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Abstract

We use the method of characteristics to prove the short-time exis-
tence of smooth solutions of the unsteady inviscid Prandtl equations,
and present a simple explicit solution that forms a singularity in finite
time. We give numerical and asymptotic solutions which indicate that
this singularity can persist for the viscous Prandtl equations. We also
solve the linearization of the inviscid Prandtl equations about a shear
flow. We show that the resulting problem is weakly, but not strongly,
well-posed, and that it has an unstable continuous spectrum when the
shear flow has a critical point, in contrast with the behavior of the
linearized Euler equations.
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1 Introduction

The unsteady, two-dimensional Prandtl equations for the flow in an incom-
pressible boundary layer are

Up + ULy + VU, + Py = Vi,

Uy + vy = 0,

u(z,0,t) = v(z,0,t) = 0, (1.1)
w(,y,

t) = u™(z,t) as y — +o0o,
U(.'L', Y, 0) = Uo(l', y)

Here, —00 < z < oo and y > 0, u(z,y,t) and v(z,y,t) are the z and y
velocity components, respectively, uo(z,y) is given initial data, and u™(z,t)
is a given external flow. The pressure p™(z,t) is related to u™(z,t) by

Py = — (g +uur).

It is remarkable that despite the importance and apparent simplicity of
the unsteady Prandtl equations, very few rigorous results are known about
them. For example, even the local existence of solutions with general smooth
initial data remains an open question. One of the few known existence re-
sults is due to Oleinik [22], who proved that if the initial data satisfies the
monotonicity condition ug, > 0, then there is a unique local (either in space
z or time t) smooth solution. Under the same monotonicity condition, Xin
and Zhang [32] have recently proved that there is a global weak solution,
and they conjecture that this global weak solution is in fact smooth. Sam-
martino and Caflisch [26] used a Cauchy-Kowalewski argument to prove local
existence without a monotonicity assumption, but with the very strong con-
dition of analytic data. See [3], [6], [13], [23] for recent reviews of the Prandtl
equations.

Smooth solutions of (1.1) do not, in general, exist globally in time. The
formation of singularities was observed in numerical solutions of (1.1) by van
Dommelen and Shen [10] for data corresponding to an impulsively started
flow past a cylinder. A proof of the finite-time break down of smooth solu-
tions of (1.1) with u® = p™ = 0 for suitable initial data was given by E and
Engquist [12].

The mathematical pathologies of the Prandtl equations, such as a possible
ill-posedness or lack of strong well-posedness and the formation of singular-
ities, reflect their well-known physical difficulties, including the inability to



model boundary layer separation and upstream influence. These defects may
be remedied in part by the use of triple-deck theories (see [28], [29] for intro-
ductions and further references). Nevertheless, in view of the fundamental
nature of the Prandtl equations themselves, it is important to develop a
complete understanding of their properties.

In particular, the lack of an adequate theory for the Prandtl equations
makes it difficult to prove rigorously that the Prandtl boundary layer theory
can be used to approximate the Navier-Stokes equations in the high Reynold’s
number limit under suitable assumptions (such as laminar flow and the ab-
sence of Rayleigh instabilities) even when boundary layer separation does
not occur. The only case in which a proof is available is that of analytic
data [27]. Although the use of laminar boundary layer theory is somewhat
paradoxical, since boundary layer theory applies in a high Reynolds number
limit when most rotational flows are turbulent [6], the rigorous justification of
boundary layer theory remains a basic unresolved question in mathematical
fluid mechanics.

One of the goals of this paper is to gain insight into some of the difficulties
inherent in the Prandtl equations by a careful study of the inviscid Prandtl
equations. As observed by van Dommelen [9], we can solve the inviscid
Prandtl equations by the method of characteristics, and this enables us to
obtain a great deal of explicit information about their solutions. In order
to focus on the essential phenomena with a minimum of complications, we
restrict attention to the pressureless Prandtl equations throughout most of
this paper.

In Section 2, we show that there is a unique local smooth solution of
the inviscid Prandtl equations for general smooth initial data. We also show
that this solution is global for monotone initial data that is constant on
the boundary. In the case of nonmonotone data, the local solution is, in
general, less smooth in z than the initial data. This loss of smoothness in
the inviscid Prandtl equations makes it difficult to analyze the corresponding
viscous equations. Nevertheless, it would be surprising if the introduction of
viscosity were to destroy local existence for nonmonotone data.

In Section 3, we present a simple, explicit family of solutions of the inviscid
Prandtl equations that develop singularities in finite time. These solutions
provide a clear illustration of the mechanism of singularity formation, and
the nature of the resulting singularities. We show that after singularities
form there is a similar phenomenon to the singular delta-shocks that arise
in hyperbolic conservation laws. In Section 4, we give numerical and asymp-



totic results which indicate that similar inviscid-type singularities form in
nonmonotone solutions of the viscous Prandtl equations.

One approach to understanding the continuous dependence of solutions
of the Prandtl equations on their initial data is to consider the linearization
of the Prandtl equations about various solutions. Here, it is also useful to
begin by studying the inviscid equations. The simplest nontrivial solution is
that of a shear flow. In Section 5, we study the linearization of the inviscid
Prandtl equations about a shear flow, and solve it explicitly. We show that
the linearized equations are weakly, but not strongly, well-posed, owing to a
loss of z-derivatives.

In Section 6, we use this solution to show that the linearization of the
Prandtl equations about a shear flow has an unstable continuous spectrum
when the shear profile has a critical point, but does not have an unstable point
spectrum. This is in contrast with the linearization of the Euler equations
about a shear flow, which may have an unstable point spectrum when the
shear profile has an inflection point [11], but whose continuous spectrum is
always stable (see [4], [8], [14], [25], [31]). We also present numerical solutions
of the inviscid and viscous Prandtl equations with initial data corresponding
to a perturbed shear flow. These solutions agree well with the linearized
analysis.

It is easy to understand why the linearized Euler equations can have an
unstable point spectrum although the linearized inviscid Prandtl equations
do not: the unstable eigenfunctions of the linearized Euler equations de-
pend on lengthscales that are of the same order of magnitude in the z and
y directions, so they do not satisfy the scaling assumptions that lead to the
inviscid Prandtl equations, and they are lost in the Prandtl limit. If such
unstable modes are present, then one cannot expect the Prandtl equations to
provide a good approximation of the corresponding Euler or Navier-Stokes
equations, even though there may be no sign of singularities or instabilities
in the Prandtl solutions, because the growth of the unstable modes due to a
Rayleigh instability may lead to a rapid divergence of the Euler or Navier-
Stokes solutions from the Prandtl solutions (see [6] for further discussion,
[16] for an instability theorem, and [2] for numerical results). The quali-
tatively different behavior of the continuous spectra of the linearized Euler
and inviscid Prandtl equations is more puzzling, and we do not have a good
explanation for it.



2 Existence for the inviscid Prandtl equations

We consider the unsteady, inviscid Prandtl equations with zero pressure:

us + uu, + vu, =0, (2.1)
Uy + v,y = 0, (2.2)
v(z,0,t) =0, (2.3)
u(z,y,0) = uo(z, y). (2.4)

In the inviscid case, we do not impose boundary conditions on u at y = 0 or
Y = +00.

Solutions of (2.1)—(2.4) provide formal asymptotic approximations to so-
lutions of the incompressible Euler equations that satisfy the usual boundary
layer scalings, in which the z-velocity component is O(1), the y-velocity com-
ponent is O(e), the lengthscale of variations in z is O(1), and the lengthscale
of variations in y is O(e), where € < 1. For work on related inviscid equations
(the “homogeneous hydrostatic” equations), see [1], [15].

Van Dommelen [9] observed that the inviscid Prandtl equations can be
solved exactly by the method of characteristics. We use this fact to prove the
following local existence result, not given in [9]. The main point of this result
is that no monotonicity condition is required on the initial data in order to
obtain local existence.

Proposition 2.1 Let uy(z,y) be smooth initial data such that

-1
te = — inf <z, > 0.
[ (2 yﬂ

Then there exists a unique smooth solution of (2.1)—(2.4) in 0 < t < t., given
by

’LL(.’B, Y, t) = U (5(33, 77("175 Y, t)a t)a 77(% Y, t)) ) (25)
. (@) Upz (f('ra Za t)a Z)
o(z,3,1) = /0 T, (9
where £(z,Y,t) and n(z,y,t) are the solutions of
r =&+ tup(&,Y), (2.7)
K dz
v= /0 1+ tuos (62, 2,0), 2) (28)



Proof. First suppose that (u,v) is a smooth solution. We introduce charac-
teristic coordinates X, Y, where z = z(X,Y,t), y = y(X, Y, t) satisfy

Ty = U, z(X,Y,0) = X, (2.9)
Y =, y(X,Y,0) =Y. (2.10)
It follows from (2.1) and (2.4) that
u=uy(X,Y). (2.11)
Hence, from (2.9),
z =X +tu(X,Y). (2.12)

Since X, = [1 + tuOm]_l > 0 when 0 <t < t,, we may solve this equation for
X =¢(z,Y,t), where ¢ is defined by (2.7).

The incompressibility condition (2.2) implies that the Jacobian of the
transformation between spatial and characteristic coordinates is constant, so

TxYy — Tyyx = 1.

Using (2.12) in this equation, we get

(1 + tqu) Yy — tU,OyyX =1. (213)

The characteristics of this equation are z = constant, or X = {(z,Y,t).
Moreover, since v = 0 when y = 0, the boundary y = 0 is a particle path, so
y =0 when Y = 0. Integrating (2.13) along characteristics, we get

Y dZ
y= /0 ¥ tug, (E(z, 20), 2)" (2.14)

Differentiation of y with respect to t, with (X,Y") held fixed, gives (2.6).
Thus, any smooth solution is of the form stated.

Conversely, suppose 0 < t < t,. Then, since X, = [1 + tug,]” > 0,
equation (2.12) is invertible to give X = £(z,Y,t), where ¢ is defined by
(2.7); and, since Y, = 1+ tug, > 0, equation (2.14) is invertible to give
Y = n(z,y,t), where n is uniquely defined by (2.8). One can then check
directly that (2.5)—(2.8) defines a smooth solution of (2.1)—(2.4).

-1

It is clear from (2.8) that there may be a loss of z-derivatives in the
inviscid solution. As an explicit example, one can use the method of charac-
teristics to compute the solution of (2.1)—(2.4) for the initial data

1
ug(z,y) = Zac|x| + 4%
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There is a jump discontinuity in ug,, at = 0, and ug, = 0 at y = 0. We will
not write out the complete solution here, but one can show that for ¢ > 0

u(z,y,t) = u(z,y,t) inz <0,
where the smooth function u is given by

~ 1
u(;g,y,t):t%{\/l—tmcosll(ty)—1+§tm} r <

1
t

bl

and
u(z,y,t) = u(z,y,t) ~ %(m)s/zsmh (ty) asz — 0%,

Thus, although uy € C*', we only have u € CV/2 for t > 0. We investi-
gate this loss of smoothness further in the context of the linearized Prandtl
equations in Section 5.

For monotone initial data, we may also solve the inviscid equations by
use of the Crocco transformation.

Proposition 2.2 Let uy(z,y) be smooth initial data such that ug,(z,y) > 0,
there exists a constant C such that

[uoz| <Oy ugay| <O, Juogy| < C'lugyl, (2.15)
and
-1
t, = — |inf ug,(z,0 0.
pfun(e0)] >
Then there ezists a unique smooth solution of (2.1)-(2.4) in 0 <t < t.,
Proof. If ug, > 0, then the Crocco transformation,
w(z,u,t) = uy(z,y,t),
reduces the inviscid Prandtl equations to the advection equation

w; + uw, = 0.

The solution is
w(z,u,t) = wo(z — ut,u),



where

wo (2, uo(z,y)) = uoy(z,y). (2.16)
This solution provides an ODE in y for u,

uy(m, Y, t) = wy (IE — ut, u) ,
which has a global solution in y for any given boundary data

u(z,0,t) = up(z, t)

if the right-hand side is a globally Lipschitz function of u. Using (2.16), we
compute that
Loyy

Oywy (z — ut, u)|u=u0 = —tUgpy + {1 + tug, } o
y

Thus, the conditions in (2.15) are sufficient to ensure that 9,wo(z — ut,u) is
bounded so wy(z — ut, u) is globally Lipschitz in u. (Of course, a solution for
u may exist under other conditions as well.)

Setting y = 0 in the inviscid equations, when v = 0, we obtain a Burgers
equation for the boundary data w,,

Upt + UpUpy = 0, (217)
wp(z,0) = uo(z,0).

This IVP has a smooth solution in 0 < ¢ < t,, and hence there is a unique
smooth solution of the inviscid Prandtl equations in the same time interval.

In particular, if ug(z,0) = constant, then u, is identically constant, and
this solution is a global smooth solution. On the other hand, if ug,(z,0) < 0
at some point, then u, blows up on the boundary in finite time.

3 Singularity formation in the inviscid Prandtl
equations

A global smooth solution of the inviscid Prandtl equations does not exist for
general initial data, and a singularity may form in finite time. Physically,
the singularity is caused by the compression of the fluid in the z-direction



by nonlinear advection. When the fluid is bounded by a wall at y = 0, this
generates a jet in the y-direction. In the FEuler equations, this compression
creates a pressure gradient in the y-direction which opposes the compression
of the fluid. In the Prandtl equations, the pressure gradient in the y-direction
is zero, and there is no force to prevent the compression of fluid elements to
zero length in z.

The next proposition gives a simple, exact “wavy shear flow” solution
of the inviscid Prandtl equations that provides a clear illustration of the
formation of a singularity.

Proposition 3.1 Let U(y) and By(z) be smooth functions. The solution of
the inviscid Prandtl equations (2.1)-(2.4) with the initial data

uo(z,y) = U (y + bo(z)) (3.1)
is given by
u(z,y,t) = Uy + B(z, 1)), (3.2)
v(z,y,t) = =Pz, t) — Uy + B(, t))B:(z, 1), (3.3)
where ((z,t) is the solution of
B+ U(B)B. =0, (3.4)
B(z,0) = Bo(z). (3.5)
If 3
te = — | inf {U, (bo(2)) boa(2)}| >0, (3.6)

then u, and v blow up ast T t,.

Proof. It is straightforward to check that (3.2)—(3.3) satisfies (2.1)—(2.2) for
any smooth functions U(y) and S(z,t). Imposing the boundary condition
(2.3) on (3.3), we obtain (3.4). Moreover, (3.2) satisfies the initial condition
(2.4), (3.1) when S satisfies (3.5). The derivative (3, of the solution of (3.4)-
(3.5) blows up at time t,, and then u, and v also blow up.

We may also obtain this solution from the general solution given in the
previous proposition. According to the method of characteristics, the solution



1s

u(m,y,t) = U(Y +/30(X)),
z=X+tU (Y + Bo(X)),

Y dz
y= /0 1+ tBos (X (2, 2,8)) U (Z + Bo (X (2, Z,1)))°

We make the change of variable

W(z, Z,t) = Z + By (X (2, Z,1))

in the integral for ¢, and find that
Y
Y= / dW = W(z,Y,t) — W(z,0,t) =Y + Bo(X) — By (X (z,0,t)).
0

We have (3 (X(z,0,t)) = B(z,t), where B(z,t) is the solution of (3.4)—(3.5),
so Y +5o(X) = y+p(z,t), and u = U (y + (z,t)), in agreement with (3.2).

Once singularities form, the inviscid Prandtl equations presumably no
longer provide asymptotic approximations of the Euler equations, whose so-
lutions remain smooth in two space dimensions. Nevertheless, we may ask
the question whether or not it is possible to extend smooth solutions of the
inviscid Prandtl equations by suitably defined weak solutions after they form
singularities.

One way to extend the solution given in Proposition 3.1 past the blow-up
time is to rewrite (3.4) in the conservation form,

Br + F(B). = 0, (3.7)

where F,(y) = U(y) (so that F' is the streamfunction associated with the
shear flow U), choose [ to be a weak solution of (3.7), and define u, v
by (3.2)—(3.3). However, some care is required to interpret the resulting
functions as weak solutions of the Prandtl equations. If we write (2.1) in the
conservation form

u + (u)_ + (w), =0, (3.8)

then, once S becomes discontinuous, the y-flux uv is formally a product of
a step-function and a delta-distribution, so it is not defined in the usual
distributional sense. This is similar to what happens for singular delta-
shocks in conservation laws, such as those for a pressureless gas; see [18],
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[30]. Moreover, it is not clear what admissibility criterion should be used to
select weak solutions of (3.7).

In Figure 1, we illustrate the behavior of this solution by showing a nu-
merical solution of the inviscid Prandtl problem (2.1)-(2.4) with the initial
data

up(z,y) = y + sin 27z. (3.9)

This solution corresponds to a linear profile U(y) = y, and according to the
exact solution [3(z,t) satisfies the inviscid Burgers equation

Bt + BBz = 0, B(z,0) = sin 27z,

with breaking time ¢, = 1/(27) ~ 0.16.

In the numerical computations, we introduce a finite domain 0 < z < 1,
0 <y < 2, with periodic boundary conditions in z, and use a uniform grid.
We rewrite the inviscid Prandtl equations in conservation form (3.8), and
discretize the resulting PDE explicitly in time. To obtain a numerical z-flux
for u2, we use a flux-limited method, with an Engquist-Osher flux as a first-
order flux, a Lax-Wendroff flux as a second order flux, and a min-mod flux
limiter. We use a Lax-Wendroff flux for the y-flux uv, and compute v from
u by integration of (2.2), discretized using central differences. More details
about the numerical scheme are given in [17].

We see the development of an apparent numerical é-function singularity in
v(z,y,t) at 2 &~ 0.50 and ¢t &~ 0.16, corresponding to a “jet” of fluid going off
to y = +00, in agreement with the analytical solution. After the singularity
forms, the numerical solution for v contains a stationary “shock,” and the
numerical solution for v contains a stationary spike.

4 Singularity formation in the viscous Prandtl
equations

In this section, we first present a generalization of the singular solution of
the inviscid Prandtl equations that satisfies the viscous Prandtl equations.
This solution satisfies the no-flow boundary condition at y = 0, but does not
satisfy the no-slip condition. When the viscosity is small, we use the method
of matched asymptotic expansions to construct an asymptotic solution of
the viscous Prandtl equations that satisfies the no-slip condition, and we
use numerical computations to examine the formation of singularities. The
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numerical results indicate that the inclusion of y-viscosity typically does not
prevent the singularity formation demonstrated in Proposition 3.1 for the
inviscid Prandtl equations, unless the viscous solution is monotone.

We consider the pressureless viscous Prandtl equations

Up + ULy + VUy = Vg, (4.1)
Uy + vy = 0.

If W(y,t) is any solution of the heat equation,
Wy = vW,,, (4.3)
and ((z,t) is an arbitrary smooth function, then

v(z,y,t) = =Bi(z,t) — W (y + B(z,t),t) Bu(z, ), (4.5)
satisfies (4.1)—(4.2). This solution follows from the solutions given in [21],
although it is not written out explicitly there, nor is it used to study singu-
larity formation in the initial-boundary value problem. It may be obtained

by an application of the following symmetry transformation of the Prandtl
equations

.’L‘F—).’L‘, y'_>y+/87 Ul—)u, U'_>v+/8t+u/8ma
where 3(z,t) is an arbitrary function, to the diffusing shear flow solution
u=W(y,t), v =0. (4.6)

See [20] for further exact solutions of the Prandtl equations.

If W and [ satisfy

W(y’ 0) = U(y)’ B(I’ 0) = ﬂo(m), (4'7)
then (4.4) satisfies the initial condition
u(z,y,0) =U (y + Bo(z)) - (4.8)

The solution (4.5) satisfies the no-flow boundary condition
v(z,0,t) =0 (4.9)

12



if B is a solution of the time-dependent PDE

Br+ W(B,t)B, = 0. (4.10)

The derivative (3, blows up along a characteristic at time t, if
1
501} .

Therefore, provided that W, does not decay too rapidly in time, (4.10) has
the same kind of blow up behavior as the time-independent equation (3.4).

/‘Wy(ﬁo,t) dt = —
0

In the viscous case, we also have to impose the no-slip condition
u(z,0,t) =0, (4.11)

which is not satisfied by (4.4) except in trivial cases. When v is small, we
expect that a boundary layer will form near the wall ¥y = 0, and that the
above exact solution will provide an asymptotic approximation as v — 0 to
the solution outside the boundary layer, at least before it becomes singular.
At leading order in v, and for ¢ = O(1), we have from (4.3) and (4.7) that
W(y,t) ~ U(y). Thus, the leading order outer solution is identical to the
inviscid solution given in Proposition 3.1.

We consider the viscous Prandtl equations (1.1) as v — 0. Using the
method of matched asymptotic expansions, we find that the width of the
boundary layer is of the order y/v. The leading order outer solution

u~u*(z,y,t), v~ v (2, y,t),
satisfies the inviscid Prandtl equations,

uy + wuy +vtuy +p° =0,
u, + v; =0,

v*(z,0,t) =0,

u*(az,y,O) = uo(:v,y),

when y > 1/v. The leading order inner solution

St
Il
~

~ ~ i o ~ ~ Y
U~ U(:B,y,t), v~ \/;’U(l’,y,t), =z, Y= ﬁa

13



satisfies the full boundary layer equations,

s o~
Ui + uuz + vuy + p, = Uy,

iz + U5 = 0,

@(%,0,t) = v(%,0,t) = 0,

(%, 4,t) ~ u* (%,0,7) as § — +00,
@(%,9,0) = up (F,0).

when y = O(4/v).
In general, this matched asymptotic solution breaks down when the outer
solution becomes singular. It follows from the inner equations that

(%, 9,t) ~ —gus (%,0,7) as §j — +oo.

Thus, when a singularity forms in the outer solution and u) — —oo, the
inner g-velocity ¥ becomes large and positive. This creates a “jet” from the
inner layer into the outer layer, which couples the inner and outer solutions.
It is then inconsistent to impose the no flow condition v* = 0 on the outer
solution at y = 0. Numerical computations show that in some cases this
coupling can prevent the formation of a singularity in the outer solution.
In Figures 2-3, we show a solution of (1.1) with p> = 0, » = 0.1, and the
initial data
uo(z,y) = 2 + y + sin 27z, (4.12)

We impose the boundary condition
uy(z,y,t) = 1 as y — +o0o (4.13)

instead of the boundary condition u — u*. (Similar results are observed for
solutions that approach a given velocity at infinity.) The numerical scheme is
the same as the one used for the inviscid equations, except that we discretize
the viscous term u,, using a Crank-Nicolson scheme, and solve a tridiagonal
system in y to update u.

In this case, we see the formation of a boundary layer near the wall y =0
and a jet with relatively large values of v, as predicted by the matched asymp-
totic solution; but then v decays, and there appears to be a global smooth
solution, even though the solution of the corresponding inviscid problem does
not remain smooth. For ¢t > 0, the viscous solution for u is monotone in y,
so these numerical results are consistent with the global existence result of
Xin and Zhang [32] for monotone initial data.

14



In the nonmonotone case, however, we typically observe the formation an
inviscid-type singularity in the numerical solution. In Figure 4, we show a
solution of (1.1) with p>* = 0, » = 0.1, and the same initial data as in (3.9),

up(z,y) = y + sin 27z.

The result shows the formation of an apparent singularity at z ~ 0.50, ¢ ~
0.16, as for the inviscid solution.

This inviscid mechanism of singularity formation appears to be rather
typical. In Figure 5, we show a numerical solution of the cylinder problem
studied by van Dommelen and Shen [10], which consists of (1.1) with the
initial and boundary data

up = sinz, u™ =sinz, 0<z<m. (4.14)
We see a jet-like singularity form near the wall y = 0 at z ~ 1.94, t =
3.0, similar to the one in the previous solution. For larger values of y, the
streamlines “cross” the jet, and there is a flow of fluid out to infinity on the
left of the jet, and in from infinity on the right of the jet. Our values for the
location and time of the formation of a singularity are in excellent agreement
with those of van Dommelen and Shen [10], who found 2z ~ 1.942, t ~ 3.0
using a Lagrangian scheme. (See also [5], [7], [24].)

5 The linearization of the inviscid Prandtl
equations at a shear flow

In this section and the next, we study the well-posedness and stability of the
linearization of the inviscid Prandtl equations about a shear flow solution
u = U(y), v = 0. The linearization of (2.1)—(2.4) is

u + Uug + Uyv = 0,
Uy + v, = 0,
v(z,0,t) =0,
u(z,y,0) = uo(z,y).

(5.1)

Introducing a stream-function % (z,y,t) such that
U= d)ya v = _¢ma (52)
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we may write (5.1) as

wyt + U'lpzy - Ugﬂpz = 0;
¢(I’ 0, t) =0, (53)
¢(Ia Y, 0) = ’(,b()(l‘, y):
where vo(z,y) = [ uody.
We may solve this equation in a standard way by the use of Fourier-

Laplace transforms. The result suggests a quicker way of integrating (5.3)
directly.

Proposition 5.1 If U(y) and uo(z,y) are smooth functions, then the solu-
tion of (5.3) is given by

y
vt = [{uwe-UEr0
0
+[U(y) — U(2)] uos (& — U(2)t, z)} dz,  (5.4)
where uy = o,. The corresponding solution of (5.1) is given by
y
u(z,y,t) = wuo(z—U(y)t,y)+tU,(y) / uge (2 — U(2)t,2) dz, (5.5)
, 0
v(z,y,t) = —/ {UOm (z —U(2)t,2)
0
+t[U(y) — U(2)] woee (z — U(2)t, z)} dz. (5.6)
Proof. We introduce “Lagrangian” variables

X=z-U(yt, Y=y, T=t.

The corresponding “Lagrangian” and “Fulerian” partial derivatives are re-
lated by

Ox =0,y Oy =0,+tU,0,, Or=0,+U0,. (5.7)
We also define a Lagrangian streamfunction ¥ by
’lpy - \IIY: (58)

where ¥ = 0 when Y = 0. We will show that U satisfies (5.12) below, which
we can integrate immediately.
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We write the PDE in (5.3) as

Orpy = Uy, (5.9)

Multiplying this equation by 7', rearranging the result, and using (5.7), we
find that

Or (Ty) = Py (5.10)

Using (5.8) in the left-hand side of (5.10), and integrating the result with
respect to Y, we obtain

or (T®) = 1. (5.11)

The function of integration is zero because both ¢ and ¥ vanish when Y = 0.
Using (5.8) and (5.11) in the left- and right-hand sides of (5.9), respec-
tively, and rewriting the result with the help of (5.7), we find that U satisfies

870, = 0. (5.12)

Integrating this equation, and imposing the initial and boundary conditions,
we get that

U(z,y,t) = /Oy ug (z — U(2)t,2) d.

Using this result in (5.11), and simplifying, we get the solution for ¢ in (5.4).
The corresponding expressions for u and v follow from (5.2) and (5.4).

The solution (5.5) shows that there is a “loss” of z-derivatives in going
from the initial data to the solution. Consequently, (5.1) is weakly well-posed,
but not strongly well-posed. Specifically, let || - || be any translation-invariant
z-norm, for example the L2-norm

o) = ([ latenv o ae) " (5.13)

oo

Then (5.5) immediately implies the following estimate.

Proposition 5.2 Let u(z,y,t) satisfy (5.1), where U(y) and ug(z,y) are
smooth functions such that ||uo||(v), ||wo||(y) are finite. Then

lull(5,1) < lluoll () + 10, (9)] / " ol (2) d=.
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In view of this estimate, a natural space in which to consider (5.1) is the
space X of functions u : R x [0,1] — C such that

y = u(,y) € C([0,1); L3(R))

/2
||u||X— sup (/| x,y |2d:v) .

Here, we restrict y to a Compact interval, which we take to be [0,1] for
definiteness. We may write (5.1) abstractly as

with norm

uy = Au,

where A : D(A) C X — X is the closed operator whose action on smooth
functions is given by

Yy
A=-Ub, +U,d,'d,, ot = / .
0

By making a Galilean transformation in z, we may assume that U(y) > 0
without loss of generality. In that case, we have the following estimate.

Proposition 5.3 Suppose that U : [0,1] — R* is a smooth function which
does not vanish. If A € C s not purely imaginary, then \ belongs to the
resolvent set of A and

B 1 c
IO =7 e < Ry + = oy

= — su U
0<y1<)1{| |/ |U }

Proof. We consider the equation

where

Au— Au = f

for smooth functions f and u that are rapidly decaying in z. Fourier trans-
forming with respect to z, we obtain that

(A +3kU) @ — ikU,0; '3 = §, (5.14)
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where

-~ 1 = —ikz
k) = —= [ e,

Solving (5.14), we find that

-~

S
N+ ikU

~

~ : _ f
U = + kuyBy 1 m

Estimating the right-hand side of this equation, we get that

11

/] 1Uy] -1
)
Ul

Re A 20\ = fm A

ja] <

The result then follows from Parseval’s theorem.

This resolvent estimate is not sufficient to imply that A generates a
strongly continuous group in X, and it is clear from (5.5) that it does not
unless U is constant.

The spectrum of A is continuous, and consists of the imaginary axis. For
k € Rand 0 <c¢ <1, we define

uio(z,5) = Uy (5) H(y - c)e™, (5.15)

where H is the step function

1 ify >0,
H(y)_{ 0 ify<0.

Then uy . is a generalized eigenfunction of A, which formally satisfies
A e = Ap Ui e, Abe = —ikU(c).

Hence, —ikU(c) belongs to the approximate spectrum of A.

If we consider A as acting on functions u : T x [0, 1] — C that are periodic
in z, where T = R/Z is the torus, then Asy, . belongs to the point spectrum
of A when n € Z and ¢ = 0 or Uy(c) = 0. The point spectrum of A is
embedded in a continuous spectrum, and we show in the next section that
these modes dominate the large-time asymptotics of the solution.
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6 Linearized stability of shear flows

In this section, we show that the shear flow solution u = U(y) of the inviscid
Prandtl equation is linearly unstable when U has a critical point. Solutions
grow algebraically in time, corresponding to an unstable continuous spec-
trum.

Proposition 6.1 Suppose that u is the solution of (5.1), where U is a smooth
function and ug is smooth initial data that decays rapidly in . If U has no
critical points, then the L:-norm of u in (5.13) is uniformly bounded in t,

and
Uy(y)]

[l (y;¢) ~ lluol[(0) ast — oo. (6.1)

|Uy(0)]
If U has a single, nondegenerate critical point at y = ¢ > 0, then fory > ¢
U,
||u||(y,t) ~ 27t ||u0||1/2(c)M ast — oo, (6.2)
[Uyy(c)]

where
) 1/2
ol a(y) = ( [ 167(a,0) dx) .
R

Proof. Fourier transforming (5.4) with respect to z, we find that the Fourier
transform 1 with respect to z of the solution ¢ of (5.3), is given by

o~

P(k,y,t) = /Oy to(k, 2) {1+ ikt [U(y) — U(2)]} e VBt 4z, (6.3)

If U is a smooth function with no critical points, then an integration by
parts in (6.3) shows that 7 is bounded uniformly in time, and

i(k,y,t) ~ y(k, 0) [M} e U0} as kt — oo.
Uy(0)
Differentiating this result with respect to y and using Parseval’s identity,
we get (6.1). The corresponding solution for u is a superposition of the
generalized eigenfunctions uy o in (5.15).
If U(y) has a nondegenerate critical point at y = ¢ > 0, then an applica-
tion of the method of stationary phase to (6.3) implies that, when y > ¢,

U(y) — Ulc)
[Uyy(c)]

e—iktU(c)—itnr/ll

Dk, y,t) ~ iv2rkt to(k, c)

as kt — oo,

(6.4)
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where 0 = sgnU,,(c). Differentiating this result with respect to y and us-
ing Parseval’s identity, we get (6.2). The corresponding solution for u is a
superposition of the generalized eigenfunctions uy ..

Thus, when U has a nondegenerate critical point, the solution of (5.1)
grows like v/t. The growth is faster if U has a degenerate critical point. For
example, if U is constant in some interval, then we get linear growth in ¢, as
in the estimate in Proposition 5.2.

The solution for u corresponding to (6.4) is proportional to Uy, so it
may be interpreted an infinitesimal translation of the unperturbed shear
flow in the y-direction. The mechanism of the instability is therefore that
v grows, and advects the shear flow (see Figure 6 below). The LZ-norm of
the “vorticity” w = wu,, also grows in time. This growth is the result of the
advection of vorticity into the region from y = +oo.

There is a connection between the existence of an instability and the
failure of strong well-posedness. The linearized equations (5.1) are invariant
under the scaling transformations

v
T Az, y—y, te A, u—u, UHX'

As a result, u(k,y,t) depends only on the product kt, and we have a family
of solutions of (5.3) of the form

u(z,y,t k) = a(bt)ezm

Thus, growth in ¢ implies growth in k£, and hence to a loss of z-derivatives.
Since the growth in time is algebraic, the problem is weakly well-posed, but

not ill-posed with respect to Sobolev norms (as it would be if there were an
unstable point spectrum with exponential growth in time).
The weak well-posedness of (5.1) means that one has to be careful in

determining its stability and well-posedness by the use of approaches that
are not based on the solution of the initial value problem. For example, if

one “freezes” coefficients in (5.1), and looks for Fourier mode solutions

zkft+zly—zwt’ 5ezkm+14y—zwt

u(z,y,t) = Ue v(z,y,t) =

of the “frozen” equations, then one finds that, for ¢ # 0,

k
w=kU+iU," ;-
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This result could suggest — incorrectly — that (5.1) has modes with unbounded
growth rates, and hence is ill-posed. It is well-known, however, that the well-
posedness of a variable coefficient PDE and the corresponding frozen PDEs
need not agree when one of them is weakly well-posed (see e.g. [19]).

In the special case of the exact solution (3.2)—(3.3) of the the inviscid
Prandtl equations, we have, for small 3, that

w(z,y,t) = Uly) + Uy(y)B(z,t) + O(5°).

Thus, the initial perturbation of v = U(y) is uo(z,y) = Uy(y)Bo(z). Since
U,(c) = 0, we have uy(z,c) = 0, and the coeflicient of the algebraically
growing term in (6.4) vanishes, consistent with the lack of growth in the
exact solution.

To compare this linearized analysis with the behavior of the nonlinear
equations, we computed a numerical solution of the inviscid Prandtl equa-
tions (2.1)—(2.4) with initial data corresponding to a sinusoidal perturbation
of a shear flow

uo(z,y) = U(y) [1 + esin 27z], (6.5)

where € = 0.005, and
Uy) = 2ye™.

This profile has a maximum at y = ¢, where ¢ = 1/+/2.
Using the above analysis, we find that the time-asymptotic behavior of
the solution for v of the linearized equations as t — oo is

1/4
v(z,y,t) ~ 2en” <g> VitV (y)sin (2r [z — U(e)t] + 7 /4), (6.6)

€

where ) (0
_J Uly)=Ulc) ify>c,
V(y)_{O fo<y<e.

The solution of the linearized equations for the perturbed velocity v remains
bounded as t — oo when y < ¢, since there is no stationary phase point in
[0, y], but we omit a detailed expression for its behavior. It follows from (6.6)
that the L*°-norm of v with respect to (z,y) at time ¢ has the asymptotic
behavior

0] oo (2) ~ Ct? as t — oo,

where
C = en?2*e=3/* » 0.0784.
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In Figure 6, we show a numerical solution of the inviscid Prandtl equations
(2.1)=(2.4) for the initial data (6.5), and periodic boundary conditions in z.
The solution for v at time ¢ = 10 is in good qualitative agreement with
the large-time asymptotic solution of the linearized equations in (6.6). The
instability consists of a growing recirculation of fluid that enters from y =
+o00, turns around, and leaves to y = +o00.

In the numerical solution, we see a power law dependence of the maximum
norm of v on t over a range of times 1 < ¢ < 20. From the numerical data,
we estimate

|v||oo(t) ~ At* where A ~ 0.080, a ~ 0.51,

in good quantitative agreement with the results of the linearized analysis.

After longer times, the linearized approximation breaks down, and v
grows more rapidly, eventually appearing to develop a singularity similar
to the one illustrated in Section 3.

Finally, we consider the effect of viscosity on this instability. By anal-
ogy with what is often done in studying the stability of shear flows in fluid
mechanics [11], one could make a “quasi-parallel” assumption and linearize
the viscous Prandtl equations with small viscosity about an arbitrary invis-
cid shear flow solution. The effect of the singular viscous perturbation on
the continuous spectrum of the inviscid problem seems difficult to analyze,
however, and the errors caused by the quasi-parallel assumption are hard to
estimate.

Instead, in Figure 7, we show a numerical solution of the viscous Prandtl
equations with v = 0.1, and the same initial data as for the inviscid solution
shown in Figure 6. The resulting solution is a perturbation of the exact
diffusing shear flow solution given by (4.3), (4.6). The diffusion of the shear
profile in Figure 7, from a width of aproximately 2 at ¢ = 0 to a width
of approximately 5 at ¢ = 10, is significant. Nevertheless, we see a similar
instability to the inviscid one. In fact, the growth of v is faster than in the
inviscid case.

7 Conclusion

We have solved the inviscid Prandtl equations by the method of character-
istics, presented a simple explicit solution that forms a singularity in finite
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time, and shown that the same type of singularity appears to occur in so-
lutions of the viscous Prandtl equations. Once singularites form, we see a
similar phenomenon to the delta-shocks that arise in solutions of some hy-
perbolic conservation laws.

We have also explicitly solved the linearization of the inviscid Prandtl
equations about a shear flow. The resulting equations are weakly, but not
strongly, well-posed, and have a continuous spectrum which is unstable when
the unperturbed shear flow profile has a critical point. This behavior con-
trasts with that of the Euler equations, whose linearization about a shear
flow has a stable continuous spectrum.

Acknowledgements. We thank Liqun Zhang for helpful discussions.
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Figure 1: A numerical solution of the inviscid Prandtl equations (2.1)—(2.4)
with initial data (3.9): (a) surface plot of u(z,y,t) at t = 0.16; (b) surface
plot of v(z,y,t) at t = 0.16; (c) plot of u(z,y,t) versus z at y = 1 showing
the formation of a shock; (d) plot of v(z,y,t) versus z at y = 1 showing
the formation of a singularity; (e) streamlines at ¢t = 0; (f) streamlines at

t = 0.16.
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Figure 2: A numerical solution of the viscous Prandtl equations (1.1) for
v = 0.1, with p> = 0, the initial data (4.12), and the boundary condition
(4.13): (a)—(c) surface plots of u(z,y,t) at t = 0.0,0.15,0.3; (d)—(f) surface
plots of v(z,y,t) at t = 0.0,0.15,0.3; (g)—(i) streamlines at ¢t = 0.0,0.15,0.3.



@

~ =
o

©00
w P

Figure 3: Plots of v and v for the numerical solution of the viscous Prandtl
equations shown in Figure 2: (a) u(z,y,t) versus y at = 0.5; (b) v(z,y,t)
versus y at ¢ = 0.5; (¢) u(z,y,t) versus z at y = 3.5; (d) v(z,y,t) versus

at y = 3.5.
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Figure 4: A numerical solution of the viscous Prandtl equations (1.1) for
v = 0.1, with p* = 0, the initial data (3.9), and the boundary condition
(4.13): (a) surface plot of u(z,y,t) at t = 0.16; (b) plots of u(z,y,t) versus y
at z = 0.5 showing the formation of a boundary layer; (c) plots of u(z,y,t)
versus z at y = 1 showing the formation of a shock; (d) surface plot of
v(z,y,t) at t = 0.16; (e) plots of v(z,y,t) versus y at z = 0.5; (f) plots of
v(z,y,t) versus z at y = 1 showing the formation of a singularity.
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Figure 5: A numerical solution of the viscous Prandtl equations (1.1) with
data (4.14), corresponding to flow past a cylinder started impulsively from
rest at the singularity formation time ¢t = 3.0: (a) surface plot of u(z, y,t); (b)
surface plot of v(z,y,t); (c) profile of u versus y at z = 1.94; (d) streamlines.
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Figure 6: A numerical solution of the inviscid Prandtl equations (2.1)—(2.4),
with the initial data ug(z,y) = U(y)[l + 0.005sin(27z)], where U(y) =
2ye™’: (a) a surface plot of u(z,y,t) at time ¢ = 10; (b) a surface plot
of v(z,y,t) at time ¢ = 10; (c) a log-log plot of the maximum norm ||v|| of
v versus t; (d) streamlines at t = 10.

33



() (b)

(d)

-1 10
-1.5
8
-2
-25 6
-3 >
35 4 \/\
$
—_s————
-4 _——
_mmmm—m———
-4.5
-5 0 . . . .
4 0 0.2 0.4 0.6 0.8 1

X

Figure 7: A numerical solution of the viscous Prandtl equations (1.1), with
u>® = 0 and the initial data ug(z,y) = U(y)[1 + 0.005sin(27z)], where
Uly) = 2ye~Y’: (a) a surface plot of u(z,y,t) at time ¢ = 10; (b) a sur-
face plot of v(z,y,t) at time ¢t = 10; (c) a log-log plot of the maximum norm
||v||eo of v versus t; (d) streamlines at ¢ = 10.
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