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This paper derives a two-dimensional, quasi-linear Sdihger equation in Lagrangian coordinates that
describes the effects of weak pressure gradients on largéditade inertial oscillations in a rotating
shallow fluid. The coefficients of the equation are singutaradues of the gradient of the wave ampli-
tude that correspond to the vanishing of the Jacobian ofrimsformation from Lagrangian to Eulerian
coordinates, but solutions do not appear to form singigaridynamically. Two regimes of high and
moderate nonlinearity are identified, depending on whetherot phase differences in the components
of the amplitude gradient are required to maintain a nonZacmbian. Numerical simulations show that
moderately nonlinear solutions of the quasi-linear Sdimger equation behave in a qualitatively similar
way to solutions of a linear Schrodinger equation, whetegily nonlinear solutions generate rapidly
oscillating, small-scale waves.

Keywords nonlinear waves, rotating fluids, inertial oscillatiogsasi-linear Schrodinger equation

1. Introduction
We consider the non-dimensionalized rotation-dominatedil®v water equations

U + Utk +VUy — v+ ghy =0,
Vi + U+ VW + U+ ghy =0, (1..2)
ht + uhy+vhy +h(ux+w) =0,
where(x,y) are spatial, or Eulerian, coordinatés,v) are the(x,y) velocity components of the fluid
andh s the depth. The small dimensionless parameisigiven by
gH
£ Tz

whereg is the acceleration due to gravitfy,is the Coriolis parameteH is a typical depth of the fluid,
andL is a typical horizontal length scale of the fluid motion. Bagléntly,

GES
“\Fr )’

where the Rossby number Ro and the Froude number Fr are giverms of a typical fluid velocity
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Thus,e < 1 when Rok Fr and rotation dominates gravity.

The solutions we consider here are close to large-amplinetéal oscillations, in which the dom-
inant balance is between inerti+ - 00U and the Coriolis force&g;, x U. This differs from quasi-
geostrophic solutions, in which the dominant balance isvbet the Coriolis force and the pressure
gradient, and from the geostrophic adjustment of initiathy-geostrophic solutions by means of inertia-
gravity waves whose frequencies may differ substantiatiynfthe Coriolis frequency.

Liu and Tadmor (5) observed that (1..1) has large-amplittides-periodic solutions. Whesai= 0,
these solutions consist of spatially decoupled inertialllagions at the Coriolis frequency, here non-
dimensionalized to one. Cheng and Tadmor (3) proved thahwieCoriolis force dominates pressure,
smooth solutions have a longer lifespan than they woulderaitisence of rotation. In particular, they
showed that smooth solutions of (1..1) close to the timéspérsolutions found in (5) have an enhanced
life-span where is small.

In this paper, we derive an asymptotic equation which dessrihe evolution of such solutions over
a long time-scale of the order. The main idea is to carry out the analysis in material, orhagian,
coordinates where, in the absence of pressure gradientsp#tticles undergo independent harmonic
inertial oscillations.

Let (a,3) denote appropriate material coordinates and €t a ‘slow’ time. We show that (1..1)
has asymptotic solutions of the form

u=A(a,B,T1)e " +cc+0(e), v=—iA(a,B,T)e " +c.c.+0(¢),

where the complex amplitud& a, 8, 7) satisfies

Aa — 2Ag (A — Ayg )

: 0
2IAT+£ ST\ 32
(1—4 [|Aa|2+ |Ag|2+ (AGAE —A;;AB) D

(1..2)
P Ag +2Aa (A — A )
+ % N 32 =0.
(1—4 [|Aa|2+ |Ag|2+ (AGAE —Aj;,AB) D

This equation is a two-dimensional, quasi-linear Schigdr equation foA with coefficients depending
on OA. For one-dimensional solutions independenBpit reduces to

SiAc4 | —Pa | _o (1.3)

(1—4|Aa|2)3/2

The local well-posedness of quasi-linear Schrodingeiatgns is analyzed in (4; 6), but we do not
know of any previous derivation of a fully quasi-linear etioa of this form in a physical problem. For
example, quasi-linear Schrodinger equations for spinesd®) have second-order terms roughly of the
form AA+ AA|AJ?, but in that case the coefficients &R andAA* depend orA rather tharfJA.

Equation (1..2) describes the slow evolution of the inediillations of different fluid particles
as a result of their interaction through weak pressure grasi We refer to wave motions, such as
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this one, whose unperturbed or linearized behavior cansfstpatially uncoupled oscillations with the
same frequency as “constant-frequency waves.” Some gdaatares of constant-frequency waves are
discussed in (2).

A significant feature of (1..2) is that its coefficients be@smgular if A = (Aq, Ag) is sufficiently
large. Introducing the real quantity

2
p = [Aal+ |Ag+ (Aary — AAg) (1.4)

we see that the coefficientsin (1..2) become infinite as 1/4. As we will show in Section 3., this limit
corresponds to the vanishing of the Jacobian of the tramsftion from material to spatial coordinates,
and the condition & p < 1/4 means that the Lagrangian to Eulerian map is smoothly finer=and
positively oriented. We conjecture that this conditioniiegerved by the evolution of (1..2) for suitable
smooth solutions, but do not attempt to prove it here. Infadils numerical solutions, we found that
remained strictly less thary4.

The condition 0< p < 1/4 motivates a distinction between two regimes for (1..2)olhie refer to
as “moderate” and “high” nonlinearity. It follows from (&).thatp < |JA|2. Thus, if|[JAJ?> < 1/4, then
p < 1/4 independently of the phasesA&f andAg. We call this the moderately nonlinear regime. If
1/4 < |0A? < 1/2 and|Aq|?,|Ag|? < 1/4, it s still possible to have < 1/4 provided thaf\, andAg
are out of phase by an angle that is sufficiently closga. We call this the highly nonlinear regime.
Numerical simulations of (1..2) indicate that moderatedynlmear solutions behave like solutions of a
linear Schrodinger equation, whereas highly nonlinelrtims develop rapid, small-scale oscillations.

An outline of the contents of the rest of this paper is as fadlo In Section 2., we write out the
Lagrangian formulation of the rotating shallow water egure. In Section 3., we derive the asymptotic
equation (1..2). In Section 4., we show that (1..2) is Hamilin, and introduce a convenient gener-
alization of the equation, given in (4..4) below. In Sectmnwe derive an ellipticity condition for
(4..4) that is is required for local well-posedness andfydhiat it is satisfied by equation (1..2) when
p < 1/4. We also describe the regimes of moderate and high nonitpéar (1..2). In Section 6., we
consider harmonic, traveling wave solutions of (1..2) amalsthat they are linearly and modulationaly
stable. In Section 7., we present some numerical solutibk. @), and in Section 8., we summarize
our conclusions and open questions.

2. Lagrangian description

In this section we rewrite the rotating shallow water systnequations in material coordinates for
use in the subsequent asymptotic analysis. (kef3) denote material coordinates aré= x(a, 3,t),
y=y(a,3,t) a deformation. In material coordinates, the system (1etpmes

ahhy) 1 o(xh) 1
0(U,B)J =0, Vt+u+£d(a,[3)‘] =0, 2.1)

X = U, Vi =V, (hJ) =0,

U —V+E

where the-derivative is a material time derivative taken holdireg 3) fixed, and

ahy) a(X,
3(a,p)  aYe MY 5rap)

J =XaYp —XgYa, = Xahg —Xghg. (2..2)
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By relabeling material particles if necessary, we may asstimathd = 1. Then (2..1) becomes

a(h,y) a(x.h)
U —V+eh =0, Vi + U+ gh =0,

d(a,B) t d(a,B) (2..3)
X = U, W=V, h= %

We can eliminatéu,v) from (2..3) to get a system f@k,y) that is second order in time,

a(hy) a(x,h) 1
a.p) oap) > T

Yit +% + €h 5k
but it is more convenient for the asymptotic expansion tudéa,v) as dependent variables.

Xt — Yt + €h

3. Asymptotic Expansion
Using the method of multiple scales, we introduce a “slowidivariabler = et and look for an asymp-
totic solution of the rotation-dominated Lagrangian shalivater equations (2..3) of the form
uo(a,B,t,7) + eur(a,B,t,T) + O(£?),
vo(a,B,t,T) +evi(a,B,t, 1)+ O(£?),
xo(a,B,t,T) +exq(a,B,t, 1)+ O(£?), (3..1)
( ) ( )+0(g%)
(

yo(a,B,t,T) +eyi(a,B,t, 1) +O(e?),
hO a7B7tar)+O(£)7

o< X < <
|

whereun, Vi, Xn, Yn, hn are periodic functions af. We use (3..1) in (2..3), expand time derivatives, and
equate coefficients of powers of At the orders®, we find that

Ugt — Vo =0, Vot + Up =0, (3.2)
Xot = Uo, Yot = Vo, )
and at the ordeg, we find that
a(h
Uzt — V1 + Uor + ho (hy) =0,
a(a7B) 0 (3 3)
Vit + U1 + Vor + h oxh) | _ "
1t + U1+ Vor + No 2(a.B)

We consider solutions for which the deformation reducebéddentity in the absence of a wave, in
which case the solution of (3..2) is

uo(a,B,t,7) =A(a,B,1)e T+ A*(a, B, T)e,
vo(a,B,t,r):—iA(a,B,r)e‘”fiA*(a,B,r)e",. 5.4
%(a,B,t,7) = a +iA(a,B,1)e " —iA*(a, B, T)€", )
yo(a,B,t,T) = B+A(a,B,1)e T+ A*(a, B, T)€,
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whereA is an arbitrary complex-valued function. The correspogdiacobian

Jo = XoaYop — XopYoa
and heightyg are given by

, , 1
Jo=Me " £ N+ M€, ho= —

(3..5)
M=iAq+Ag, N=1+2i (AC,A;‘3 —A*O,AB) .
The solvability condition for the system
Ui —vi+F=0,

Vit +U1+Gop=0
to have a solutioifus, v1) that is 2T-periodic int is

1 ZnétF iGo)dt =0
ZT/O (Fo+iGp)dt = 0.

Imposing this condition on (3..3) and using (3..4) in thautesve find that
o(hy)

ZAT+%T/oznh°eit{ 3a.8) ), " {i(;’,?)}o}dtzo (5.6)

where the zero subscript denotes evaluation at the ordeteens.
Using (2..2) and (3..1), we may write the integrand in (3a$)

“Oét{[ffﬁiéﬁh“ 7B o}
10

The use of this expression in (3..6) gives

NI =

%{hg(ie‘t—%ﬂ)}.

1[0 J .
A+ [% (P+2A3Q) T (IP—ZAO(Q):| =0,

3..7)
where

P—i/znhzé‘dt Q—i/znhzdt
“2mo 0 ’ T 2mo 0=

(3..8)
We evaluate these integrals by the method of residues., fiestonsideP. Using (3..5) in (3..8),
we get that
2n jt
o [t 3.9)
2Jo  (Me 't 4N+ M+et)

We make the change of variables: ' and write

*

M
7—|rN—|rM*z: 7(z—zl) (z—2),



6 of 20 HUNTER and IFRIM
wherez; +z = —N/M* andz;z, = M/M*. Then (3..9) becomes

1 2

P=2n (M*)2 7{2\=1 [(z—271) (z— 22)]2

dz

The rootsz, z are given explicitly by

. 2
121 (Aahy — Ahg) + \/1—4 [|Aa|2—|— gl + (A — AzAg) ]
A= oA, —2A;
. 2
—1-2i (AcAy — Ayg ) - \/1_4 [|Aa|2—|— gl + (A — AzAg) ]
2= oA 2R,

We assume that the discriminant beneath the square roosits/eomeaning that

* * 2 1
P = |Aal+ A+ (Aahs — Aghg) < 7

It follows from (3..5) that

N—2|M| < Jo < N+2|M|

over a period irt and

N2 —4|M|?>=1—4p.

(3..10)

(3..11)

Thus, (3..11) corresponds to the condition that the Jaoakidoes not vanish over a periodtin
When (3..11) holds, we haye | < 1 and|z| > 1. The integrand in (3..10) then has a pole of order

two atz; inside the unit circle with residue

Z2 e . 2112
Res{ (z—2z1)(z—2)]* - Zl} C(-n)®

Hence, by the residue theorem,
217
(M*)2(z2—2)°
—2(iAq +Aﬁ)

P:

57\ 3/2
(1—4[|Aa|2+|A,3|2+(AGAE—AgAﬁ) D

(3..12)
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Similarly, we find that

1 V4
Q=2 (M*)2 7\{2\=1 (z—2) (z-2)P 4
___atn
(M*)2(z,— 21)° (3..13)

142i (AC,A;3 _ A};AB)

51N 3/2°
(1—4 |:|Aa|2+ Ag|?+ (AaAZ} —AZ}Aﬁ) D
Using (3..12)—(3..13) in (3..7) and multiplying the redujti, we find thatA satisfies (1..2).

4. Hamiltonian structure

The quasi-linear Schrodinger equation (1..2) derivedanti®n 3. is Hamiltonian and has the complex
canonical form

. o0
iAr = SA 4..1)
where the Hamiltoniag?’ is given by
1
H(AA) = / dadg. 4..2)

2
4\/1— 4 {AaAg + Apy+ (Aahy — AyAg ) ]

One can verify that this Hamiltonian corresponds to the Hamian of the original rotating shallow
water equations.

The energy density in (4..2) becomes infinitepas> 1/4, wherep is defined in (1..4), as one would
expect when an area element in material coordinates is @ss@d to zero in spatial coordinates. This
singularity suggests that conservation of energy provédegchanism for keeping strictly less than
1/4. On its own, however, conservation of the integral quanmtit(4..2) is not sufficient to imply that
p is bounded pointwise away frony4, and it is an open question to prove tpatemains strictly less
than 1/4 under the evolution of (4..1).

More generally, we consider an equation of the form (4..1j\Wamiltonian

H(AR) = /F (AO,AZ, + A — [i (AO,AE —A’[,AB)} 2) dadB, (4..3)

whereF : | — R is a smooth, real-valued function defined on an intenalR. Hamilton’s equation is
then

a2 [f(p) (Aa+2iDAg) | + 2

da AT

wheref = F’, with a prime denoting the derivative with respecptcand

[f(p) (Ag — 2iDA4)] =0, (4..4)

D=i(Aah;—AsAs),  p=IAaf*+|Ag|*~ D2 (4..5)
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For (1..2), we have
1 1

F(P):WT—A@» f(P):W~

Equation (4..4) is invariant under rotations (@f, 3) since bothAq|? 4 |Az|? andD? are rotationally
invariant scalars. For inertial oscillations, this ravatl invariance is inherited from the original equa-
tions, while the reality op, D corresponds to the invariance of the equations under a shéfsef the
oscillations.

In addition to conserving the Hamiltonia#’, (4..4) conserves the actio#f, momentum?, and
angular momentunv/, which are given by (8)

(4..6)

y=/|A|2dadB,
P = /ADA* A*TIA) dadB,

M= / AA,3 A*AB) B(AA;;—A*AG)}dadB.

5. Ellipticity condition

In this section, we derive an ellipticity condition for (), which is a necessary condition for the equa-
tion to be locally well-posed, and show that it is satisfied by2). We do not prove a well-posedness
result here, but we discuss the solution regimes of modawradehigh nonlinearity for (1..2) that are
suggested by this condition.

Expanding derivatives, we may write (4..4) as a quasi-lisshrodinger equation

iAr +N[A] =0, (5..1)
whereN is a second-order, quasi-linear operator without loweleoterms of the form

The real-valued coefficients b, c and complex-valued coefficients , v are functions ofJA, DA*;
they are given explicitly by

a=[f(p) - 20%1'(p)] (1~ 2[Ag[*) + '(p) Aal?,

b= {2[f(p)— 2D?F'(p)] + ()}(AO,AZ}+A*AB)

c=[f<p> 2D?f' }(1 2/Aal?) + T'(p) | Ag?,

A =2[f(p)—2D*f'(p)] A3 + f'(p) [A +4iDAaAg] ,
u=—4[f(p)— 2D2f'(p)] AaAg + 2f'(p) [AO,AB ~2iD (Aﬁ, —Af,)} ,

v =2[f(p)— 2D2f'(p)] A2 + f'(p) [Ag _4iDAC,AB} ,

(5..3)

wherep andD are defined in (4..5).
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The local linearized dispersion relation of (5..1)—(5i2bbtained by ‘freezing’ coefficients iN
and looking for Fourier solutions of the resulting equatidthe form

A(G,B, T) = ,/_\Oei(fa+nB—yr) + Boe_i(E(H_nB_VT).
After some algebra, we find that the dispersion relation is

V= on(E,n), (5..4)
where
on(E,n) = [a® = [A[P] &*+ [2ab— (Ap"+A"W)] E%n
+ [2ac+b? — (AV*+A*v +|u[?)] £2n? (5..5)
+[2bc— (uv* + p*v) En3+ [02— |V|2} n’.

If (5..1)—(5..2) is to be locally well-posed in an appropei&obolev space, the ‘frozen’ equation
cannot have growing Fourier modes, since then the homatyeofeby would imply that there are
high-wavenumber modes with arbitrarily large growth raté$eglecting degenerate cases in which
on vanishes at a nonzero wavenumber, we see that for well-pesesd must satisfy the following
ellipticity condition

on(é,n) > 0o (&2+ n2)2 for someap > 0 and all(é,n) € R2. (5..6)

In other wordsgn must be positive-definite. A further ‘non-trapping’ condit for the bi-characteristics
of N is needed for a proof of local well-posedness (4; 7), but waatanvestigate that condition here.
Before giving criteria for the ellipticity condition (5.)&o hold, we obtain some inequalities for the
possible values gb andD, and identify the physically relevant regime in the casehefquasi-linear
Schrodinger equation for inertial oscillations.
From (4..5) we hav®? < 4/Aq|?|A|? and

1-4p < (1-4|Aq]?) (1-4]Ag?). (5.7)

For inertial oscillations, the inequality-14p > 0 corresponds to the condition in (3..11) for the Jacobian
Jo of the deformation to be nonzero throughout a period, apdif1/4 thenJy vanishes at some phase
of the oscillation. If 1-4p > 0 is to be feasible, then from (5..7) we must have eithgt®, |Ag|> < 1/4

or |Aql?, |Aﬁ|2 > 1/4. We exclude the second case, since it would requireAha#\z are uniformly
bounded away from zero jf is not to pass through/#, and therefore assume thag |2, |Aﬁ|2 < 1/4.

In that case, ifp < 1/4 thenJp > 0 is strictly positive throughout an inertial oscillatiokloreover, we
have

P = |Aal?+[Agl2 = 4|Aq 2| Ag|? = 4|Aal?Ag[? + |Aal? (1 4|Ag]?) + Ag]? (1 4|Ad?)
> 4Aq|?|Ag|* > D?.
Thus, the physically relevant regime is
Aal? |Agl?<1/4,  D’<p<1/4 (5..8)

From (4..6), the asymptotic Hamiltonian densityp) with respect to material coordinates for in-
ertial oscillations becomes infinite in the linpt— 1/4 of a vanishing Jacobian. In fact, as the next
result shows, even if the coefficient functiBiip) is smooth and well-defined f@r > 1/4 the condition
p < 1/4is needed to ensure the well-posedness of (4..4).
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PrROPOSITIONS..1 Letoy be given by (5..5) where the coefficients are defined in (5u8l)p, D are
defined in (4..5). Assume that

1 1

2 2

|Aq]” < 2 and |Ag|” < 7 (5..9)

Then the ellipticity condition (5..6) holds if and only if
p< ]_/4; (5..10)
f24 (p—D?) ff' >0; (5..11)
f242(p—D?) ff' +(1—4p)D? ()% >0, (5..12)

wheref, f’ are evaluated ab. A sufficient condition for (5..6) to hold under the assuropt{5..9) is
thatp < 1/4 andf f’ > 0.

Proof. Using (5..3) in (5..5), we find after some algebra that thetfodegree polynomiady may be
factored into quadratic polynomials as

on(&,n) = f(p&?+2f'WEn+an?) (nE?+4wén +mn?), (5..13)
where
p=f+2(|A?~D?) ', q=f+2(|Ag2-D?) ¥, 5.1
m=1-4/Aqs[>, n=1-4/Ag]>, W =AA;+A;Az. N
The second factor on the right-hand side of (5..13) is inddpet off and arises from our assumption
that the Hamiltonian density depends oflg only throughp.
The polynomialoy is definite if and only if each of its factors is definite. Thetarné2+4wWén +

mn? is definite if and only if
mn> 4W?, (5..15)

and sincem,n > 0 from (5..14) and (5..9), it is then positive-definite. Wrif
W? = 4|Aq|?|Ag|> — D?

and using (4..5), (5..14) we find that (5..15) is equivaler{bt.10).

We remark that if one ofAq |2, |AB|2 is less than 14 and the other is greater thap4l thenm, n
have opposite signs s is not definite and the ellipticity condition always fails that case, however,
we necessarily have > 1/4.

The remaining factopé? + 2f'Wé&n + qn? is definite if and only if

pg> (f'w)?.
Using (4..5) and (5..14), we find that this condition is eqiéwt to (5..12). The factor is positive-definite
if and only if fp, fg are positive. Since they have the same sign when (5..125hibli$ is the case if
and only if fp+ fg > 0, which is equivalent to (5..11). This proves that (5..18)-12) are necessary
and sufficient conditions for (5..6) to hold under the asstiong5..9).

If p < 1/4and (5..9) holds, then from (5..8) the coefficiemts D? and 1— 4p in (5..11)—(5..12) are
non-negative, and a sufficient condition for these inegjealto hold is thaf f’ > 0. O
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If f >0, as we may assume without loss of generality, then the mirfficonditionf’ =F” > 0 is
a convexity condition on the Hamiltonian (4..3). For theatotg shallow water Schrodinger equation,
wheref is given by (4..6), we havé, f’ > 0 so (5..6) is satisfied whenever 1/4.

This analysis suggests a distinction between two regimesyderately nonlinear regime in which
nonlinear effects are not too strong, and a highly nonlimegime in which nonlinear effects are very
strong:

1. Moderate nonlinearity|Ay | + |Ag |2 < 1/4, in which case the ellipticity condition < 1/4 holds
independently of the relative phasesfef, Ag;

2. High nonlinearity |Aq|2+|Ag|? > 1/4 and|Aq|?,|Ag|? < 1/4, in which case the phase difference
betweenA, Ag has to be sufficiently close /2 to ensure thap < 1/4.

In the one-dimensional case, all solutions are moderatatjimear, but two-dimensional solutions
may be highly nonlinear. For example, consider an amplifudetion of the form

Ala,B) =u(a)+iv(B).

ThenAqAj; is purely imaginary, and we haye= uz 4—v123 —4u§v§. Thus, the moderately nonlinear
regime corresponds to

1
2 V2 < = 5..16
ua+ B< 4a ( )

while the highly nonlinear regime corresponds to
1 1 1
Z<u§,+v,23<§, max{uﬁ,,vf;}<zf. (5..17)

We show some numerical solutions of (1..2) with this typenitfal data in Section 7c.f. (7..4) below.

6. Stability of periodic waves
In this section, we consider periodic traveling wave solusi of (4..4) and show that they are stable.
Equation (4..4) has the harmonic solutions

A=AgdRd 9T f(po) K2, po=[K2lAl, (6..1)

whered = (a,B) is the space variabld = (k,¢) is a constant real wavenumber vector akgdis a
constant complex amplitude. For the rotating shallow watgrations, these solutions correspond to
long-wavelength inertia-gravity waves. We will show thagse solutions are both linearly and modula-
tionaly stable. Thus, the the nonlinearity in (4..4) is aefsing.

6.1. Linearized stability

Since (4..4) is rotationally invariant, there is no loss ehgrality in assuming that = (k,0) in the
unperturbed periodic wave (6..1). To determine the lireeatistability of the solution (6..1), we use

Ala,B,T) = A 9T 1+ B(a, B, T)]
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in (4..4) and linearize the resulting equation with respe&. This gives

By + wB+ (fo+ Pofy) (Baa + 2ikBg — k?B)

! * 2% * (6"2)
— pofo (Baa + kB ) + (1— Zpo) foBBB — ZpofoBBB = O,
where
po=KAo?,  fo="f(po),  fo="f"(po)-
Writing
B(a,B,1) =u(a,B,1)+iv(a,B,1),
equating real and imaginary parts, and using the equatienfok?, we get
ur + 2K (fo+ pofo) Ua + (fo+200fg) Vaa + fovgs =0, 6.3)

v + 2k (fo + Pofg) Va — folaa — (1 —4po) fougg + 2k*po fgu = 0.
Looking for Fourier solutions
u=GdéatinB-t 4 cc, v = ydéa+inB=ivt | o ¢
we find that the dispersion relation of (6..3) is
ly—2(fo+pofo) 5]2 = [(fo+2pofg) &2+ fon?] [fo& >+ (1—4po) fon®+ 2k%po o) - (6..4)

Thus, the periodic waves are linearly stable to both lomfyital and transverse perturbations i&Qpg <
1/4 andfyfy > 0, which is the case for the rotating shallow water waves.

In the high-frequency limi€,n — «, wheny = O(&?) and (k, £, w) is negligible compared with
(&,n,y), the relation (6..4) becomes

V2 = [(fo+2p0f5) €2+ fon?] [f0&? + (1 — 4po) fon?] .

This result is consistent with the high-frequency, ‘frozevefficient’ dispersion relation (5..4) and
(5..13), since for the unperturbed solutiar= Agek? 19T we have from (5..14) that

p=fo+2p0fy, q=fo, m=1-4p,, n=1  W=0

6.2. Modulational stability

Next, we use Whitham’s averaged Lagrangian method (9) tivelerodulation equations for locally
periodic solutions of (4..4). The same results can be defwyethe method of multiple scales.
We consider large-amplitude, slowly modulated asymptaglations of (4..4) of the form

A(d, 1) = a(a, )@ D), (6..5)

whereais a real-valued amplitude function aBds a real-valued phase. We let

denote the local frequency and wavenumber vector.
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The Lagrangian for (4..4) is
1. . 2 ~
LAN) = /{? (A*A; — AAL) — F (AGAZ; + A — [| (AGAE —A:;Aﬁ)] ) }dadr,

whereF’ = f, and the variational principle is
0.7

OA*
The averaged Lagrangiaff is obtained by setting
A=adS A, =—iwadS, [DA=iakd®

in the full Lagrangian. (The phasgcancels, so it is not necessary to average the result®)yéris
gives

z (w,R,a) = /E(w,?,a) dadr, If(w,R, a) =wa?—F (|R|2a2) . (6..6)
The termD = i(AaA’[3 — A, Ag) reduces to zero in this approximation and therefore doeaffett the
modulation equations.

The averaged Lagrangian equations are obtained from (8y.&prying the amplitude and the
phasesS, which gives

La=0, ‘%‘”—D-ERZO, %mw:o.
The equatiorfa = 0 is the nonlinear dispersion relation
w = [KI2f (|R|2a2) . (6..7)
The remaining equations are
J 2 2 22\l aR 2 L1242 _
- () +0- 2% ([KP%a?) K] =0, E+D{|k| f(Ik2%?)| =0,
Introducing B
p = [k, (6..8)
we may write these equations as
pr+0- [pr(p)k’} 1 20k-0f(p)=0, K+ O [|‘k‘|2f (p)} —0. (6..9)

Freezing coefficients and looking for Fourier solutiorlsgnnionalég'a*””, we find that the charac-
teristic variety of (6..9) for gradient wavenumber vectioes [ISis given by

y-2(t o) & 8] =2or {1 |KAER- (k-8)] + (14207 (1:2)°}.

This result agrees with the long-wave approximatiénn) — 0 of (6..4). It follows that iff, f’ are
positive thery is real for all reak, meaning that (6..9) is hyperbolic ;> 0. This is the case whehis
given by (4..6), so the locally periodic solutions (6..5 arodulationaly stable for the rotating shallow
water equations. We remark that from (6..7) and (6..8)

Drw(ka) =2(f+pf)k,

so the characteristic velocities of the modulation equmtisplit into two branches centered around an
advection at the ‘linear’ group velocity; w.



14 of 20 HUNTER and IFRIM

7. Numerical solutions

In this section, we show some numerical solutions of the &tihger equations (1..2) and (1..3). In
particular, we illustrate the different behavior of modehlaand highly nonlinear solutions in two space
dimensions.

First, we consider the one-dimensional quasi-linear &tinger equation foA(a, 1),

FiG. 1. Surface plot of RA(a, 1) for the solution of (7..1) with initial data (7..2) for tim@&s< 7 < 0.1.

iAr + . B =0, (7..1)

2(1-4Ad)¥? ],
with 2r-spatially periodic boundary conditions and initial data
A(a,0) = 0.15exp[—8(a — 11/2)?| for0< a < 2m. (7..2)

This data corresponds to a periodic array of gaussian pufgiesnitially constant phase. In one space
dimension, the solution is necessarily in the moderatehfinear regime.

The coefficient ofA, in the spatial dispersive term in (7..1) changes by a factqiloe- 4p)—3/2
from its value atA = 0, wherep = |A4|?, and this factor gives an indication of the strength of the
nonlinearity. The maximum value @f for the initial data (7..2) is approximately equal td 82, which
gives a maximum value of the dispersion factofbf- 4p)~%/2 ~ 3.10.

Figure 1 shows a numerical solution of (7..1)—(7..2), cotadby a pseudo-spectral method with
213 Fourier modes and a fourth-order Runge-Kutta method in tiritle a fixed time step. For com-
parison, we show the solution of a linear Schrodinger eqoatith the same initial data in Figure 2
for longer times. Despite the fact that the initial data i$ simall, the solutions have a similar struc-
ture; the main difference is the faster dispersion of the@tibr the nonlinear equation as a result of
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FiG. 2. Surface plot of RA(a, 1) for the solution of the linear Schrodinger equatidn + (1/2)Aqq = 0 with the same initial
data (7..2) as in Figure 1 for times<0r1 < 0.3.

its larger dispersion coefficient at higher amplitudes. ddigon, we see the generation of some small,
fast, high-wavenumber modes in the nonlinear solution. hiral simulations of the one-dimensional
Schrodinger equation with other initial data gave simigsults.

Next, we consider a localized two-dimensional solutiorhviritial data

A(a,B,0) = 20exg—8[(a — m)?+ (B — m)3)) [(a — m) +i(B— m)]’ (7..3)

for0< a < 2m, 0< B < 2m. This initial data is a pulse centered(at, 77) with amplitude proportional
to r’e~8” and phase equal tcd7 For this data, we have

2
max(|Aa|?+ |Ag|?) = 0.1387, max[i (AaA;‘3 - A;AB)} —0.0060 maxp = 0.1363

wherep is defined in (1..4). Figure 3 shows a numerical solution a2(forA(a, 8, 7) att = 0.05 with
initial data (7..3) and &-periodic boundary conditions ia, 3. The solution is computed by the use
of a pseudo-spectral method with 58512 Fourier modes and a fourth order, fixed-step Runge-Kutta
method in time.

For comparison, we show the solution of a linear Schrodiegeation with the same initial data at
a later time in Figure 4. As in the previous one-dimensioraheple, the solutions have a very similar
structure, with the generation of small, high wavenumbedesocahead of the pulse in the nonlinear
equation. Other numerical experiments with different lzeal initial data also show a surprising small
influence of nonlinearity on solutions of (1..2) beyond amaamced rate of dispersion. One reason
appears to be that spatial dispersion causes the derwatithe solution to decrease rapidly in time,
after which the behavior of the solution is essential linear

Finally, we show two spatially periodic solutions of (1.\2}h initial data of the form

A(a,,0) =ag(cosa +icosP). (7..4)
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FiG. 3. A surface plot of R&(a, 8, 7) for the solution of (1..2) at time = 0.05 with initial data (7..3).

If a3 < 1/8 this data is in the moderately nonlinear regime (5..163flofa, B), while if 1/8 < a3 < 1/4
this data is in the highly nonlinear regime (5..17) whigi|? is near its maximum value.

Figures 5—6 show contour plots of the derivatives of thetgmiiof (1..2) att = 0.1 with 2r-periodic
boundary conditions imr and 8 and initial data (7..4) for a moderately nonlinear caée: 1/9. In
Figure 5, we plot[JA|?, and in Figure 6, we plob = i(AaAE — A4 Ag). The solution is computed by
a pseudo-spectral method with 1024024 Fourier modes and a fourth-order, fixed-step RungéaKut
method in time. The maximum value pffor this initial data isp ~ 0.173, leading to a maximum value
of (1—4p)~3/? ~ 5.83 for the dispersion factor. The solution remains relagigmnooth, although it
develops sharp transitions i at a = mand 3 = 1, which become sharper with further evolution in
time.

Next, in Figures 7—8, we show corresponding contour plotthefsolution of (1..2) at = 0.005
with initial data (7..4) for a highly nonlinear ca% = 1/5. This problem is stiff, with a dispersion
factor (1 — 4p)~%/2 that varies initially from 1 to 125. As shown in Figure 9, thenditionp < 1/4
continues to hold everywhere in our numerical solution thatoehavior of the highly nonlinear solution
is qualitatively different from that of the previous modiigt nonlinear solution. We see the generation
of small-scale waves at the ‘corners’ of the square-shaged turves of JA|. The amplitude of these
waves does not grow. At later times, they propagate intodvedispersion regions whefglA| is close
to zero; they remain trapped in these regions, and exhikité df “phase turbulence” which requires
further study.

8. Conclusions

We have derived a fully quasi-linear, two-dimensional $cimger equation that gives an asymptotic
description in Lagrangian coordinates of large amplitutatial oscillations and long inertia-gravity
waves in a rotation-dominated shallow fluid. The coeffigeasftthe equation become singular at values
of the velocity gradient that correspond to a loss of smowéiitibility in the Lagrangian to Eulerian
map.
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FiG. 4. Asurface plot of R&(a, B, T) for the solution of the linear Schrodinger equatidn+ (1/2) (Aga +Agp) =0att =0.10
with the same initial data (7..3) as in Figure 4.

We have verified that the equation satisfies an ellipticitydttion required for local well-posedness,
and distinguished two regimes of high and moderate noniityedepending on whether or not phase
differences in the components of the velocity gradient arpiired to avoid a singularity. We do not
observe the spontaneous formation of singularities in migalesolutions, but rigorous proofs of the
non-occurrence of singularities and the local, or globa|lyposed of the Schrodinger equation are
open questions.

Periodic traveling wave solutions of the Schrodinger ¢igmeare linearly and modulationaly stable,
so nonlinearity does not appear to focus waves. In numesioallations, the qualitative behavior
of moderately nonlinear solutions is remarkably similarthiat of solutions of a linear Schrodinger
equation, but for highly nonlinear solutions, we obsenedkneration of small-scale waves from low-
wavenumber initial data. The evolution of the resulting Breeale wave patterns over longer times is
complicated and requires further study.
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FiG. 7. A contour plot offAq |? + |Ag |2 for the solution of (1..2) at time = 0.005 with initial data (7..4) whera3 = 1/5.
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FiIG. 9. A contour plot ofp, defined in (1..4), for the solution of (1..2) at tirme= 0.005 with initial data (7..4) Where% =1/5.



