Problem 1. Let \(\mathbf{u} = \langle 2, 3, 6 \rangle \). Find the values of \(\lambda \) such that \(|\lambda \mathbf{u}| = 5 \).

Problem 2. Let \(\mathbf{u}, \mathbf{v} \), two vectors such that \(|\mathbf{u}| = 2 \), \(|\mathbf{v}| = 5 \), and \(\mathbf{u} \cdot \mathbf{v} = -2 \). Determine the value of \(|\mathbf{u} + 3\mathbf{v}| \).

Problem 3. One of the applications of the dot-product operations is the computation of work. If a constant force \(\mathbf{F} \) moving an object through a displacement \(\mathbf{D} = \overrightarrow{PQ} \) has some other direction, the work performed by the component of \(\mathbf{F} \) in the direction of \(\mathbf{D} \) is

\[
W = \mathbf{F} \cdot \mathbf{D}
\]

How much work does it take to slide a crate 20 [m] along a loading dock by pulling on it with a 200 [N] force at an angle of 30° from the horizontal?

Answers.
1. \(\pm \frac{5}{7} \).
2. \(\sqrt{217} \).
3. 3464 [J]