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CHAPTER 7

Hyperbolic Equations

Hyperbolic PDEs arise in physical applications as models of waves, such as
acoustic, elastic, electromagnetic, or gravitational waves. The qualitative properties
of hyperbolic PDEs differ sharply from those of parabolic PDEs. For example,
they have finite domains of influence and dependence, and singularities in solutions
propagate without being smoothed.

7.1. The wave equation

The prototypical example of a hyperbolic PDE is the wave equation

(7.1) utt = ∆u.

To begin with, consider the one-dimensional wave equation on R,

utt = uxx.

The general solution is the d’Alembert solution

u(x, t) = f(x− t) + g(x+ t)

where f , g are arbitrary functions, as one may verify directly. This solution de-
scribes a superposition of two traveling waves with arbitrary profiles, one propa-
gating with speed one to the right, the other with speed one to the left.

Let us compare this solution with the general solution of the one-dimensional
heat equation

ut = uxx,

which is given for t > 0 by

u(x, t) =
1√
4πt

∫

R

e−(x−y)2/4tf(y) dy.

Some of the qualitative properties of the wave equation that differ from those of
the heat equation, which are evident from these solutions, are:

(1) the wave equation has finite propagation speed and domains of influence;
(2) the wave equation is reversible in time;
(3) solutions of the wave equation do not become smoother in time;
(4) the wave equation does not satisfy a maximum principle.

A suitable IBVP for the wave equation with Dirichlet BCs on a bounded open
set Ω ⊂ R

n for u : Ω× R → R is given by

utt = ∆u for x ∈ Ω and t ∈ R,

u(x, t) = 0 for x ∈ ∂Ω and t ∈ R,

u(x, 0) = g(x), ut(x, 0) = h(x) for x ∈ Ω.

(7.2)
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212 7. HYPERBOLIC EQUATIONS

We require two initial conditions since the wave equation is second-order in time.
For example, in two space dimensions, this IBVP would describe the small vibra-
tions of an elastic membrane, with displacement z = u(x, y, t), such as a drum. The
membrane is fixed at its edge ∂Ω, and has initial displacement g and initial velocity
h. We could also add a nonhomogeneous term to the PDE, which would describe
an external force, but we omit it for simplicity.

7.1.1. Energy estimate. To obtain the basic energy estimate for the wave
equation, we multiple (7.1) by ut and write

ututt =

(

1

2
ut

)

t

,

ut∆u = div (utDu)−Du ·Dut = div (utDu)−
(

1

2
|Du|2

)

t

to get

(7.3)

(

1

2
u2
t +

1

2
|Du|2

)

− div (utDu) = 0.

This is the differential form of conservation of energy. The quantity 1
2u

2
t +

1
2 |Du|2

is the energy density (kinetic plus potential energy) and −utDu is the energy flux.
If u is a solution of (7.2), then integration of (7.3) over Ω, use of the divergence

theorem, and the BC u = 0 on ∂Ω (which implies that ut = 0) gives

dE

dt
= 0

where E(t) is the total energy

E(t) =

∫

Ω

(

1

2
u2
t +

1

2
|Du|2

)

dx.

Thus, the total energy remains constant. This result provides an L2-energy estimate
for solutions of the wave equation.

We will use this estimate to construct weak solutions of a general wave equation
by a Galerkin method. Despite the qualitative difference in the properties of par-
abolic and hyperbolic PDEs, the proof is similar to the proof in Chapter 6 for the
existence of weak solutions of parabolic PDEs. Some of the details are, however,
more delicate; the lack of smoothing of hyperbolic PDEs is reflected analytically by
weaker estimates for their solutions. For additional discussion see [35].

7.2. Definition of weak solutions

We consider a uniformly elliptic, second-order operator of the form (6.5). For
simplicity, we assume that bi = 0. In that case,

(7.4) Lu = −
n
∑

i,j=1

∂i
(

aij(x, t)∂ju
)

+ c(x, t)u,

and L is formally self-adjoint. The first-order spatial derivative terms would be
straightforward to include at the expense of complicating the energy estimates. We
could also include appropriate first-order time derivatives in the equation propor-
tional to ut.
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Generalizing (7.2), we consider the following IBVP for a second-order hyper-
bolic PDE

utt + Lu = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u = g, ut = h on t = 0.

(7.5)

To formulate a definition of a weak solution of (7.5), let a(u, v; t) = (Lu, v)L2 be
the bilinear form associated with L in (7.4),

(7.6) a(u, v; t) =

n
∑

i,j=1

∫

Ω

aij(x, t)∂iu(x)∂ju(x) dx+

∫

Ω

c(x, t)u(x)v(x) dx.

We make the following assumptions.

Assumption 7.1. The set Ω ⊂ R
n is bounded and open, T > 0, and:

(1) the coefficients of a in (7.6) satisfy

aij , c ∈ L∞(Ω× (0, T )), a
ij
t , ct ∈ L∞(Ω× (0, T ));

(2) aij = aji for 1 ≤ i, j ≤ n and the uniform ellipticity condition (6.6) holds
for some constant θ > 0;

(3) f ∈ L2
(

0, T ;L2(Ω)
)

, g ∈ H1
0 (Ω), and h ∈ L2(Ω).

Then a(u, v; t) = a(v, u; t) is a symmetric bilinear form on H1
0 (Ω) Moreover,

there exist constants C > 0, β > 0, and γ ∈ R such that for every u, v ∈ H1
0 (Ω)

β‖u‖2H1

0

≤ a(u, u; t) + γ‖u‖2L2,

|a(u, v; t)| ≤ C ‖u‖H1

0

‖v‖H1

0

.

|at(u, v; t)| ≤ C ‖u‖H1

0

‖v‖H1

0

.

(7.7)

We define weak solutions of (7.5) as follows.

Definition 7.2. A function u : [0, T ] → H1
0 (Ω) is a weak solution of (7.5) if:

(1) u has weak derivatives ut and utt and

u ∈ C
(

[0, T ];H1
0(Ω)

)

, ut ∈ C
(

[0, T ];L2(Ω)
)

, utt ∈ L2
(

0, T ;H−1(Ω)
)

;

(2) For every v ∈ H1
0 (Ω),

(7.8) 〈utt(t), v〉 + a (u(t), v; t) = (f(t), v)L2

for t pointwise a.e. in [0, T ] where a is defined in (7.6);
(3) u(0) = g and ut(0) = h.

We then have the following existence result.

Theorem 7.3. Suppose that the conditions in Assumption 7.1 are satisfied.
Then for every f ∈ L2

(

0, T ;L2(Ω)
)

, g ∈ H1
0 (Ω), and h ∈ L2(Ω), there is a unique

weak solution of (7.5), in the sense of Definition 7.2. Moreover, there is a constant
C, depending only on Ω, T , and the coefficients of L, such that

‖u‖L∞(0,T ;H1

0
) + ‖ut‖L∞(0,T ;L2) + ‖utt‖L2(0,T ;H−1)

≤ C
(

‖f‖L2(0,T ;L2) + ‖g‖H1

0

+ ‖h‖L2

)

.
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7.3. Existence of weak solutions

We prove an existence result in this section. The continuity and uniqueness of
weak solutions is proved in the next sections.

7.3.1. Construction of approximate solutions. As for the Galerkin ap-
proximation of the heat equation, let EN be the N -dimensional subspace of H1

0 (Ω)
given in (6.15)–(6.16) and PN the orthogonal projection onto EN given by (6.17).

Definition 7.4. A function uN : [0, T ] → EN is an approximate solution of
(7.5) if:

(1) uN ∈ L2(0, T ;EN), uNt ∈ L2(0, T ;EN), and uNtt ∈ L2(0, T ;EN);
(2) for every v ∈ EN

(7.9) (uNtt(t), v)L2 + a (uN(t), v; t) = (f(t), v)L2

pointwise a.e. in t ∈ (0, T );
(3) uN (0) = PNg, and uNt(0) = PNh.

Since uN ∈ H2(0, T ;EN), it follows from the Sobolev embedding theorem for
functions of a single variable t that uN ∈ C1([0, T ];EN), so the initial condition (3)
makes sense. Equation (7.9) is equivalent to an N×N linear system of second-order
ODEs with coefficients that are L∞ functions of t. By standard ODE theory, it
has a solution uN ∈ H2(0, T ;EN); if a(wj , wk; t) and (f(t), wj)L2 are continuous

functions of time, then uN ∈ C2(0, T ;EN). Thus, we have the following existence
result.

Proposition 7.5. For every N ∈ N, there exists a unique approximate solution
uN : [0, T ] → EN of (7.5) with

uN ∈ C1 ([0, T ];EN) , uNtt ∈ L2 (0, T ;EN) .

7.3.2. Energy estimates for approximate solutions. The derivation of
energy estimates for the approximate solutions follows the derivation of the a priori
energy estimates for the wave equation.

Proposition 7.6. There exists a constant C, depending only on T , Ω, and the
coefficient functions aij, c, such that for every N ∈ N the approximate solution uN

given by Proposition 7.5 satisfies

‖uN‖L∞(0,T ;H1

0
) + ‖uNt‖L∞(0,T ;L2) + ‖uNtt‖L2(0,T ;H−1)

≤ C
(

‖f‖L2(0,T ;L2) + ‖g‖H1

0

+ ‖h‖L2

)

.
(7.10)

Proof. Taking v = uNt(t) ∈ EN in (7.9), we find that

(uNtt(t), uNt(t))L2 + a (uN (t), uNt(t); t) = (f(t), uNt(t))L2

pointwise a.e. in (0, T ). Since a is symmetric, it follows that

1

2

d

dt

[

‖uNt‖2L2 + a (uN , uN ; t)
]

= (f, uNt)L2 + at (uN , uN ; t) .
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Integrating this equation with respect to t, we get

‖uNt‖2L2 + a (uN , uN ; t)

= 2

∫ t

0

[(f, uNs)L2 + as (uN , uN ; s)] ds+ a (PNg, PNg; 0) + ‖PNh‖2L2

≤
∫ t

0

(

‖uNs‖2L2 + C ‖uN‖2H1

0

)

ds+ ‖f‖2L2(0,T ;L2) + C ‖g‖2H1

0

+ ‖h‖2L2 ,

where we have used (7.7), the fact that ‖PNh‖L2 ≤ ‖h‖, ‖PNg‖H1

0

≤ ‖g‖H1

0

, and
the inequality

2

∫ t

0

(f, uNs)L2 ≤ 2

(
∫ t

0

‖f‖2L2 ds

)1/2 (∫ t

0

‖uNs‖2L2 ds

)1/2

≤
∫ t

0

‖uNs‖2L2 ds+

∫ T

0

‖f‖2L2 ds.

Using the uniform ellipticity condition in (7.7) to estimate ‖uN‖2H1

0

in terms of

a(uN , uN ; t) and a lower L2-norm of uN , we get for 0 ≤ t ≤ T that

‖uNt‖2L2 + β ‖uN‖2H1

0

≤
∫ t

0

(

‖uNs‖2L2 + C ‖uN‖2H1

0

)

ds+ γ ‖uN‖2L2

+ ‖f‖2L2(0,T ;L2) + C ‖g‖2H1

0

+ ‖h‖2L2 .

(7.11)

We estimate the L2-norm of uN by

‖uN‖2L2 = 2

∫ t

0

(uN , uN )L2 ds+ ‖PNg‖2L2

≤ 2

(
∫ t

0

‖uN‖2L2 ds

)1/2 (∫ t

0

‖uNs‖2L2 ds

)1/2

+ ‖g‖2L2

≤
∫ t

0

(

‖uN‖2L2 + ‖uNs‖2L2

)

ds+ ‖g‖2L2

≤
∫ t

0

(

‖uNs‖2L2 + C ‖uN‖2H1

0

)

ds+ C‖g‖2H1

0

.

Using this result in (7.11), we find that

‖uNt‖2L2 + ‖uN‖2H1

0

≤ C1

∫ t

0

(

‖uNs‖2L2 + ‖uN‖2H1

0

)

ds

+ C2

(

‖f‖2L2(0,T ;L2) + ‖g‖2H1

0

+ ‖h‖2L2

)

(7.12)

for some constants C1, C2 > 0. Thus, defining E : [0, T ] → R by

E = ‖uNt‖2L2 + ‖uN‖2H1

0

,

we have

E(t) ≤ C1

∫ t

0

E(s) ds+ C2

(

‖f‖2L2(0,T ;L2) + ‖h‖2L2 + ‖g‖2H1

0

)

.

Gronwall’s inequality (Lemma 1.47) implies that

E(t) ≤ C2

(

‖f‖2L2(0,T ;L2) + ‖h‖2L2 + ‖g‖2H1

0

)

eC1t,
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and we conclude that there is a constant C such that

(7.13) sup
[0,T ]

(

‖uNt‖2L2 + ‖uN‖2H1

0

)

≤ C
(

‖f‖2L2(0,T ;L2) + ‖h‖2L2 + ‖g‖2H1

0

)

.

Finally, from the Galerkin equation (7.9), we have for every v ∈ EN that

(uNtt, v)L2 = (f, v)L2 − a (uN , v; t)

pointwise a.e. in t. Since uNtt ∈ EN , it follows that

‖uNtt‖H−1 = sup
v∈EN\{0}

(uNtt, v)L2

‖v‖H1

0

≤ C
(

‖f‖L2 + ‖uN‖H1

0

)

.

Squaring this inequality, integrating with respect to t, and using (7.10) we get
∫ T

0

‖uNtt‖2H−1 dt ≤ C

∫ T

0

(

‖f‖2L2 + ‖uN‖2H1

0

)

dt

≤ C
(

‖f‖2L2(0,T ;L2) + ‖h‖2L2 + ‖g‖2H1

0

)

.

(7.14)

Combining (7.13)–(7.14), we get (7.10). �

7.3.3. Convergence of approximate solutions. The uniform estimates for
the approximate solutions allows us to obtain a weak solution as the limit of a
subsequence of approximate solutions in an appropriate weak-star topology. We
use a weak-star topology because the estimates are L∞ in time, and L∞ is not
reflexive. From Theorem 6.30, if X is reflexive Banach space, such as a Hilbert
space, then

uN
∗
⇀ u in L∞ (0, T ;X)

if and only if
∫ T

0

〈uN (t), w(t)〉 dt →
∫ T

0

〈u(t), w(t)〉 dt for every w ∈ L1 (0, T ;X ′).

Theorem 1.19 then gives us weak-star compactness of the approximations and con-
vergence of a subsequence as stated in the following proposition.

Proposition 7.7. There is a subsequence {uN} of approximate solutions and
a function u with such that

uN
∗
⇀ u as N → ∞ in L∞

(

0, T ;H1
0

)

,

uNt
∗
⇀ ut as N → ∞ in L∞

(

0, T ;L2
)

,

uNtt ⇀ utt as N → ∞ in L2
(

0, T ;H−1
)

,

where u satisfies (7.8).

Proof. By Proposition 7.6, the approximate solutions {uN} are uniformly
bounded in L∞(0, T ;H1

0 ), and their time-derivatives are uniformly bounded in
L∞(0, T ;L2). It follows from the Banach-Alaoglu theorem, and the usual argu-
ment that a weak limit of derivatives is the derivative of the weak limit, that there
is a subsequence of approximate solutions, which we still denote by {uN}, such that

uN
∗
⇀ u in L∞(0, T ;H1

0), uNt
∗
⇀ ut in L∞(0, T ;L2).

Moreover, since {uNtt} is uniformly bounded in L2(0, T ;H−1), we can choose the
subsequence so that

uNtt ⇀ utt in L2(0, T ;H−1).
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Thus, the weak-star limit u satisfies

(7.15) u ∈ L∞(0, T ;H1
0), ut ∈ L∞(0, T ;L2), utt ∈ L2(0, T ;H−1).

Passing to the limit N → ∞ in the Galerkin equations(7.9), we find that u

satisfies (7.8) for every v ∈ H1
0 (Ω). In detail, consider time-dependent test functions

of the form w(t) = φ(t)v where φ ∈ C∞
c (0, T ) and v ∈ EM , as for the parabolic

equation. Multiplying (7.9) by φ(t) and integrating the result with respect to t, we
find that for N ≥ M

∫ T

0

(uNtt, w)L2 dt+

∫ T

0

a (uN , w; t) dt =

∫ T

0

(f, w)L2 dt.

Taking the limit of this equation as N → ∞, we get
∫ T

0

(utt, w)L2 dt+

∫ T

0

a (u,w; t) dt =

∫ T

0

(f, w)L2 dt.

By density, this equation holds for w(t) = φ(t)v where v ∈ H1
0 (Ω), and then since

φ ∈ C∞
c (0, T ) is arbitrary, we get(7.9). �

7.4. Continuity of weak solutions

In this section, we show that the weak solutions obtained above satisfy the
continuity requirement (1) in Definition 7.2. To do this, we show that u and ut

are weakly continuous with values in H1
0 , and L2 respectively, then use the energy

estimate to show that the ‘energy’ E : (0, T ) → R defined by

(7.16) E = ‖ut‖L2 + a(u, u; t)

is a continuous function of time. This gives continuity in norm, which together with
weak continuity implies strong continuity. The argument is essentially the same as
the proof that if a sequence {xn} converges weakly to x in a Hilbert space H and
the norms also converge, then the sequence converges strongly:

(x− xn, x− xn) = ‖x‖2 − 2(x, xn) + ‖xn‖2 → ‖x‖2 − 2(x, x) + ‖x‖2 = 0.

See (7.23) below for the analogous formula in this argument.
We begin by proving the weak continuity, which follows from the next lemma.

Lemma 7.8. Suppose that V, H are Hilbert spaces and V →֒ H is densely and
continuously embedded in H. If

u ∈ L∞ (0, T ;V) , ut ∈ L2 (0, T ;H) ,

then u ∈ Cw ([0, T ];V) is weakly continuous.

Proof. We have u ∈ H1 (0, T ;H) and the Sobolev embedding theorem, The-
orem 6.38, implies that u ∈ C ([0, T ];H). Let ω ∈ V ′, and choose ωn ∈ H such that
ωn → ω in V ′. Then

|〈ωn, u(t)〉 − 〈ω, u(t)〉| = |〈ωn − ω, u(t)〉| ≤ ‖ωn − ω‖V′ ‖u(t)‖V .
Thus,

sup
[0,T ]

|〈ωn, u〉 − 〈ω, u〉| ≤ ‖ωn − ω‖V′ ‖u‖L∞(0,T ;V) → 0 as n → ∞,

so 〈ωn, u〉 converges uniformly to 〈ω, u〉. Since 〈ωn, u〉 ∈ C ([0, T ];V) it follows that
〈ω, u〉 ∈ C ([0, T ];V), meaning that u is weakly continuous into V . �
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Lemma 7.9. Let u be a weak solution constructed in Proposition 7.7. Then

(7.17) u ∈ Cw([0, T ];H
1
0), ut ∈ Cw([0, T ];L

2)

Proof. This follows at once from Lemma 7.9 and the fact that

u ∈ L∞
(

0, T ;H1
0

)

, ut ∈ L∞
(

0, T ;H−1
)

, utt ∈ L2
(

0, T ;H−1
)

,

where H1
0 (Ω) →֒ L2(Ω) →֒ H−1(Ω). �

Next, we prove that the energy is continuous. In doing this, we have to be
careful not to assume more regularity in time that we know.

Lemma 7.10. Suppose that L is given by (7.4) and a by (7.6), where the coef-
ficients satisfy the conditions in Assumption 7.1. If

u ∈ L2
(

0, T ;H1
0(Ω)

)

, ut ∈ L2
(

0, T ;L2(Ω)
)

, utt ∈ L2
(

0, T ;H−1(Ω)
)

,

and

(7.18) utt + Lu ∈ L2
(

0, T ;L2(Ω)
)

,

then

(7.19)
1

2

d

dt

(

‖ut‖2L2 + a(u, u; t)
)

= (utt + Lu, ut)L2 +
1

2
at(u, u; t).

and E : (0, T ) → R defined in (7.16) is an absolutely continuous function.

Proof. We show first that (7.19) holds in the sense of (real-valued) distribu-
tions on (0, T ). The relation would be immediate if u was sufficiently smooth to
allow us to expand the derivatives with respect to t. We prove it for general u by
mollification.

It is sufficient to show that (7.19) holds in the distributional sense on compact
subsets of (0, T ). Let ζ ∈ C∞

c (R) be a cut-off function that is equal to one on some
subinterval I ⋐ (0, T ) and zero on R \ (0, T ). Extend u to a compactly supported
function ζu : R → H1

0 (Ω), and mollify this function with the standard mollifier
ηǫ : R → R to obtain

uǫ = ηǫ ∗ (ζu) ∈ C∞
c

(

R;H1
0

)

.

Mollifying (7.18), we also have that

(7.20) uǫ
tt + Luǫ ∈ L2

(

R;L2
)

.

Without (7.18), we would only have Luǫ ∈ L2
(

R;H−1
)

.

Since uǫ is a smooth, H1
0 -valued function and a is symmetric, we have that

1

2

d

dt

(

‖uǫ
t‖

2
L2 + a (uǫ, uǫ; t)

)

= 〈uǫ
tt, u

ǫ
t〉+ a (uǫ, uǫ

t; t) +
1

2
at (u

ǫ, uǫ; t)

= 〈uǫ
tt, u

ǫ
t〉+ 〈Luǫ, uǫ

t〉+
1

2
at (u

ǫ, uǫ; t)

= 〈uǫ
tt + Luǫ, uǫ

t〉+
1

2
at (u

ǫ, uǫ; t)

= (uǫ
tt + Luǫ, uǫ

t)L2 +
1

2
at (u

ǫ, uǫ; t) .

(7.21)

Here, we have used (7.20) and the identity

a(u, v; t) = 〈L(t)u, v〉 for u, v ∈ H1
0 .

Note that we cannot use this identity to rewrite a(u, ut; t) if u is the unmollified
function, since we know only that ut ∈ L2. Taking the limit of (7.21) as ǫ → 0+, we
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get the same equation for ζu, and hence (7.19) holds on every compact subinterval
of (0, T ), which proves the equation.

The right-hand side of (7.19) belongs to L1(0, T ) since
∫ T

0

(utt + Lu, ut)L2 dt ≤
∫ T

0

‖utt + Lu‖L2 ‖ut‖L2 dt

≤ ‖utt + Lu‖L2(0,T ;L2) ‖ut‖L2(0,T ;L2) ,
∫ T

0

at (u, u; t) dt ≤
∫ T

0

C ‖u‖2H1

0

dt

≤ C ‖u‖2L2(0,T ;H1

0
) .

Thus, E in (7.16) is the integral of an L1-function, so it is absolutely continuous. �

Proposition 7.11. Let u be a weak solution constructed in Proposition 7.7.
Then

(7.22) u ∈ C
(

[0, T ];H1
0 (Ω)

)

, ut ∈ C
(

[0, T ];L2(Ω)
)

.

Proof. Using the weak continuity of u, ut from Lemma 7.9, the continuity of
E from Lemma 7.10, energy, and the continuity of at on H1

0 , we find that as t → t0,

‖ut(t)− ut(t0)‖2L2 + a (u(t)− u(t0), u(t)− u(t0); t0)

= ‖ut(t)‖2L2 − 2 (ut(t), ut(t0))L2 + ‖ut(t0)‖2L2

+ a (u(t), u(t); t0)− 2a (u(t), u(t0); t0) + a (u(t0), u(t0); t0)

= ‖ut(t)‖L2 + a (u(t), u(t); t) + ‖ut(t0)‖L2 + a (u(t0), u(t0); t0)

+ a (u(t), u(t); t0)− a (u(t), u(t); t)

− 2 (ut(t), ut(t0))L2 − 2a (u(t), u(t0); t0)

= E(t) + E(t0) + a (u(t), u(t); t0)− a (u(t), u(t); t)

− 2 {(ut(t), ut(t0))L2 + a (u(t), u(t0); t0)}
→ E(t0) + E(t0)− 2 {‖ut(t0)‖L2 + a (u(t0), u(t0); t0)} = 0.

(7.23)

Finally, using this result, the coercivity estimate

θ ‖u(t)− u(t0)‖2H1

0

≤ a (u(t)− u(t0), u(t)− u(t0); t0) + γ‖ ‖u(t)− u(t0)‖2L2

and the fact that u ∈ C
(

0, T ;L2
)

by Sobolev embedding, we conclude that

lim
t→t0

‖ut(t)− ut(t0)‖L2 = 0, lim
t→t0

‖u(t)− u(t0)‖H1

0

= 0,

which proves (7.22). �

This completes the proof of the existence of a weak solution in the sense of
Definition 7.2.

7.5. Uniqueness of weak solutions

The proof of uniqueness of weak solutions of the IBVP (7.5) for the second-
order hyperbolic PDE requires a more careful argument than for the corresponding
parabolic IBVP. To get an energy estimate in the parabolic case, we use the test
function v = u(t); this is permissible since u(t) ∈ H1

0 (Ω). To get an estimate in the
hyperbolic case, we would like to take v = ut(t), but we cannot do this directly,
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since we know only that ut(t) ∈ L2(Ω). Instead we fix t0 ∈ (0, T ) and use as a test
function

v(t) =

∫ t

t0

u(s) ds for 0 < t ≤ t0,

v(t) = 0 for t0 < t < T .

(7.24)

To motivate this choice, consider an a priori estimate for the wave equation.
Suppose that

utt = ∆u, u(0) = ut(0) = 0.

Multiplying the PDE by v in (7.24), and using the fact that vt = u we get for
0 < t < t0 that

(

vut −
1

2
u2 +

1

2
|Dv|2

)

t

− div (vDu) = 0.

We integrate this equation over Ω to get

d

dt

∫

Ω

(

vut −
1

2
u2 +

1

2
|Dv|2

)

dx = 0

The boundary terms vDu·ν vanish since u = 0 on ∂Ω implies that v = 0. Integrating
this equation with respect to t over (0, t0), and using the fact that u = ut = 0 at
t = 0 and v = 0 at t = t0, we find that

‖u‖2L2 (t0) + ‖v‖2H1

0

(0) = 0.

Since this holds for every t0 ∈ (0, T ), we conclude that u = 0.
The proof of the next proposition is the same calculation for weak solutions.

Proposition 7.12. A weak solution of (7.5) in the sense of Definition 7.2 is
unique.

Proof. Since the equation is linear, to show uniqueness it is sufficient to show
that the only solution u of (7.5) with zero data (f = 0, g = 0, h = 0) is u = 0.

Let v ∈ C
(

[0, T ];H1
0

)

be given by (7.24). Using v(t) in (7.8), we get for
0 < t < t0 that

〈utt(t), v(t)〉 + a (u(t), v(t); t) = 0.

Since u = vt and a is a symmetric bilinear form on H1
0 , it follows that

d

dt

[

(ut, v)L2 −
1

2
(u, u)L2 +

1

2
a (v, v; t)

]

= at(v, v; t).

Integrating this equation from 0 to t0, and using the fact that

u(0) = 0, ut(0) = 0, v(t0) = 0,

we get

‖u(t0)‖L2 + a (v(0), v(0); 0) = −2

∫ t0

0

a(v, v; t) dt.

Using the coercivity and boundedness estimates for a in (7.7), we find that

(7.25) ‖u(t0)‖2L2 + β ‖v(0)‖2H1

0

≤ C

∫ t0

0

‖v(t)‖2H1

0

dt+ γ ‖v(0)‖2L2 .

Writing w(t) = −v(t0 − t) for 0 < t < t0, we have from (7.24) that

w(t) = −
∫ t0−t

t0

u(s) ds =

∫ t

0

u(t0 − s) ds
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and

v(0) = −w(t0) = −
∫ t0

0

u(t0 − s) ds =

∫ t0

0

u(t) dt,

∫ t0

0

‖v(t)‖2H1

0

dt =

∫ t0

0

‖w(t0 − t)‖2H1

0

dt =

∫ t0

0

‖w(t)‖2H1

0

dt.

Using these expressions in (7.25), we get an estimate of the form

‖u(t0)‖2L2 + ‖w(t0)‖2H1

0

≤ C

∫ t0

0

(

‖u(t)‖2L2 + ‖w(t)‖2H1

0

)

dt

for every 0 < t0 < T . Since u(0) = 0 and w(0) = 0, Gronwall’s inequality implies
that u, w are zero on [0, T ], which proves the uniqueness of weak solutions. �

This proposition completes the proof of Theorem 7.3. For the regularity theory
of these weak solutions see §7.2.3 of [9].
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