
NONLINEAR HYPERBOLIC SURFACE WAVES

JOHN K. HUNTER∗

Abstract. We describe examples of hyperbolic surface waves and discuss their
connection with initial boundary value and discontinuity problems for hyperbolic systems
of PDEs that are weakly but not uniformly stable.
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1. Introduction. Hyperbolic surface waves are described by initial
boundary value problems (IBVPs) and discontinuity problems for hyper-
bolic systems of conservation laws that are weakly stable but not uniformly
stable. Our aim here is to give an informal overview of such surface waves,
with an emphasis on ‘genuine’ surface waves, or surface waves ‘of finite
energy,’ that are localized near the boundary or discontinuity and decay
exponentially into the interior. In particular, we are interested in under-
standing the effect of nonlinearity on such waves.

A well-known example of a genuine hyperbolic surface wave is the
Rayleigh wave, or surface acoustic wave (SAW), that propagates on the
stress-free boundary of an elastic half space. Rayleigh waves are important
in seismology and electronics, where ultrasonic SAW devices are widely
used as components in cell phones and other systems (although, at present,
nearly always in a linear regime).

Another example of a genuine hyperbolic surface wave occurs in mag-
netohydrodynamics (MHD). We consider incompressible MHD for simplic-
ity. A tangential discontinuity consists of a magnetic field and fluid velocity
that are tangent to the discontinuity and jump across it. If the jump in
the velocity is nonzero and the magnetic field is zero, then the tangential
discontinuity is a vortex sheet, which is subject to the Kelvin-Helmholtz
instability. If the magnetic field is large enough compared with the jump in
the velocity, then it stabilizes the discontinuity. In that case, the disconti-
nuity is weakly but not strongly stable and genuine surface waves propagate
along it.

In a unidirectional surface wave, the displacement y = ϕ(x, t) of a
weakly stable tangential discontinuity satisfies the following quadratically
nonlinear, nonlocal asymptotic equation [1]

ϕt +H [ψψx]x + ψϕxx = 0 ψ = H[ϕ](1.1)

where H is the spatial Hilbert transform, defined by

H[eikx] = −i(sgn k)eikx.
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Equation (1.1) provides a model equation for nonlinear hyperbolic genuine
surface waves that plays an analogous role to the inviscid Burgers equation
for bulk waves. It was first proposed by Hamilton, Il’insky, and Zabolot-
skaya [14] as a simplification of asymptotic equations for SAWs, so we refer
to it as the HIZ equation for short.

Hyperbolic surface waves are nondispersive. As a result, their nonlin-
ear behavior differs qualitatively from that of dispersive water waves that
propagate on the free surface of a fluid. Even shallow water waves, which
are nondispersive when their slope is sufficiently small, become dispersive
once they steepen; by contrast, hyperbolic surface waves remain nondis-
persive however steep they become. Similarly, the Benjamin-Ono equation
ϕt+ϕϕx+H[ϕ]xx = 0 has local nonlinearity and nonlocal linear dispersion,
whereas the HIZ equation (1.1) has nonlocal nonlinearity and no dispersion.

2. Half-space hyperbolic IBVPs. The well-posedness of IBVPs
for hyperbolic PDEs was studied by Kreiss [18] for systems and Sakamoto
[26, 27] for wave equations. Majda [21, 22] extended this analysis to dis-
continuity problems for hyperbolic systems of conservation laws and used
the results to study the stability of shock waves.

Consider a half-space IBVP in d-space dimensions that consists of a
hyperbolic system of conservation laws for u(x, t) ∈ Rn

ut +

d∑
j=1

f j(u)xj = 0 xd > 0, t > 0(2.1)

with initial and boundary conditions

u = u0 on t = 0, h(u) = 0 on xd = 0.(2.2)

Here, x = (x1, . . . , xd) ∈ Rd, f j : Rn → Rn is the flux vector in the
jth direction, and h : Rn → Rm defines the boundary conditions. Non-
hyperbolic systems of conservation laws, such as the incompressible Euler
or MHD equations, may be regarded as a limit of the corresponding com-
pressible equations. We consider only inviscid equations here; for viscous
problems, see e.g. [30].

Neither the geometry nor the PDE define length or time parameters,
and the IBVP is invariant under rescalings x 7→ cx, t 7→ ct for any c > 0.
Thus, the existence of a solution that is bounded in space and grows in time
implies the existence of spatially-bounded solutions that grow arbitrarily
quickly in time. As a result, there is a sharp division between weakly or
strongly stable problems without growing modes and ‘violently’ unstable
problems with growing modes. Unstable problems typically arise when the
boundary conditions couple positive and negative energy bulk waves [19].

The linearization of (2.1)–(2.2) about a constant solution has the form

ut +
d∑

j=1

Ajuxj = 0 for xd, t > 0,



NONLINEAR HYPERBOLIC SURFACE WAVES 3

Cu = 0 on xd = 0, u = u0 on t = 0

where Aj ∈ Rn×n, C ∈ Rm×n are constant matrices. For definiteness,
We suppose that xd = 0 is non-characteristic, meaning that Ad is non-
singular.1 Then a necessary condition for well-posedness is that the number
of BCs m must equal the number of positive eigenvalues of Ad and the BCs
must determine the associated wave-components that propagate into the
half-space in terms of the wave-components that propagate out of the half-
space.

A sufficient condition for the strong L2-well-posedness of the IBVP in
any number of space dimensions is provided by a uniform Kreiss-Sakamoto-
Lopatinski condition, or uniform Lopatinski condition for short. To obtain
this condition, we look for Fourier solutions of the IBVP that oscillate
tangent to the boundary and decay away from it of the form

u(x, t) = ei(k1x1+...+kd−1xd−1)−iωtU (xd)

where k = (k1, . . . , kd−1) ∈ Rd−1, ω ∈ C, and U(xd) → 0 as xd → +∞.
Typically, U decays exponentially and given by

U (xd) =
m∑
j=1

cje
−βj(ω,k)xdrj(ω, k)

where rj(ω, k) ∈ Cn and βj(ω, k) ∈ C with Reβj > 0. In the case of
repeated roots, we may obtain additional polynomial factors in xd.

There are three alternatives that correspond in a rough sense (made
precise by the Kreiss theory) to the growth, oscillation, or decay in time
of appropriate Fourier solutions. (a) If there is a solution of the PDE and
BC that grows in time and decays in space away from boundary, meaning
that Imω > 0 and Reβj > 0 for every 1 ≤ j ≤ m for some k ∈ Rd−1,
then the IBVP is subject to Hadamard instability and is ill-posed in any
Sobolev space. (b) If there is a solution of the PDE and BC that oscillates
in time and does not grow away from boundary, meaning that Imω = 0
and Reβj ≥ 0 for some k ∈ Rd−1, and this solution is a limit of solutions of
the PDE that grow in time and decay in space away from boundary, then
the linearized problem is weakly stable in L2-Sobolev spaces, but there
is a ‘loss’ of derivatives in the energy estimates. (c) If there are no such
solutions of the PDE and BC that grow or oscillate in time, then there are
good L2-energy estimates and the problem is strongly stable. This case
occurs when the norm of a suitable m × m matrix L(ω, k) is uniformly
bounded away from zero in Imω > 0 and k ∈ Sd−2. We then say that
the IBVP satisfies a uniform Lopatinski condition. See [7] for a detailed
description and derivation of these results.

1Characteristic IBVPs arise in many applications, for example in the study of discon-
tinuities that move with a fluid such as the tangential discontinuities considered below,
but it is more difficult to develop a general theory for them c.f. [7] for further discussion.
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In the weakly stable case (b) there are two alternatives for the spa-
tial behavior of the surface waves in the limit that they are approximated
by spatially decaying solutions of the PDE with Imω → 0+. (b1) If
limReβj > 0 for every j, then we get genuine surface waves that decay
away from the boundary. (b2) If limReβj = 0 for some j, then we get ‘ra-
diative’ or ‘leaky’ surface waves that generate bulk waves which propagate
away from the boundary into the interior.

As an illustration, consider solutions of the scalar wave equation

utt = uxx + uyy(2.3)

that propagate with speed λ along the boundary y = 0. If |λ| < 1, then
the corresponding Fourier solution is given by

u(x, y, t) = ei(x−λt)−
√
1−λ2 y.

Thus, a surface wave that is ‘subsonic’ with respect to the speed of bulk
waves is genuine. For example, the speed of a Rayleigh wave in isotropic
elasticity is less than both the transverse and longitudinal bulk wave speeds.
If |λ| > 1, then the Fourier solution is

u(x, y, t) = ei(x−λt)+i
√
λ2−1 y,

and a ‘supersonic’ surface wave is radiative. The difference between ‘sub-
sonic’ genuine waves and ‘supersonic’ radiative waves is a consequence of
the geometrical effect that the phase speed along the boundary of a plane
bulk wave propagating at an angle θ to a boundary is greater than its
normal phase speed by a factor of sec θ.

Next, consider (2.3) in the half-space y > 0 with the initial and bound-
ary conditions [23]

u = u0, ut = v0 on t = 0, γut + uy = 0 on y = 0(2.4)

where γ ∈ R is a parameter. The BC in (2.4) is invariant under a simulta-
neous spatial reflection and time reversal y 7→ −y, t 7→ −t, but not under
t 7→ −t alone. Thus, unlike the free space problem, the IBVP is not re-
versible in time and IBVPs that are stable forward in time may be unstable
backward in time.

The IBVP (2.3)–(2.4) is uniformly stable if γ < 0, weakly stable if
0 ≤ γ ≤ 1, and unstable if γ > 1. For γ > 1, the mode that grows in t and
decays in y is

u(x, y, t) = exp [ix+ σ(t− γy)] , σ =
1√
γ2 − 1

.

For γ < −1, this mode grows in t only if it grows in y, consistent with the
uniform stability. The weak stability for 0 < γ < 1 is a consequence of the
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existence surface waves of the form

u(x, y, t) = exp [ix+ iλ(γy − t)] , λ = ± 1√
1− γ2

that radiate bulk waves into the interior y > 0. These solutions also exist
for −1 < γ < 0, but in that case they are not the limit of of solutions of the
PDE that grow in time and decay in space, so their existence does not vio-
late the uniform Lopatinski condition. Equivalently, the waves are coupled
with bulk waves whose group velocity is directed toward the boundary, not
away from it as in the weakly stable case [15].

This IBVP for a scalar wave equation leads to radiative surface waves
in the weakly stable case, but at least two wave equations are required to
obtain genuine surface waves. Thus, genuine surface waves do not arise in
gas dynamics, only in larger systems such as elasticity or MHD.

3. Discontinuity problems. Discontinuity problems for hyperbolic
system of conservation laws lead to analogous equations to the ones for
IBVPs in which the location of the discontinuity appears as an additional
variable. Consider a solution of (2.1) that contains a discontinuity — such
as a shock wave, vortex sheet, or contact discontinuity — located at

xd = Φ(x1, . . . , xd−1, t) .

The PDE for u = u+ in xd > Φ and u = u− in xd < Φ can be regarded as
giving a single half-space PDE in twice the number of dependent variables.
The jump conditions for (2.1) have the form

Φt +W
(
u+, u−,∇Φ

)
= 0, h

(
u+, u−,∇Φ

)
= 0 on xd = Φ,

which gives as an equation for the motion of the discontinuity as well as
BCs on the discontinuity. Linearization of these equations about a planar
discontinuity leads to similar equations to the linearized half-space equa-
tions.

If the unperturbed discontinuity is a Lax shock, then the boundary
is non-characteristic. The Lax shock condition (that characteristics in one
family enter the shock from both sides and characteristics in the other fam-
ilies cross the shock) implies that we have the correct number of boundary
conditions: n jump conditions give (n−1) BCs for the waves that propagate
into the half-spaces on either side of shock and one condition for the shock
location. We also require an ‘evolutionary’ condition, meaning that the
jump conditions determine the wave components that are outgoing from
the shock in terms of the incoming wave components.

Overcompressive shocks give linearized IBVPs with too many BCs,
and such shocks typically split into multiple Lax shocks under arbitrary
perturbations. Undercompressive shocks give linearized IBVPs with too
few BCs, and extra conditions, or ‘kinetic relations,’ are required to deter-
mine their motion.
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An evolutionary Lax shock is strongly stable in several space dimen-
sions if it satisfies an analog of the uniform Lopatinski condition [21]. If
the Lopatinski condition fails entirely, then there are modes that grow arbi-
trarily quickly, and the discontinuity is violently unstable as in the Kelvin-
Helmholtz instability of a vortex sheet. If the discontinuity is weakly but
not strongly stable, then surface waves propagate along the discontinuity.

Surface waves on a discontinuity may be radiative or genuine. Exam-
ples of discontinuities that support radiative surface waves include strong
shocks in the compressible Euler equations for some equations of state
[23], supersonic vortex sheets in a compressible fluid [3, 10], and detona-
tion waves in combustion [24]. Examples of discontinuities that support
genuine surface waves are tangential discontinuities in MHD [8, 29] and
propagating phase boundaries in a van der Waals fluid [5, 6].

Short-time existence results have been obtained for various weakly
stable problems, typically by the use of a Nash-Moser scheme to com-
pensate for the loss of derivatives in the linearized energy estimates e.g.
[8, 10, 25, 29]. The Nash-Moser scheme is a powerful method but because
of its generality it makes relatively little use of the specific features of these
problems, such as the distinction between genuine and radiative surface
waves or the structure of the nonlinearity.

4. Magnetohydrodynamics. The non-conservative form of the sys-
tem of MHD equations for a conducting, incompressible fluid with velocity
u, magnetic field B, and total pressure p is

ut + u · ∇u−B · ∇B+∇p = 0, divu = 0,

Bt + u · ∇B−B · ∇u = 0, divB = 0.

The jump conditions for a tangential discontinuity located at Φ(x, t) = 0
are

Φt + u · ∇Φ = 0, B · ∇Φ = 0, [p] = 0 on Φ = 0

where [p] denotes the jump in p across the discontinuity.
A planar tangential discontinuity located at y = 0, say, consists of

arbitrary velocities and magnetic fields that are constant in each half-space
y > 0 and y < 0, tangent to the discontinuity, and jump across it:

u =

{
U+ y > 0
U− y < 0

, B =

{
B+ y > 0
B− y < 0

.

If B± = 0 and U+ ̸= U−, then the tangential discontinuity is an unstable
vortex sheet. If the magnetic field components in the direction of the
discontinuous velocity components are strong enough, specifically if [20]

|B+|2 + |B−|2 >
1

2
|U+ −U−|2 ,

|B+ ×B−|2 ≥ 1

2

(
|B+ ×U+|2 + |B− ×U−|2

)
,
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then the tangential discontinuity is weakly stable, and genuine surface
waves propagate along it.

For times that are not too long compared with a typical period, which
we nondimensionalize to be of the order one, a unidirectional surface wave
with small slope of the order ε consists of an arbitrary profile that prop-
agates without change of shape at the linearized surface wave speed λ.
Over longer times, of the order ε−1, nonlinear effects distort the profile.
Considering planar flows for simplicity, one finds that the weakly nonlinear
solution for the location of the tangential discontinuity in a surface wave is
given by [1]

y = εϕ (x− λt, εt) +O(ε2) as ε→ 0

where ϕ(x, t) satisfies (1.1) after the change of variables x−λt 7→ x, εt 7→ t
and a normalization.

It is interesting to consider the dynamics of a tangential discontinuity
in MHD near the onset of Kelvin-Helmholtz instability. This bifurcation
problem differs from standard ones because all of the spatial modes of the
solution become unstable simultaneously.

In a reference frame moving with the linearized surface wave speed at
the bifurcation point where the left and right wave velocities coalesce and
become complex, the location y = ϕ(x, t) of the discontinuity satisfies the
normalized asymptotic equation [17]

ϕtt + (H [ψψx]x + ψϕxx)x = µϕxx ψ = H[ϕ].(4.1)

Here, µ = B2
+ +B2

− − 1
2 (U+ −U−)

2
is the bifurcation parameter. If µ >

0, then the tangential discontinuity is linearly stable and the asymptotic
equation is a wave equation. For large µ, it reduces in a unidirectional
approximation ϕt ∼ ±√

µϕx to decoupled equations of the form (1.1).
If µ < 0, then the tangential discontinuity is linearly unstable, and the
linearized asymptotic equation is a Laplace equation that is subject to
Hadamard instability, corresponding to the Kelvin-Helmholtz instability of
the discontinuity.

One might hope that nonlinearity has a regularizing effect on the
Hadamard instability (as in the model equations studied in [4]). Prelimi-
nary numerical solutions of (4.1), however, suggest the reverse: finite am-
plitude effects appear to trigger a Kelvin-Helmholtz stability on the less
stable side of the discontinuity where the magnetic field is weaker.

The apparent ill-posedness in any Sobolev space of vortex sheet solu-
tions of the Euler and MHD equations raises questions about the validity
of these equations as general physical models, especially for compressible
flows where vortex sheets can be generated spontaneously from smooth
initial data by the formation of shocks and triple points. Perhaps related
to this instability is the apparent nonuniqueness of numerical solutions
of the compressible Euler equations containing vortex sheets [13] and the
nonuniqueness of low-regularity weak solutions [12].
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5. The HIZ equation. Consider, for definiteness, solutions of the
HIZ equation (1.1) that are 2π-periodic in space with the Fourier expansion

ϕ(x, t) =
∑
k∈Z

ϕ̂(k, t)eikx.(5.1)

The spectral form of (1.1) is

ϕ̂t(k, t) + i(sgn k)
∑
n∈Z

T (−k, k − n, n)ϕ(k − n, t)ϕ(n, t) = 0(5.2)

where the interaction coefficient T : Z× Z× Z → C is given by

T (k,m, n) =
2|kmn|

|k|+ |m|+ |n|
.(5.3)

The coefficient T (k,m, n) describes the strength of the coupling between
Fourier modes in the resonant three-wave interaction m + n → −k. Only
the values of T (k,m, n) on k+m+n = 0 appear in (5.2), but it is convenient
to show all three wave numbers explicitly.

The symmetry of T (k,m, n) in (k,m, n) is equivalent to the existence
of a canonical Hamiltonian structure for the HIZ equation; its spatial form
is

ϕt = H

[
δH
δϕ

]
, H(ϕ) =

∫
ψϕxψx dx, ψ = H[ϕ].(5.4)

The homogeneity of T of degree two is implied by a dimensional analysis of
quadratically nonlinear nondispersive Hamiltonian waves, depending only
on velocity parameters, that propagate on a boundary with codimension
one [2].

It follows from (5.3) that

|T (k,m, n)| ≤ |kmn|1/2 min
{
|k|1/2, |m|1/2, |n|1/2

}
(5.5)

on k + m + n = 0. This estimate implies a limit on the rate at which
energy can be transferred from low to high wavenumbers by three-wave
interactions, since the interaction coefficient is bounded by a factor that
depends on the lowest wavenumber that participates in the interaction.
Related to this spectral property is the following spatial form of (1.1)

ϕt + [H, ψ]ψxx +H
[
ψ2
x

]
= 0(5.6)

where [H, ψ] = Hψ−ψH is the commutator of H with multiplication by ψ.
As (5.6) shows, there is a cancelation of the second order spatial derivatives
appearing in (1.1). Generalizing (5.5), we make the following definition.
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Definition 5.1. An interaction coefficient T : Z × Z × Z → C has
minimal spectral growth with exponent µ ≥ 0 if there is a constant C such
that

|T (k,m, n)| ≤ C|kmn|1/2 min {|k|µ, |m|µ, |n|µ}

for every k,m, n ∈ Z such that k +m+ n = 0.
For example, the HIZ-coefficient (5.3) has minimal spectral growth

with exponent µ = 1/2. We then have the following local existence result
[16].

Theorem 5.1. Suppose that T : Z × Z × Z → C is a symmetric
interaction coefficient that has minimal spectral growth with exponent µ ≥
0. Let s > µ+2 and ϕ0 ∈ Hs(T). Then there exists t∗ > 0, depending only
on T and ∥ϕ0∥Hs , and a unique local solution

ϕ ∈ C ([−t∗, t∗] ;Hs(T)) ∩ C1
(
[−t∗, t∗] ;Hs−1(T)

)
of (5.1)–(5.2) with ϕ(0) = ϕ0.

Thus, we get the short-time existence of smooth Hs-valued solutions
of (1.1) for s > 5/2. The proof uses a standard energy method in Fourier
space, and the main point of this result is the identification of the minimal
spectral growth condition as a sufficient condition for well-posedness. This
condition allows one to estimate a term such as |k|α|m|βT (k,m, n) by a
term proportional to |k|α|m|β |n|µ, thus avoiding a loss of derivatives. This
corresponds to the use of integration by parts to eliminate higher derivatives
in spatial estimates, although the nonlocality of the spatial form of (5.2)
makes it more difficult to carry out the spatial estimates directly. If T does
not satisfy the minimal spectral growth condition, then there appears to
be a loss of derivatives in the energy estimates for solutions of (5.1)–(5.2),
and it is not clear that local Hs-solutions exist for any s ∈ R.

An interesting question is to characterize which boundary conditions
in weakly stable IBVP problems with genuine surface waves for Hamilto-
nian or variational systems of PDEs lead to asymptotic equations whose
interaction coefficients satisfy the minimal spectral growth condition. This
would provide a possible criterion for the identification of weakly stable
problems with a good nonlinear theory.

Numerical results obtained using a spectral viscosity method show the
formation of singularities in smooth solutions of (1.1) in finite time (see
Figure 1). The solution appears to remain continuous while its derivative
blows up. Furthermore, solutions of a viscous regularization of (1.1) appear
to converge to a weak solution of (1.1) in the zero-viscosity limit.

Using the distributional formula for the Hilbert transform,

H[|x|α] = −cα sgnx|x|α cα = tan
πα

2
for α /∈ 2Z+ 1,

we find that an exact steady distributional solution of (1.1) is

ϕ(x) = A sgnx |x|α(5.7)
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Fig. 1. Formation of a singularity in the solution of (1.1) with initial data ϕ(x, 0) =
cosx. The dashed lines are the initial data and the solid lines are the solution at time
t = 0.8. The plot on the left is ϕ; the plot on the right is ψ = Hϕ.
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Fig. 2. The plot on the left is the momentum P = (2π)−1
∫ 2π
0 ϕ|∂x|ϕ dx as a

function of time for the solution shown in Figure 1; P is conserved until the singularity
develops at t ≈ 0.5. The plot on the right is the spectrum for the numerical solution
with 32768 modes at t = 0.8. The dotted line is a best linear fit to the power-law range
of the spectrum, which gives |ϕ̂(k)| ∼ C|k|−α with α ≈ 1.66657 and logC ≈ 9.96648.

where A is an arbitrary constant and α satisfies (2α − 1)c2α = (α − 1)cα.
The unique solution of this equation with α, 2α /∈ 2Z + 1 is α = 2/3. As
shown in Figure 2, numerical solutions have a power-law spectral decay
with exponent close to 5/3, consistent with this analytical solution. Only
singularities with A > 0 appear, presumably as the result of a viscous
admissibility condition.

The validity of the asymptotic solution for MHD once the derivative
of ϕ blows up is open to question. In particular, although the asymp-
totic solutions for the fluid velocity and magnetic field are smooth in the
interior, they are unbounded near a singularity in the tangential disconti-
nuity. Nevertheless, analogous weakly nonlinear asymptotic solutions for
bulk waves correctly describe the formation and propagation of shocks and
it is plausible that the asymptotic solution for surface waves remains valid
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in a weak sense. The asymptotic analysis therefore predicts the formation
of singularities with Hölder-exponent 2/3 in the displacement of a weakly
stable tangential discontinuity in incompressible MHD. This mechanism
for singularity formation on the boundary in weakly stable IBVPs and
discontinuities differs qualitatively from shock formation in the interior.

The numerical results suggest that (1.1) has global admissible weak
solutions, but a proof of this conjecture is open. Apart from the en-
ergy

∫
ψϕxψx dx, which is not positive definite, the only globally conserved

quantity for smooth solutions of (1.1) that we know of is the momentum∫
ϕ|∂x|ϕdx, which is the homogeneous H1/2-norm of ϕ. This quantity is

conserved for smooth solutions and decreases for weak solutions that satisfy
a viscous admissibility condition, but it does not seem to be strong enough
to imply the global existence of weak solutions.

6. Conclusion. Despite significant recent progress in the analysis of
weakly stable IBVPs and discontinuity problems in hyperbolic conserva-
tion laws, much remains to be understood. It seems likely that one will
need to identify and use crucial features of the nonlinear structure of these
problems including, perhaps, their Hamiltonian or variational structure [28]
and their Lagrangian formulation [9, 11]. There appears to be little hope
of a reasonable nonlinear theory for ‘violently’ unstable IBVPs or discon-
tinuities, such as vortex sheets. This raises serious questions about the
consistency of hyperbolic conservation laws, which neglect all small-scale
regularizing effects, as mathematical models for such problems.
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