TRANSONIC SOLUTIONSFOR THE MACH
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J. K. Hunter *, A. M. Tesdall

Abstract We present numerical solutions of the steady and unsteady transonic small dis-
turbance equations that describe the Mach reflection of weak shock waves. The
solutions contain a complex structure consisting of a sequence of triple points
and tiny supersonic patches directly behind the leading triple point, formed by
the reflection of weak shocks and expansion waves between the sonic line and
the Mach shock. The presence of an expansion fan at each triple point resolves
the von Neumann paradox. The numerical results and theoretical considerations
suggest that there may be an infinite sequence of triple points in an inviscid weak
shock Mach reflection.
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1. Introduction

For sufficiently weak shocks, the von Neumann theory of shock reflection
shows that a standard triple point configuration, in which three shocks meet
at a point, is impossible. However, experimental observations of weak shock
reflections off a wedge show a pattern that resembles a single Mach reflection
with a triple point. This apparent disagreement between theory and observation
became known as the triple point, or von Neumann, paradox.

Guderley [1] proposed that there is a supersonic region behind the triple
point of a steady weak shock Mach reflection and an additional expansion wave
centered at the triple point, which provides a resolution of the paradox. This
theory was not widely accepted for weak shock Mach reflection off a wedge
because no evidence of a supersonic region or an expansion wave was found
in experiments or numerical solutions. However, recent numerical solutions
[2, 4, 5] have shown that Guderley’s explanation is correct; the supersonic re-
gion was not detected previously because it is extremely small. The solutions in
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[2] were for a shock reflection problem for the unsteady transonic small distur-
bance (UTSD) equations that provides an asymptotic description of weak shock
reflection, while the solutions in [4, 5] were for shock reflection problems for
the Euler equations. These solutions show a supersonic region and indications
of an expansion fan at the triple point, but none of them are sufficiently resolved
to show the detailed structure of the flow in the supersonic region.

In [3], high-resolution numerical solutions of the UTSD shock reflection
problem were obtained for a range of parameter values corresponding to Mach
reflection. All of the solutions contain a supersonic region behind the triple
point. This region consists of a sequence of supersonic patches formed by the
reflection of shock and expansion waves between the sonic line and the Mach
shock. Each reflected shock intersects the Mach shock, resulting in a sequence
of triple points, instead of a single triple point. The presence of an expansion
fan at each triple point resolves the von Neumann triple point paradox.

In this paper, we present solutions of the steady TSD equations for a problem
that describes the stationary Mach reflection of weak shocks. The solutions
contain a sequence of supersonic patches and triple points similar to, but more
resolved than, those obtained in [3]. These results support the conjecture,
suggested by theoretical considerations [2, 3], that there is an infinite sequence
of triple points in an inviscid weak shock Mach reflection.

In addition, we present two new solutions of the UTSD shock reflection
problem at parameter values that are closer to the detachment point than the
ones in [3]. The supersonic regions in these solutions are remarkably small.

2. The steady shock reflection problem

We write the steady TSD equations in normalized form as
1 2
JU +vy, =0, uy—v,=0, (D)
T

where u(z,y,t), v(z,y,t) are proportional to the =, y fluid velocity compo-
nents, respectively. Equation (1) is hyperbolic in » < 0, elliptic in « > 0, and
changes type across the sonic line

u = 0. 2

The steady shock reflection problem we consider here consists of (1) in the
region0 <y < 1,—o0 < & < 400 subject to boundary conditions (cf. Fig. 1)

U(CE, y) = _1’ U(J},y) =0 ifz > U(y)a (3)
v(z,0)=a ifzyg<z<a, u(z,0) =uy ife<zy, (4)
v(z,1) = 0. ()
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Figurel. Adiagram of the computational domain, showing global u-contours for the solution
in Fig. 2(b). The boundary AD corresponds to y = 0 and BC' toy = 1. The point x = zg lies
between E and F', and z = z; at F'. F'T is the incident shock generated at the wedge corner F'
(the flow is from right to left), and T is the triple point.

Here, @ and u are constants, and x = o(y) is the location of the incident and
Mach shocks. Physically, this problem corresponds to the reflection of a shock
generated by a supersonic jet incident on a wedge located at zg < =z < 1,
y = 0 off a rigid wall located aty = 1.

3. The numerical method

To solve (1), (3)—(5) numerically, we evolve a solution of the UTSD equation
forward in time ¢ until it converges to a steady state, using line relaxation. We
write the unsteady TSD equation as

Pat + (%‘Pi) + pyy =0, (6)
where ¢(z,y,t) is the velocity potential with u = ¢,, v = ¢,. We define a
non-uniform grid z; in the = direction and y; in the y direction, where z;; =
z; + Az 179 and yj11 = y; + Ay,y1/0. We also define (z;_1/9,%,41/2) as
the neighborhood of the point z;, with length Az; = %(Ami_uz + Aziy19),
where z;,1/o = %($i+1 + ;). Similar definitions apply for the non-uniform
grid y;. We denote an approximate solution of (6) by ¢7'; ~ o(zi,y;,nAt),
where At is a fixed time step, and discretize (6) in time ¢ using

n+1 n
Pa — Pz n n
At + Soy;-l + f(90$)r = 07 (7)

where the flux function f is defined by f(u) = %uz. We solve (7) by sweeping
from right to left in x, using the spatial discretization

ijr1—¢ij _ pijeijo1\ "L
Ay, Ay
n+1 Yi+1/2 Yj—1/2 _ n+1
@i — Az AL Ay; =Pit15 — (@)
i

Qi1+ o8+ A (F(uigryo,j, tigajog)" — F(tim1yo5,ip1/2,)") -
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Here, F" is a numerical flux function, and u;_q/o; = ‘L%i We used a
second-order flux limiter scheme, with a Lax-Wendroff flux as the higher order
flux, and an Engquist-Osher flux as the lower order flux.

We compute solutions on the finite computational domain illustrated in Fig. 1.
We use a grid that is exponentially stretched away from the triple point toward
the boundaries. We impose the no-flow condition (5) on BC, and (4) on DF'.
In our computations we take ug equal to the value of w behind the incident
shock £71'. On the boundary F' A B we impose the Dirichlet data (3). Since the
flow is supersonic on C D, no boundary condition is required there.

4. Numerical results

Fig. 2(a)—(c) shows u-contour plots for solutions of the steady shock reflec-
tion problem (1), (3)-(5) with a equal to 0.6, 0.65, and 0.67. The dashed line is
the sonic line (2), showing that all of the solutions contain a supersonic region
directly behind the leading triple point, the size of which increases rapidly with
a. The slight thickening of the incident shock visible in Fig. 2(a) and in Fig. 1
is caused by the use of a stretched grid. The nonuniform grids are stretched by
amounts between 0.5% and 1.0%, and the number of points in our largest grid
is approximately 19 x 109,

In our most refined solution, with @ = 0.67, a sequence of triple points
formed by the reflection of weak shock and expansion waves between the sonic
line and the Mach shock is clearly visible. Fig. 2(d) is a plot of the sonic
line alone, which shows the sequence of supersonic patches behind the leading
triple point. The number of triple points and supersonic patches in the numerical
solution increases with increasing resolution. As in the “transonic controversy”
for shock-free flows over an airfoil, the smooth termination of a supersonic patch
appears unlikely because of the overdetermination of boundary value problems
for hyperbolic PDEs. This argument and the numerical results suggest that
there may be an infinite sequence of triple points in the inviscid solution.

In Fig. 3 we present two new solutions of the UTSD shock reflection problem
to augment those in [3]. There, it was shown that the size of the supersonic
region decreased rapidly with increasing a, where a is a parameter that measures
the inverse shock slope, and the largest value of a used was 0.8. In Fig. 3 plots
of u-contours are shown for ¢ equal to 0.85 and 0.9. The supersonic region for
a = 0.9 is smaller than the region for a = 0.5 given in [3] by a linear factor
of approximately 1600. The supersonic regions in Fig. 3 are so small that the
relative resolutions of the solutions are too low to see the detailed structure of
the flows inside the supersonic region.
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Contour plots of « near the triple point for increasing values of @ in (a)—(c), and in

(d) a plot of the sonic line behind the incident and Mach shocks, for the solution in (c). The u-
contour spacing is 0.01 in (a)—(c), and the dotted line is the sonic line. The regions shown contain
the refined uniform grids, which have the following numbers of grid points: (a) 880 x 402; (b)
408 x 408; (c),(d) 2094 x 1392.
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Figure 3.  Contour plots of « near the triple point for two new values of a, for the unsteady
TSD shock reflection problem in [3]. The u-contour spacing is 0.01 in (a)—(b). The dotted line
is the sonic line. The regions shown contain the refined uniform grids, which have the following
numbers of grid points: (a) 474 x 216; (b) 460 x 210.
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