1. Prove Helly’s Theorem: If C is a finite collection of convex sets in \mathbb{R}^d such that each $d + 1$ sets have nonempty intersection then the intersection of all sets in C is nonempty.

2. If $A \subseteq \mathbb{R}^2$ has diameter less than or equal to 1, then A can be covered by a circular disk of radius $\frac{1}{\sqrt{3}}$.

3. Given convex sets $K_1, \ldots, K_n \subseteq \mathbb{R}^d$, suppose that for each $d + 1$ of K_1, \ldots, K_n there exists a ball of radius r intersecting all $d + 1$. Prove then that there is a ball of radius r intersecting all of K_1, \ldots, K_n.

4. Given convex sets $K_1, \ldots, K_n \subseteq \mathbb{R}^d$, suppose that the intersection of each $d + 1$ of the K_i contains a ball of radius r. Prove then that there is a ball of radius r contained in $K_1 \cap \ldots \cap K_n$.

5. Given 300 points in \mathbb{R}^2, prove there exists a point p such that each closed halfplane determined by each line through p contains at least 100 of the given points.

6. If $S \subseteq \mathbb{R}$, then $h(S) = 2$. That is, the S-Helly number of any S-subset of the real line is two.

7. In \mathbb{R}^2 we no longer have such a nice theorem. Some subsets of \mathbb{R}^2 have infinite Helly number. Show an explicit example.

8. For every $m \times d$ integer matrix A, bounds $l, u \in \mathbb{Z}^d$ and $b \in \mathbb{Z}^m$, the set of circuits of A is the set of all edge-directions of the parametric polytopes $\{x : Ax = b, \ l \leq x \leq u\}$.

9. Prove the following lemma: Let z_0 and z_1 be feasible solutions to $A z = b, \ l \leq z \leq u$. Moreover, let

$$z_1 - z_0 = \sum_{i=1}^{r} \alpha_i g_i$$

be a nonnegative integer linear sign-compatible decomposition into Graver basis elements $g_i \in \mathcal{G}(A)$. Then for all choices of $\beta_1, \ldots, \beta_r \in \mathbb{Z}$ with $0 \leq \beta_j \leq \alpha_j, \ j = 1, \ldots, r$, the vector

$$z_0 + \sum_{i=1}^{r} \beta_i g_i$$

is also a feasible solution to $A z = b, \ l \leq z \leq u$.

10. Suppose $X \subset \mathbb{Z}^d$ is a Hilbert bases for the pointed rational $cone(X)$ (remember this means $sg(X) = cone(X) \cap \mathbb{Z}^d$). Then any point in the semigroup $sg(X)$ can be represented as a non-negative linear combination of no more than $2d - 1$ (Cook, Fonlupt, Schrijver 1986).

11. Given a set S of n points in \mathbb{R}^d, a Tverberg k-coloring of S is a partition of the points in S into k sets $S_1, ..., S_k$ such that $\bigcap_{i=1}^{k} \text{conv}(S_i)$ is nonempty.

Prove that any set of points in \mathbb{R}^d with $n \geq (k - 1)(d + 1) + 1$ admits a Tverberg k-coloring.