1a. Label the axes with x, y, z correctly.

Left-hand coordinate system Right-hand coordinate system

1b. Plot the points $(3, 0, 0)$ and $(2, 3, 1)$, and find the distance between the two points. (Your answer may be expressed using square roots.)

1c. Sketch the plane $5y + 4z = 20$.
2. Name the surface given by the equation; match the graph to the equation; match the level curves to the equation. (To match, write (a), (b), (c), or (d) next to the graph.)

<table>
<thead>
<tr>
<th>Equation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\frac{x^2}{4} + \frac{y^2}{4} - \frac{z^2}{4} = 1)</td>
<td>__________________</td>
</tr>
<tr>
<td>b. (\frac{x^2}{4} - \frac{y^2}{4} + \frac{z^2}{4} = 1)</td>
<td>__________________</td>
</tr>
<tr>
<td>c. (\frac{x^2}{4} - \frac{y^2}{4} - \frac{z^2}{4} = 1)</td>
<td>__________________</td>
</tr>
<tr>
<td>d. (x^2 + \frac{y^2}{4} + \frac{z^2}{4} = 1)</td>
<td>__________________</td>
</tr>
</tbody>
</table>
3. Find the radius and center of the sphere $x^2 + y^2 + z^2 - 2x + 4y + 1 = 0$.
4. Find all the first- and second partial derivatives of the function

\[f(x, y) = e^{x+2y} + x \sin y + y \sin y + 3x - 5y + 10. \]

Do not simplify.

5. Find all critical points only of the function \(z = \frac{1}{2} x^2 - \frac{1}{2} x^2 y + y^2 - y \). Do not find any extrema.
6. Let \(z = \frac{\cos(x + y)}{1 + y^2} \).

a. Given that

i. \(z \) has only one critical point, namely, \((0, 0)\),

ii. the first- and second partial derivatives of \(z \) are

\[
\begin{align*}
z_x &= -\frac{\sin(x + y)}{1 + y^2}, \\
z_y &= -\frac{\sin(x + y)}{1 + y^2} - 2y \frac{\cos(x + y)}{(1 + y^2)^2}, \\
z_{xx} &= -\frac{\cos(x + y)}{1 + y^2}, \\
z_{xy} &= -\frac{\cos(x + y)}{1 + y^2} + 2y \frac{\sin(x + y)}{(1 + y^2)^2}, \\
z_{yy} &= -\frac{\cos(x + y)}{1 + y^2} + 4y \frac{\sin(x + y)}{(1 + y^2)^2} + 8y^2 \frac{\cos(x + y)}{(1 + y^2)^3} - 2 \frac{\cos(x + y)}{(1 + y^2)^2},
\end{align*}
\]

classify the relative extremum of the function \(z \) at \((0, 0)\).

b. To find the extrema of \(z \) subject to the constraint \(x + y = 1 \) by the method of Lagrange multipliers, we need to solve a particular system of equations. Write down that system of equations. Do not solve the system.
c. From 6(a), above, we know that the only extremum of z, without any constraints, occurs at $(0, 0)$. It turns out that the only extremum of z subject to the constraint $x + y = 1$ occurs at $(1, 0)$. Is this inconsistent? Explain.

7. Evaluate $\int_1^2 \int_0^{\ln x} \int_0^x 2e^{x^2} \, dy \, dx \, dz$. (Follow your nose; your answer should be an integer.)

8. Let R be the region in the xy-plane bounded by $x = 1$, $y = 2x$, and $y = x/2$. Set up iterated integrals in two ways, $dx \, dy$ and $dy \, dx$, to find the area of R. Do not evaluate the integrals.
9. Set up an iterated integral to find the volume of the solid in the first octant and bounded by the graphs of the equations $z = x, \; x = 1, \; y = 1$. Do not evaluate the integral.

10. A rectangular plate in the xy-plane has vertices at the origin, $(2, 0)$, $(2, 1)$, and $(0, 1)$. Find the average temperature of the plate if its temperature T at the point (x, y) is given by the function $T(x, y) = 2x + 2y + 1$.