An Introduction to Voting Mechanisms

Joe Corliss

Graduate Group in Applied Mathematics
University of California, Davis

May 18, 2016
Outline

1. Examples of Voting Methods
 1.1 Plurality Voting
 1.2 Instant-runoff Voting
 1.3 Borda Count

2. The Gibbard–Satterthwaite Theorem

3. More Voting Methods
 3.1 Random Ballot
 3.2 Approval Voting
 3.3 Range Voting

4. Conclusion
A single-winner voting method has the following ingredients:

- A society of individuals (or voters)
- A collection of available alternatives or candidates that affect the society; exactly one must be chosen
- A ballot: how a voter expresses preferences over the alternatives
- A social choice function that aggregates all the voters’ ballots and chooses a winning alternative, the social choice
Plurality Voting

Also called “first-past-the-post” (UK, Canada).

The method

- Each voter chooses one alternative
- The most-chosen alternative wins
Plurality Voting

Also called “first-past-the-post” (UK, Canada).

The method

- Each voter chooses one alternative
- The most-chosen alternative wins

Some current uses

- Almost all US elections for public office
- Dozens of countries around the world
- Among all Western democracies, only the US, UK, and Canada use it to elect their legislatures
Plurality Voting

Also called “first-past-the-post” (UK, Canada).

The method

▶ Each voter chooses one alternative
▶ The most-chosen alternative wins

Some current uses

▶ Almost all US elections for public office
▶ Dozens of countries around the world
▶ Among all Western democracies, only the US, UK, and Canada use it to elect their legislatures

Plurality is often combined with a possible runoff, creating a method called two-round majority (most common worldwide).
Plurality Voting

Advantages

▶ Simplicity

Disadvantages

▶ Vote splitting
▶ “Spoiler effect”
▶ “Lesser of two evils” dilemma
▶ Wasted votes
▶ “Favorite betrayal”

Uses the least possible amount of preference info from each voter (“just pick one”)

Duverger’s law: plurality favors a two-party system
Plurality Voting

Advantages

▶ Simplicity

Disadvantages

▶ Vote splitting
 ▶ “Spoiler effect”
▶ “Lesser of two evils” dilemma
 ▶ Wasted votes
 ▶ “Favorite betrayal”
▶ Uses the least possible amount of preference info from each voter ("just pick one")
▶ Duverger’s law: plurality favors a two-party system
Instant-runoff Voting

Also called the “alternative vote” (UK and Canada), “preferential voting” (Australia), and “ranked choice voting” (US).
Instant-runoff Voting

Also called the “alternative vote” (UK and Canada), “preferential voting” (Australia), and “ranked choice voting” (US).

The method

- Each voter linearly ranks the alternatives in order of preference (no ties allowed)
- Count all the first choices
- While no alternative has a majority of first choices
 - Eliminate the alternative with the fewest first choices
 - Update the rankings; recount the first choices
- Alternative with the majority of first choices wins
Example. 57 voters and 3 alternatives A, B, C.

<table>
<thead>
<tr>
<th>#voters</th>
<th>their vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>A>B>C</td>
</tr>
<tr>
<td>24</td>
<td>B>C>A</td>
</tr>
<tr>
<td>15</td>
<td>C>A>B</td>
</tr>
</tbody>
</table>

(From rangevoting.org)
Example. 57 voters and 3 alternatives A, B, C.

<table>
<thead>
<tr>
<th>#voters</th>
<th>their vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>A>B>C</td>
</tr>
<tr>
<td>24</td>
<td>B>C>A</td>
</tr>
<tr>
<td>15</td>
<td>C>A>B</td>
</tr>
</tbody>
</table>

(From rangevoting.org)

Winner: A, after C is eliminated.
Example. 57 voters and 3 alternatives A, B, C.

<table>
<thead>
<tr>
<th>#voters</th>
<th>their vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>A>B>C</td>
</tr>
<tr>
<td>24</td>
<td>B>C>A</td>
</tr>
<tr>
<td>15</td>
<td>C>A>B</td>
</tr>
</tbody>
</table>

(From rangevoting.org)

Winner: A, after C is eliminated.

What if 4 “B>C>A” voters change to “C>B>A”?
Example. 57 voters and 3 alternatives A, B, C.

<table>
<thead>
<tr>
<th>#voters</th>
<th>their vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>A>B>C</td>
</tr>
<tr>
<td>24</td>
<td>B>C>A</td>
</tr>
<tr>
<td>15</td>
<td>C>A>B</td>
</tr>
</tbody>
</table>

(From rangevoting.org)

Winner: A, after C is eliminated.

What if 4 “B>C>A” voters change to “C>B>A”? Then B wins.
Instant-runoff Voting

Example. 57 voters and 3 alternatives A, B, C.

<table>
<thead>
<tr>
<th>#voters</th>
<th>their vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>A>B>C</td>
</tr>
<tr>
<td>24</td>
<td>B>C>A</td>
</tr>
<tr>
<td>15</td>
<td>C>A>B</td>
</tr>
</tbody>
</table>

(From rangevoting.org)

Winner: A, after C is eliminated.

What if 4 “B>C>A” voters change to “C>B>A”? Then B wins. Lowering B caused B to win! **Non-monotonicity.**
Example. 57 voters and 3 alternatives A, B, C.

<table>
<thead>
<tr>
<th>#voters</th>
<th>their vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>A>B>C</td>
</tr>
<tr>
<td>24</td>
<td>B>C>A</td>
</tr>
<tr>
<td>15</td>
<td>C>A>B</td>
</tr>
</tbody>
</table>

(From rangevoting.org)

Winner: A, after C is eliminated.

What if 4 “B>C>A” voters change to “C>B>A”? Then B wins. Lowering B caused B to win! **Non-monotonicity.**

What if 10 “B>C>A” voters decide not to vote?
Instant-runoff Voting

Example. 57 voters and 3 alternatives A, B, C.

<table>
<thead>
<tr>
<th>#voters</th>
<th>their vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>A>B>C</td>
</tr>
<tr>
<td>24</td>
<td>B>C>A</td>
</tr>
<tr>
<td>15</td>
<td>C>A>B</td>
</tr>
</tbody>
</table>

(From rangevoting.org)

Winner: **A**, after C is eliminated.

What if 4 “B>C>A” voters change to “C>B>A”? Then **B** wins.

Lowering B caused B to win! **Non-monotonicity.**

What if 10 “B>C>A” voters decide not to vote? Then **C** wins.

Failure of **rational honest participation.**
Instant-runoff Voting

Advantages

- Fairly expressive for voters
- Mitigates the spoiler effect
- Complexity makes strategy difficult
Instant-runoff Voting

Advantages

▶ Fairly expressive for voters
▶ Mitigates the spoiler effect
▶ Complexity makes strategy difficult

Disadvantages

▶ Algorithm confuses voters; little trust in the results
▶ Cannot express indifference
▶ Non-monotonic
▶ Can be better to abstain than to vote honestly
▶ May favor a two-party system (see: Australia)
▶ “Reversal failure”: inverting preferences may preserve outcome
▶ Logically flawed? Why does fewest 1st-place votes ⇒ worst alternative?
Instant-runoff Voting

Some current uses

- Australian House of Representatives
- President of India
- In the US: San Francisco (mayor), Berkeley CA, Hugo Awards for science fiction, Oscar for Best Picture

Instant-runoff is advocated in the US by the nonprofit organization (fairvote.org). They are currently lobbying for instant-runoff in Maine (rcvmaine.com):
Instant-runoff Voting

Some current uses

- Australian House of Representatives
- President of India
- In the US: San Francisco (mayor), Berkeley CA, Hugo Awards for science fiction, Oscar for Best Picture

Instant-runoff is advocated in the US by the nonprofit organization FairVote (fairvote.org).

They are currently lobbying for instant-runoff in Maine (rcvmaine.com):
Borda Count

Named after the 18th-century French mathematician Jean-Charles de Borda.

The method

- Assume there are $n \geq 1$ alternatives
- Each voter linearly ranks the alternatives in order of preference (no ties allowed)
- For each ballot, an alternative ranked in k-th place receives $n - k$ points
- Add up the points from all the ballots
- Most points wins

Some current uses

- National Assembly of Slovenia
- Heisman trophy
- MLB MVP
- Some universities and private organizations
Borda Count

Named after the 18th-century French mathematician Jean-Charles de Borda.

The method

- Assume there are \(n \geq 1 \) alternatives
- Each voter linearly ranks the alternatives in order of preference (no ties allowed)
- For each ballot, an alternative ranked in \(k \)-th place receives \(n - k \) points
- Add up the points from all the ballots
- Most points wins

Some current uses

- National Assembly of Slovenia, Heisman trophy, MLB MVP
- Some universities and private organizations
Example. Three friends (Alice, Bob, Carl) want to watch a movie. Choices: Casino Royale (CR) or The Terminator (TT).

They will vote with the Borda count to decide. True preferences:

Alice, Bob: CR > TT
Carl: TT > CR

Total points: CR = 6 and TT = 7. TT wins.

This is called strategic nomination or candidate cloning.
Criterion: independence of clones. Includes immunity to spoilers (plurality), teams (Borda), and crowds.
Example. Three friends (Alice, Bob, Carl) want to watch a movie. Choices: *Casino Royale* (CR) or *The Terminator* (TT).

They will vote with the Borda count to decide. True preferences:

- Alice, Bob: CR > TT
- Carl: TT > CR

Carl realizes he will lose, so he nominates *Terminator 2* (T2) and *Terminator 3* (T3). Assume they agree that TT > T2 > T3.

- Alice, Bob: CR > TT > T2 > T3
- Carl: TT > T2 > T3 > CR
Example. Three friends (Alice, Bob, Carl) want to watch a movie. Choices: *Casino Royale* (CR) or *The Terminator* (TT).

They will vote with the Borda count to decide. True preferences:

Alice, Bob: CR > TT
Carl: TT > CR

Carl realizes he will lose, so he nominates *Terminator 2* (T2) and *Terminator 3* (T3). Assume they agree that TT > T2 > T3.

Alice, Bob: CR > TT > T2 > T3
Carl: TT > T2 > T3 > CR

Total points: CR = 6 and TT = 7. **TT wins.**
Example. Three friends (Alice, Bob, Carl) want to watch a movie. Choices: *Casino Royale* (CR) or *The Terminator* (TT).

They will vote with the Borda count to decide. True preferences:

- Alice, Bob: CR > TT
- Carl: TT > CR

Carl realizes he will lose, so he nominates *Terminator 2* (T2) and *Terminator 3* (T3). Assume they agree that TT > T2 > T3.

- Alice, Bob: CR > TT > T2 > T3
- Carl: TT > T2 > T3 > CR

Total points: CR = 6 and TT = 7. **TT wins.**

This is called **strategic nomination** or **candidate cloning**.

Criterion: **independence of clones**. Includes immunity to **spoilers** (plurality), **teams** (Borda), and **crowds**.
Borda Count

Advantages

- Fairly expressive for voters
- Monotonic
- Not too complicated

Disadvantages

- Cannot express indifference
- Strategic nomination (teaming)
- "Burying" strategy: rank a not-least-preferred alternative last
- "Compromising" strategy: rank a not-most-preferred alternative first
- Compromising and burying are very tempting when there are 2 clear frontrunners; highly distorts the outcome

"My scheme is intended only for honest men." – de Borda
Borda Count

Advantages

▶ Fairly expressive for voters
▶ Monotonic
▶ Not too complicated

Disadvantages

▶ Cannot express indifference
▶ Strategic nomination (teaming)
▶ “Burying” strategy: rank a not-least-preferred alternative last
▶ “Compromising” strategy: rank a not-most-preferred alternative first
 ▶ Compromising and burying are very tempting when there are 2 clear frontrunners; highly distorts the outcome

“My scheme is intended only for honest men.” –de Borda
Strategic manipulability is not a property of just a few “bad” voting methods.

In fact, all “rank-based” voting methods can be manipulated in at least one way...
The Gibbard–Satterthwaite Theorem

Proven independently by the philosopher Allan Gibbard (1973) and the economist Mark Satterthwaite (1975).

Let \(A \) be a nonempty finite set of \textit{alternatives} and \(V \) a nonempty finite set of \textit{voters}.
The Gibbard–Satterthwaite Theorem

Proven independently by the philosopher Allan Gibbard (1973) and the economist Mark Satterthwaite (1975).

Let A be a nonempty finite set of alternatives and V a nonempty finite set of voters.

Let $\mathcal{L}(A)$ be the set of all linear orders on A. These are binary relations on A that are

(i) Transitive: $x \preceq y$ and $y \preceq z \implies x \preceq z \quad \forall x, y, z \in A$

(ii) Total: $x \preceq y$ or $y \preceq x \quad \forall x, y \in A$

(iii) Antisymmetric: $x \preceq y$ and $y \preceq x \implies x = y \quad \forall x, y \in A$
The Gibbard–Satterthwaite Theorem

Proven independently by the philosopher Allan Gibbard (1973) and the economist Mark Satterthwaite (1975).

Let A be a nonempty finite set of alternatives and V a nonempty finite set of voters.

Let $\mathcal{L}(A)$ be the set of all linear orders on A. These are binary relations on A that are

(i) Transitive: $x \preceq y$ and $y \preceq z \implies x \preceq z \quad \forall x, y, z \in A$
(ii) Total: $x \preceq y$ or $y \preceq x \quad \forall x, y \in A$
(iii) Antisymmetric: $x \preceq y$ and $y \preceq x \implies x = y \quad \forall x, y \in A$

We call $\preceq \in \mathcal{L}(A)$ a strict preference relation. Let

$$\mathcal{L}(A)^V = \prod_{i \in V} \mathcal{L}(A)$$

be the set of all profiles $(\preceq_i)_{i \in V}$ of strict preference relations.
The Gibbard–Satterthwaite Theorem

A function $F : \mathcal{L}(A)^V \to A$ is called a **social choice function**.

Examples: instant-runoff, Borda count, plurality voting.
The Gibbard–Satterthwaite Theorem

A function $F : \mathcal{L}(A)^V \rightarrow A$ is called a social choice function.

Examples: instant-runoff, Borda count, plurality voting.

Properties

- F is **onto** if $F(\mathcal{L}(A)^V) = A$

 Every alternative has a possibility of winning
The Gibbard–Satterthwaite Theorem

A function \(F : \mathcal{L}(A)^V \rightarrow A \) is called a **social choice function**.

Examples: instant-runoff, Borda count, plurality voting.

Properties

- **\(F \) is onto** if \(F(\mathcal{L}(A)^V) = A \)

 Every alternative has a possibility of winning

- **\(F \) is strategy-proof** if for any \(i \in V \), any \((\preceq_j)_{j \in V} \in \mathcal{L}(A)^V\), and any \(\preceq'_i \in \mathcal{L}(A) \),

 \[
 \star \quad F(\preceq'_i, \preceq_{-i}) \preceq_i F((\preceq_j)_{j \in V}) \quad \star
 \]

 where \(\preceq_{-i} = (\preceq_j)_{j \neq i} \)
The Gibbard–Satterthwaite Theorem

A function $F : \mathcal{L}(A)^V \rightarrow A$ is called a social choice function.

Examples: instant-runoff, Borda count, plurality voting.

Properties

- F is **onto** if $F(\mathcal{L}(A)^V) = A$

 Every alternative has a possibility of winning

- F is **strategy-proof** if for any $i \in V$, any $(\preceq_j)_{j \in V} \in \mathcal{L}(A)^V$, and any $\preceq'_i \in \mathcal{L}(A)$,

 $\star \quad F(\preceq'_i, \preceq_{-i}) \preceq_i F((\preceq_j)_{j \in V}) \quad \star$

 where $\preceq_{-i} = (\preceq_j)_{j \neq i}$

- F is **dictatorial** if there is an $i \in V$ such that for any $(\preceq_j)_{j \in V} \in \mathcal{L}(A)^V$,

 $F((\preceq_j)_{j \in V}) \in \max(\preceq_i)$
The Gibbard–Satterthwaite Theorem

Theorem (Gibbard–Satterthwaite)

If $|A| \geq 3$ and $F : \mathcal{L}(A)^V \to A$ is onto and strategy-proof, then F is dictatorial.

“For every reasonable*, deterministic, ordinal voting method over ≥ 3 alternatives, there are situations in which lying pays.”

*onto, non-dictatorial
The Gibbard–Satterthwaite Theorem

Theorem (Gibbard–Satterthwaite)

If $|A| \geq 3$ and $F : \mathcal{L}(A)^V \to A$ is onto and strategy-proof, then F is dictatorial.

“For every reasonable*, deterministic, ordinal voting method over ≥ 3 alternatives, there are situations in which lying pays.”

*onto, non-dictatorial

Notes

- If $|A| = 2$, then plurality voting is a counterexample to G–S
- G–S still holds for non-strict preference relations (drop the antisymmetric requirement)
- Possible escape routes
 - Use a stochastic F
 - Use a non-ordinal voting system?
Random Ballot

The method

- Each voter chooses one alternative
- Select a voter uniformly at random
- Elect that voter’s choice

Current uses: none?
Random Ballot

The method

- Each voter chooses one alternative
- Select a voter uniformly at random
- Elect that voter’s choice

Current uses: none?

Advantages

- Onto, strategy-proof (avoids the G–S theorem!), independent of clones, rational participation

Disadvantages

- Democratic only in mathematical expectation
- Possibility for a terrible winner
Approval Voting

Introduced in 1977–1978, mainly by Steven Brams (political scientist) and Peter Fishburn (mathematician).

The method

- Each voter votes for any number of alternatives
- The alternative with the most votes wins
Approval Voting

Introduced in 1977–1978, mainly by Steven Brams (political scientist) and Peter Fishburn (mathematician).

The method

- Each voter votes for any number of alternatives
- The alternative with the most votes wins

Some current uses

- UN Secretary-General, MAA, AMS, ASA, INFORMS, Webby Awards, SFSU, Texas Green Party
Approval Voting

Introduced in 1977–1978, mainly by Steven Brams (political scientist) and Peter Fishburn (mathematician).

The method

- Each voter votes for any number of alternatives
- The alternative with the most votes wins

Some current uses

- UN Secretary-General, MAA, AMS, ASA, INFORMS, Webby Awards, SFSU, Texas Green Party

Advocated by a nonprofit, founded in 2011 (electology.org):
Approval Voting

Advantages

- Simplicity
- Always rational to vote for one’s favorite candidate
 - No wasted votes
- Tends to favor compromise candidates
- Monotonic
- Rational participation
- Independent of clones
 - No spoiler effect
Approval Voting

Advantages

▶ Simplicity
▶ Always rational to vote for one’s favorite candidate
 ▶ No wasted votes
▶ Tends to favor compromise candidates
▶ Monotonic
▶ Rational participation
▶ Independent of clones
 ▶ No spoiler effect

Disadvantages

▶ Not very expressive for voters; cannot express all preferences
▶ Wide range of sincere votes allows for manipulation
The method

- Let N be a positive integer (a parameter)
- Each voter assigns a score from 0, 1, \ldots, N to each alternative
- Highest summed score wins

Note: reduces to approval voting when $N = 1$.
Range Voting

The method

- Let N be a positive integer (a parameter)
- Each voter assigns a score from 0, 1, \ldots, N to each alternative
- Highest summed score wins

Note: reduces to approval voting when $N = 1$.

Some current uses

- German Pirate Party; no other political uses?
- Valedictorians, teaching evaluations
- Webby Awards, Mozilla
- Many TV competitions

Advocated by Warren Smith, Ph.D. (rangevoting.org) and The Center for Election Science.
Range Voting

Advantages

- Fairly simple
- Most expressive voting method
- Same advantages as approval voting

Disadvantages

- Temptation to exaggerate scores
- In most situations, “approval style” scoring is optimal (give only max/min scores)
Range Voting

Advantages

- Fairly simple
- Most expressive voting method
- Same advantages as approval voting

Disadvantages

- Temptation to exaggerate scores
 - In most situations, “approval style” scoring is optimal (give only max/min scores)
At the 2010 *Voting Power in Practice* workshop in Normandy, France, 22 professional voting theorists were asked:

“What is the best voting rule for your town to use to elect the mayor?”

They voted on 18 voting methods using approval voting.

Average number of approvals: 3.55.

Voting Theorists Vote About Voting Methods

<table>
<thead>
<tr>
<th>Voting rule</th>
<th>Approvals</th>
<th>Approving percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval voting</td>
<td>15</td>
<td>68.18</td>
</tr>
<tr>
<td>Alternative vote</td>
<td>10</td>
<td>45.45</td>
</tr>
<tr>
<td>Copeland</td>
<td>9</td>
<td>40.91</td>
</tr>
<tr>
<td>Kemeny</td>
<td>8</td>
<td>36.36</td>
</tr>
<tr>
<td>Two-round majority</td>
<td>6</td>
<td>27.27</td>
</tr>
<tr>
<td>Coombs</td>
<td>6</td>
<td>27.27</td>
</tr>
<tr>
<td>Simpson</td>
<td>5</td>
<td>22.73</td>
</tr>
<tr>
<td>Majority judgement</td>
<td>5</td>
<td>22.73</td>
</tr>
<tr>
<td>Borda</td>
<td>4</td>
<td>18.18</td>
</tr>
<tr>
<td>Black</td>
<td>3</td>
<td>13.64</td>
</tr>
<tr>
<td>Range voting</td>
<td>2</td>
<td>9.09</td>
</tr>
<tr>
<td>Nanson</td>
<td>2</td>
<td>9.09</td>
</tr>
<tr>
<td>Leximin</td>
<td>1</td>
<td>4.54</td>
</tr>
<tr>
<td>Top-cycle</td>
<td>1</td>
<td>4.54</td>
</tr>
<tr>
<td>Uncovered set</td>
<td>1</td>
<td>4.54</td>
</tr>
<tr>
<td>Fishburn</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Untrapped set</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plurality</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Conclusion

It’s tempting to believe that simply “holding a vote” will somehow locate the best alternative for society.

But the precise method used is crucially important.

The main concerns are:

1. What information do we ask voters to provide about their preferences?
2. From that information, how do we determine the best option for society as a whole?
3. How do we get voters to vote honestly and not try to cheat the system?

Satisfactory answers are necessary for a functioning democracy.