε for several integrations. The equation

ε2Ts = 2.37 (85)

provides an excellent fit to the numerical values for 2πε ≤ 1. The scaling
Ts ∼ k ε−2 as ε → 0 agrees with the cubically-nonlinear scaling used to
derive the asymptotic equation (4) from equation (1), and the value k ≈
2.37 is obtained from a numerical integration of the asymptotic equation
described below.

For large values of ε, we expect that (1) should behave like the inviscid
Burgers equation and that

Ts ∼ ε−1 as ε→∞.

This line is also plotted on figure 4; the agreement with the numerical
values is excellent for 2πε ≥ 2.

In the transition regime, 1.2 < 2πε < 1.7, the singularity-formation
time Ts appears to increase in a series of steps as ε decreases. These results
suggest that Ts : (0,∞)→ R is a decreasing, lower-semicontinuous function
of ε with jump discontinuities at a decreasing sequence {εn : n ∈ N} of
values of ε, where εn is the largest value of ε for which the singularity forms
in the nth oscillation. We would further expect that as n → ∞, εn → 0
and

Ts (εn+1)− Ts(εn) ∼ 2π.

Next, we describe a corresponding numerical solution of the asymptotic
equation. We integrated (4) for ψ(x, t) with initial data

ψ(x, 0) = eix +
1
2
e2i(x+2π2). (86)
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The corresponding asymptotic solution of the Burgers-Hilbert equation (1)
with initial data (84) is

u(x, t) ∼ 1
2
Aψ

(
x,

1
4
A2t

)
e−it + c.c. as A→ 0.

The real and imaginary parts of ψ(x, t) are shown in figure 5 just prior
to the development of the singularity at t = τs where τs ≈ 0.395. Since u
oscillates between the real and imaginary parts of ψ on the fast time scale,
the curves in figure 5 should be compared to the corresponding curves in
figure 1 (b). While =(ψ) shows a sharper feature right at the point of
the singularity, the two figures otherwise correspond extremely well to one
another.

The asymptotic theory predicts that the singularity formation time Ts
for the Burgers-Hilbert equation has the asymptotic behavior

Ts ∼ 4τsA−2 as A→ 0.

Setting A = ε/c, and using the numerically computed value for τs, we get

Ts ≈ 2.37ε−2 as ε→ 0.

which is the relation used to fit the Burgers-Hilbert data in equation (85).
The mean of ε2Ts for the five values of ε from the Burgers-Hilbert data
whose Ts lie near the asymptotic fit is given by

ε2Ts = 2.47.

This differs by 4% from the coefficient predicted by the asymptotic equa-
tion; moreover, the difference is less for the smaller values of ε. Thus, the
solution of the asymptotic equation is in excellent quantitative agreement
with the solutions of the Burgers-Hilbert equation.
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FIG. 1. A numerical solution of the Burgers-Hilbert equation (1) for the initial
condition (84) with A = 0.01. (a) The solid line shows u(x, 0). The dashed line shows
the solution u(x, π), one half-period after the initial condition. (b) The solution for the
initial condition in (a) just prior to the formation of a singularity. The solid and dashed
line show u(x, Ts) for Ts = 2πn for n = 104 and n = 104 + 1/4, respectively.
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FIG. 2. Snapshots of u(x, t) for the solution in figure 1. Time increases to the
foreground from the initial condition to the development of the singularity, and each
time slice is taken at an integer multiple of 2π in order to factor out the fast oscillation.
The singularity develops as a steepening ahead of the maximum of −ux(x, 0).
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FIG. 3. Magnification of u(x, t) near the singularity for the solution in figure 1. The
solid curves show the solution one period before, at, and one period after the singularity.
The dashed curves show the solution a quarter period before, a quarter period after, and
one and a quarter periods after the formation of the singularity; these are approximately
the Hilbert transforms of the solid curves.
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FIG. 4. Logarithm of the singularity formation time Ts for the Burgers-Hilbert
equation versus the logarithm of 2πε for the numerical experiments (diamonds) along
with the prediction from the asymptotic equation, Ts = 2.37 ε−2 (steeper line) and the
prediction from the Burgers equation Ts = ε−1 (shallower line).
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FIG. 5. The solution of the asymptotic equation (4) with initial data (86) at the
onset of the singularity. The solid line is <(ψ), the dashed line is =(ψ). Compare with
figure 1 (b).
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APPENDIX: NOTATION

In this appendix we summarize some definitions and notation that are
used throughout the paper. For definiteness, we consider square-integrable
functions defined on R. Similar considerations apply to periodic functions,
in which case we project constant Fourier modes to zero.

We denote the Fourier transform of f ∈ L2(R) by f̂ ∈ L2(R), where

f(x) =
∫ ∞
−∞

f̂(k)eikx dk.

We define the Hilbert transform H : L2(R)→ L2(R), by

Ĥ[f ](k) = −i(sgn k)f̂(k), (A.1)

where

sgn k =

 +1 if k > 0,
0 if k = 0,
−1 if k < 0,

(A.2)

Equivalently,

H[f ] =
(

p.v.
1
πx

)
∗ f.

The Hilbert transform is a skew-adjoint isometry on L2(R), and H2 = −I.
If u : R→ R is a real-valued L2-function, then u+ iH[u] is the boundary

value on the real axis of a holomorphic function in the upper-half plane with
uniformly bounded L2-norms on lines with constant positive imaginary
part. If F , G are holomorphic functions whose boundary values have real
parts v, w, respectively, then a consideration of the holomorphic functions
FG and F 3 implies that

H
[
vw −H[v]H[w]

]
= vH[w] + wH[v], (A.3)

v2H[v]− 1
3
H[v]3 = H

[
1
3
v3 − vH[v]2

]
, (A.4)

under suitable assumptions on v, w. For example, it is sufficient that
v, w ∈ Lp for p > 2 in (A.3), and v ∈ Lp for p > 3 in (A.4).

We define projection operators

P,Q : L2(R)→ L2(R)
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onto positive and negative wavenumber components by

P
[∫ ∞
−∞

f̂(k)eikx dk
]

=
∫ ∞

0

f̂(k)eikx dk, (A.5)

Q
[∫ ∞
−∞

f̂(k)eikx dk
]

=
∫ 0

−∞
f̂(k)eikx dk. (A.6)

Then P, Q are orthogonal self-adjoint projections on L2(R), and

P =
1
2

(I + iH) , Q =
1
2

(I− iH) . (A.7)

Moreover,

P[f ]∗ = Q [f∗] , Q[f ]∗ = P [f∗] , (A.8)

where the star denotes the complex conjugate, and∫ ∞
−∞

P[f ](x) g(x) dx =
∫ ∞
−∞

f(x) Q[g](x) dx. (A.9)

We denote the differentiation operator by ∂x, and define

|∂x| = H∂x, (A.10)

so that ̂|∂x| [f ](k) = |k|f̂(k).
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