
Research summary for experts

1 Heegaard splittings, structure and genera

The first line of investigation I would like to highlight concerns Heegaard splittings,
both their structure and their genera. Some time ago, I proved structural theorems
for Heegaard splittings of Seifert fibered spaces (joint with Yoav Moriah) and, more
generally, graph manifolds. See [2] and [6]. These structural theorems described
how to build Heegaard splittings for members of the given family of manifolds. For
a Seifert fibered space M , the structural theorem immediately gives the Heegaard
genus of M . For a graph manifold, the Heegaard genus can be determined by a
computation whose complexity depends on the complexity of the graph underlying
the graph manifold. Interestingly, this allowed Richard Weidmann and me to prove
that the discrepancy between the Heegaard genus and the rank of the fundamental
group of a graph manifold can be arbitrarily large. See [10].

I am interested in a phenomenon known as “degeneration” of Heegaard genus.
This phenomenon concerns the behavior of Heegaard genus under gluings. For in-
stance, in the case of Dehn surgery, Heegaard genus can go down. Work of Moriah-
Rubinstein, Rieck-Sedgwick, and Futer-Purcell points to the specialized settings in
which this degeneration occurs. I hope to construct more examples exhibiting this
degeneration in an effort to close the gap between what is known about when this
phenomenon can’t occur and when it can and does occur. Dehn surgery constitutes
a special case of gluing two manifolds together along boundary components. In the
more general context of gluing manifolds I accomplished several things: In [8], I es-
tablished a lower bound on the genus of a manifold obtained by gluing two manifolds
along boundary components. This work generalized joint work with Martin Scharle-
mann, see [3], [4], [5] and [7]. In addition, in joint work with Richard Weidmann,
I provided examples of degeneration of genus when two manifolds are glued along a
torus. Here too, I hope to construct more examples, in an effort to fully describe the
phenomenon of degeneration of Heegaard genus.

2 Thin manifold decompositions

The second line of investigation I would like to highlight concerns manifold decompo-
sitions. Heegaard splittings correspond to Morse functions, specifically self-indexing
Morse functions. It turns out that more general handle decompositions, those corre-
sponding to Morse functions that are not necessarily self-indexing, are also of interest.
Scharlemann-Thompson defined a notion of width for such handle decompositions.
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Thin manifold decompositions, those minimizing the width, possess many fortuitous
properties. Cerf theory provides enough structure to relate all Morse functions on
a manifold and therefore also all possible handle decompositions of the manifold.
In [11], I explore this relation by defining the width complex. This investigation is
ongoing.

My second book, joint with Saito and Scharlemann, describes handle decompo-
sitions of manifolds more generally. See [15]. They key contribution in the book
lies in the development of fork complexes. Fork complexes provide a description of
certain graphs underlying handle decompositions of manifolds. In particular, they
provide a descriptive tool that can be used to assess issues pertaining to complexity.
Complexity drives much of the current discussion of algorithms. In joint work with
Kristof Huszar, I plan to obtain thin manifold decompositions for particular fami-
lies of manifolds. These thin manifold decompositions will enable certain algorithms
to run more efficiently on these families of manifolds, most notably fixed parameter
tractable algorithms.

3 Surface complexes

The third line of investigation I would like to highlight concerns surface complexes.
Codimension 1 submanifolds of a manifold M provide insight into the geometry,
topology, and self-automorphisms of M . This is readily seen in the plentiful and
beautiful work accomplished concerning the curve complex of a surface. One dimen-
sion up, Kakimizu defined an analogous complex on knot complements. Specifically,
the Kakimizu complex is the flag complex in which vertices correspond to isotopy
classes of Seifert surfaces and edges correspond to pairs of vertices with disjoint rep-
resentatives. This definition mimics the definition of the curve complex, but requires
adjustment in the context of more general 3-manifolds.

In [13], Piotr Przytycki and I proved that the Kakimizu complex of a knot is
contractible. Building on this foundational result, I found two, mutually informative,
ways to generalize this construction to all 3-manifolds. One such generalization, called
the Kakimizu complex, depends not only on a given manifold M , but also on a second
relative homology class α ∈ H2(M,∂M). The other proceeds from the definition of
the curve complex and/or Kakimizu complex of a knot complement and builds a
tower of complexes to ensure that the resulting complex is connected. The advantage
of the former lies in the tools available for its study. The advantage of the latter is
a cleaner formulation. With the help of the former, the latter can be computed in
certain instances. See [16] and [17].

My research group, consisting, in addition to myself, of postdoctoral researcher
Josh Howie and graduate students Andrew Alameda and Neetal Neel, is currently in-
vestigating classes of knots with a view towards computing their Kakimizu complexes.
Sutured manifold theory proves extremely useful in studying Kakimizu complexes of
knots. Indeed, some of the results concerning Kakimizu complexes of knots could
benefit from being described in terms of sutured manifold theory, as accomplished so
elegantly in [1].
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