Problem 5. (Fall, 2011) Let \(u(x) = (1 + |\log x|)^{-1} \). Prove that \(u \in W^{1,1}(0,1) \) and \(u(0) = 0 \) but \((u/x) \notin L^1(0,1) \).

Solution. Since \(u \in C^\infty(0,1) \) is smooth, its pointwise derivative \(v = u' \),
\[
v(x) = \frac{1}{x(1 + |\log x|)^2},
\]
is also its weak derivative (i.e., \(\int_0^1 u\phi' \, dx = -\int_0^1 v\phi \, dx \) for every \(\phi \in C^\infty_c(0,1) \)). The substitution \(t = 1 + |\log x| \) gives
\[
\int_0^1 \frac{1}{x(1 + |\log x|)^\alpha} \, dx = \int_1^\infty \frac{1}{t^\alpha} \, dt,
\]
which is finite if \(\alpha > 1 \) and infinite if \(\alpha \leq 1 \). It follows that \(v \in L^1(0,1) \) and \(u \in W^{1,1}(0,1) \). Moreover, \(u \) extends to an absolutely continuous function on \([0,1]\) with \(u(0) = \lim_{x \to 0^+} (1 + |\log x|)^{-1} = 0 \). The previous calculation (with \(\alpha = 1 \)) shows that \((u/x) \notin L^1(0,1) \).

Problem 6. (Spring, 2011) Let \(C^{0,\alpha}([0,1]) \) be the Banach space of Hölder continuous functions on \([0,1]\) with exponent \(0 < \alpha \leq 1 \) and norm
\[
\|u\|_{C^{0,\alpha}} = \sup_{x \in [0,1]} |u(x)| + \sup_{x \neq y \in [0,1]} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}.
\]
Prove that the closed unit ball \(B = \{ u \in C^{0,\alpha}([0,1]) : \|u\|_{C^{0,\alpha}} \leq 1 \} \) in \(C^{0,\alpha}([0,1]) \) is a compact subset of \(C([0,1]) \) with the sup-norm topology.

Solution. By the Arzelà-Ascoli theorem, \(B \) is a compact subset of \(C([0,1]) \) if and only if it is closed, bounded, and equicontinuous. If \(u \in B \), then \(\|u\|_\infty \leq \|u\|_{C^{0,\alpha}} \leq 1 \), where \(\| \cdot \|_\infty \) denotes the sup-norm, so \(B \) is bounded, and \(|u(x) - u(y)| \leq |x - y|^\alpha < \epsilon \) if \(|x - y| < \epsilon^{1/\alpha} \), so \(B \) is equicontinuous. Finally, if \(u_n \in B \) and \(u_n \to u \) in \(C([0,1]) \), then \(u_n \to u \) pointwise and
\[
\frac{|u(x) - u(y)|}{|x - y|^\alpha} = \lim_{n \to \infty} \frac{|u_n(x) - u_n(y)|}{|x - y|^\alpha} \leq 1 \quad \text{for all } x \neq y \in [0,1]
\]
so \(u \in B \), and \(B \) is closed.
Problem 2. (Spring, 2012) Let \(X \subset L^2(0, 2\pi) \) be the set of functions \(u \) such that
\[
u(x) = \sum_{k \in \mathbb{Z}} a_k e^{ikx}, \quad |a_k| \leq \frac{1}{1 + |k|}.
\]
Prove that \(X \) is a compact subset of \(L^2(0, 2\pi) \).

Solution. The \(H^s \)-Sobolev norm of \(u \in X \) with Fourier coefficients \(a_k \) satisfies
\[
\|u\|_{H^s}^2 = \sum_{k \in \mathbb{Z}} (1 + |k|^2)^s |a_k|^2 \leq \sum_{k \in \mathbb{Z}} \frac{(1 + |k|^2)^s}{(1 + |k|)^2}.
\]
The series on the right converges if \(2 - 2s > 1 \) or \(s < 1/2 \). It follows that \(X \) is a bounded subset of \(H^s(0, 2\pi) \) for \(0 < s < 1/2 \), and the Rellich theorem implies that \(X \) is a precompact subset of \(L^2(0, 2\pi) \). Furthermore, if \(u_n \to u \) as \(n \to \infty \) in \(L^2(0, 2\pi) \) and \(u_n \in X \), then by the continuity of the inner product,
\[
|a_k| = \frac{1}{2\pi} \left| \int_0^{2\pi} u(x) e^{-ikx} \, dx \right| = \lim_{n \to \infty} \frac{1}{2\pi} \left| \int_0^{2\pi} u_n(x) e^{-ikx} \, dx \right| \leq \frac{1}{1 + |k|},
\]
so \(u \in X \), and \(X \) is closed, which proves that \(X \) is compact.

Remark. For completeness, we prove the version of Rellich’s theorem used here. (It wouldn’t be necessary to do this in an exam!)
If \(s > 1/2 \), then \(H^s \)-functions are Hölder continuous, and the result follows directly from Sobolev embedding and the Arzelà-Ascoli theorem: bounded sets in \(H^s \) are bounded in \(C^0, \alpha \) with \(\alpha = s - 1/2 > 0 \); so they are bounded and equicontinuous and therefore precompact in \(C([0, 2\pi]) \); which implies that they are precompact in \(L^2 \), since uniform convergence is stronger than \(L^2 \)-convergence.

This argument doesn’t work directly if \(0 < s \leq 1/2 \), when \(H^s \)-functions needn’t even be continuous, but we can fix it up. The idea is to approximate a bounded sequence of \(H^s \)-functions uniformly in \(L^2 \) by sequences of smooth functions (we simply truncate their Fourier series), apply the Arzelà-Ascoli theorem and a diagonal argument to show that there is a subsequence of the original sequence all of whose approximate subsequences converge uniformly, and conclude that the subsequence converges in \(L^2 \).
Theorem 1. If $s > 0$, then $H^s(0, 2\pi)$ is compactly embedded in $L^2(0, 2\pi)$.

Proof. We need to show that a bounded sequence in H^s has a subsequence that converges strongly in L^2. If

$$u(x) = \sum_{k \in \mathbb{Z}} a_k e^{ikx}, \quad a_k = \frac{1}{2\pi} \int_0^{2\pi} u(x) e^{-ikx},$$

we use as norms

$$\|u\|_{L^2} = \left(\frac{1}{2\pi} \int_0^{2\pi} |u|^2 \, dx \right)^{1/2} = \left(\sum_{k \in \mathbb{Z}} |a_k|^2 \right)^{1/2},$$

$$\|u\|_{H^s} = \left(\sum_{k \in \mathbb{Z}} (1 + k^2)^s |a_k|^2 \right)^{1/2}.$$ \hfill (1)

For $N \in \mathbb{N}$, we denote the orthogonal projection $u^N \in C^\infty([0, 2\pi])$ of $u \in L^2(0, 2\pi)$ onto the space of trigonometric polynomials of degree less than or equal to N by

$$u^N(x) = \sum_{|k| \leq N} a_k e^{ikx}.$$ \hfill (1)

If $u \in H^s$, then

$$\|u - u^N\|_{L^2} = \left(\sum_{|k| > N} |a_k|^2 \right)^{1/2} \leq \frac{1}{(1 + N^2)^{s/2}} \left(\sum_{|k| > N} (1 + k^2)^s |a_k|^2 \right)^{1/2} \leq \|u\|_{H^s} (1 + N^2)^{s/2}.$$ \hfill (1)

Now suppose that (u_n) is a bounded sequence in H^s with $\|u_n\|_{H^s} \leq R$ for all $n \in \mathbb{N}$. Denoting the Fourier coefficients of u_n by $a_{n,k}$, we have

$$|u^N_n(x)| \leq \sum_{|k| \leq N} |a_{n,k}| \leq (1 + 2N)^{1/2} \left(\sum_{|k| \leq N} |a_{n,k}|^2 \right)^{1/2} \leq C_N R,$$
where \(C_N \) is a generic constant depending on \(N \), and
\[
\left| u_n^N(x) - u_n^N(y) \right| \leq \sum_{|k| \leq N} |a_{n,k}| \cdot |e^{ikx} - e^{iky}|
\leq \sum_{|k| \leq N} |a_{n,k}| \cdot \sqrt{2} |kx - ky|
\leq \sqrt{2} \left(\sum_{|k| \leq N} k^2 \right)^{1/2} \left(\sum_{|k| \leq N} |a_{n,k}|^2 \right)^{1/2} |x - y|
\leq C_N R|x - y|.
\]

It follows that \(\{ u_n^N : n \in \mathbb{N} \} \) is a bounded, equicontinuous subset of \(C([0, 2\pi]) \) for every \(N \in \mathbb{N} \), so it is precompact by the Arzelà-Ascoli theorem.

Using a diagonal argument, we can extract a subsequence \((u_{n_j}) \) of the original sequence \((u_n) \) such that \((u_{n_j}^N) \) converges uniformly as \(j \to \infty \) for every \(N \in \mathbb{N} \). To do this, choose a subsequence \((u_{n_{j1}}) \) of \((u_n) \) so that \((u_{n_{j1}}^N) \) converges uniformly, then choose a subsequence \((u_{n_{j2}}) \) of \((u_{n_{j1}}) \) so that \((u_{n_{j2}}^N) \) converges uniformly, and so on to get successive subsequences \((u_{n_{jM}}) \) such that \((u_{n_{jM}}^N) \) converges uniformly as \(j \to \infty \) for every \(1 \leq M \leq N \), and define \(u_{n_j} = u_{n_{jM}}^N \).

Using (1) and the inequality \(\|u\|_{L^2} \leq \sqrt{2\pi} \|u\|_{L^\infty} \), we get that
\[
\|u_n - u_{n_j}\|_{L^2} \leq \|u_n - u_{n_i}^N\|_{L^2} + \|u_{n_i}^N - u_{n_j}^N\|_{L^2} \leq \frac{2R}{(1 + N^2)^{s/2}} + \sqrt{2\pi} \|u_{n_i}^N - u_{n_j}^N\|_{L^\infty}.
\]

Given \(\epsilon > 0 \), choose \(N \) sufficiently large that
\[
\frac{2R}{(1 + N^2)^{s/2}} < \frac{\epsilon}{2}.
\]

Since \((u_{n_i}^N) \) converges uniformly, it is uniformly Cauchy, and there exists \(J \in \mathbb{N} \) such that
\[
\sqrt{2\pi} \|u_{n_i}^N - u_{n_j}^N\|_{L^\infty} < \frac{\epsilon}{2} \quad \text{for all } i, j > J.
\]

It follows that \(\|u_n - u_{n_j}\|_{L^2} < \epsilon \) for all \(i, j > J \), so the subsequence \((u_{n_j}) \) is Cauchy in \(L^2 \), and therefore it converges in \(L^2 \).