7/11 Notes

Midterm: Grades are up. Mean was 70.16.

Last Wednesday: computed the LU decomposition and used to solve a system of equations $Ax = b$.

We solved and in our example, we computed a unique solution: There is only one x^* such that $Ax^* = b$.

What does this tell us about the matrix A?

\Rightarrow A is invertible!

Is there another way to tell that A is invertible directly? (Right now, we can use GE and see if it row reduces to the identity.)

\Rightarrow YES! Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

unless $ad-bc=0$ in which case there is no inverse.

What is $ad-bc$ called?

- The determinant!

FACT: All square matrices have a number associated with them called the determinant which tells us if the matrix is invertible.

The determinant of a square matrix, A, which we write $\det A$ and $|A|$.

\[\det A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 3 \cdot 2 = -2 \]
is defined as:

Def. The determinant of the $n \times n$ matrix A is

\[
\det A = \sum_{\sigma} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}
\]

(1A1)

Here, the sum is over all permutations of the n columns of A (so then $a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$) is the product of the elements on the diagonal of the matrix whose columns have been permuted.

Here, $\operatorname{sgn}(\sigma) = 1$ if σ is even, -1 if σ is odd.

A permutation of columns is even/odd if it takes an even/odd number of column swaps to achieve the permutation.

Example:

\[
\det \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]

We have to sum over all column permutations. There are only two: we can either not swap the columns or we can swap the columns. We can put columns in order.

\[
\begin{aligned}
12 & \text{ or } 21 \\
\begin{bmatrix} a & b \\ c & d \end{bmatrix} & \rightarrow \begin{bmatrix} b & a \\ d & c \end{bmatrix}
\end{aligned}
\]

permutated matrices

\[
\begin{aligned}
& \text{No swap} & \text{Swap} \\
\begin{bmatrix} a & b \\ c & d \end{bmatrix} & \rightarrow & \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\end{aligned}
\]

diagonal product

swap
\[\begin{align*}
\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} &= 1 \cdot ad + (-1) \cdot bc \\
&= ad - bc
\end{align*} \]

Example:

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\]

What are the possible perms?

\begin{itemize}
 \item No swaps: 1 2 3 (columns in normal order)
 \item 1 swap: 1 3 2
 \item 1 swap: 3 2 1
 \item 1 swap: 2 1 3
 \item 2 swaps: 3 1 2
 \item 2 swaps: 2 3 1
\end{itemize}
\[\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \]

\[\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}

\[- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} \]
This can be very cumbersome. Some people find the following easier:

Cofactor formula:

\[
\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in} \quad \text{where}
\]

\[
C_{ij} = (-1)^{i+j} \det M_{ij}
\]

Here, \(M_{ij} \) is called a minor of \(A \) and is just the submatrix of \(A \) when you remove the \(i \)th row of \(A \) and the \(j \)th column of \(A \).

To use this formula, we choose a row, \(i \), of our matrix and use the entries of this row as coefficients on the cofactors which are the determinants of the remaining submatrices.

Example: We'll visualize this process first on the matrix

\[
A = \begin{bmatrix}
2 & -1 & 0 \\
1 & 2 & -1 \\
0 & 1 & 2 \\
\end{bmatrix}
\]

\[
\begin{vmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & 1 & 2 \\
\end{vmatrix} = \begin{vmatrix}
2 & -1 \\
-1 & 2 \\
0 & 1 \\
\end{vmatrix} + \begin{vmatrix}
-1 & -1 \\
-1 & 2 \\
0 & 1 \\
\end{vmatrix} + \begin{vmatrix}
-1 & 2 \\
0 & 1 \\
0 & 2 \\
\end{vmatrix} + 0
\]

\[
\det A = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}
\]

\[
= 2(-1) \begin{vmatrix}
2 & -1 \\
-1 & 2 \\
\end{vmatrix} + (-1)(-1) \begin{vmatrix}
-1 & -1 \\
-1 & 2 \\
\end{vmatrix} + 0(-1) \begin{vmatrix}
-1 & 2 \\
0 & 1 \\
0 & 2 \\
\end{vmatrix} + 0
\]

\[
= 2(4-1) + 1(-2-0) = 9
\]

Notice that 0 coefficients.
We could also have expanded around the second row:
\[
\begin{vmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{vmatrix}
= \begin{vmatrix}
-1 & 0 \\
-1 & 2 \\
0 & 2
\end{vmatrix}
+ \begin{vmatrix}
2 & 0 \\
-1 & 2 \\
0 & 2
\end{vmatrix}
+ \begin{vmatrix}
2 & -1 \\
-1 & 2 \\
0 & -1
\end{vmatrix}
\]

\[
\det A = a_{21} C_{21} + a_{22} C_{22} + a_{23} C_{23}
\]

\[
= (-1)(-1)^{2+1} \begin{vmatrix}
-1 & 0 \\
-1 & 2
\end{vmatrix}
+ 2(-1)^{2+2} \begin{vmatrix}
2 & 0 \\
0 & 2
\end{vmatrix}
+ (-1)^{2+3} \begin{vmatrix}
2 & -1 \\
0 & -1
\end{vmatrix}
\]

\[
= (2 - 0) + 2(4 - 0) + (-2 - 0)
\]

\[
= -2 + 8 - 2 = 4
\]

This cofactor formula makes the following fact clear. Make sure you understand why this must be true. **THM:** If \(A \) has a row consisting of entirely zeros then
\[
\det A = 0
\]

Similarly, ensure you can make sense of the following fact:

FACT: The determinant of a diagonal matrix is the product of its diagonal entries.

Example:

\[
\det \begin{bmatrix}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{bmatrix}
= (-1)(-1)^{1+1} (2 \cdot 3 - 0 \cdot 0) + 0(-1)^{1+2} (0 \cdot 3 - 0 \cdot 0) +
0(-1)^{1+3} (0 \cdot 0 - 2 \cdot 0)
= -18 + 0 + 0
= -18
\]
Notice that we didn't say anything about the dimensions of the matrix. These formulas for computing the determinant hold regardless of their size (provided they are square).

Example:

\[\text{det}(I) = ? \]

Ans:

\[\text{det}(I) = 1 \]

\[\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - 0 \cdot 0 = 1 \]

\[\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1(1 \cdot 1 - 0 \cdot 0) + 0 \cdot \ldots + 0 \cdot \ldots = 1 \]

TIP: If \(A \) and \(A' \) differ by a row swap, then \(\text{det} A' = -\text{det} M \)

Example:

\[\text{det} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} = 1 \cdot 3 - 1 \cdot 2 = 1 \]

\[\text{det} \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} = 2 \cdot 1 - 3 \cdot 1 = -1 \]

This tells us something about elementary row operation matrices! Consider the 3x3 ERO matrix which swaps rows 1+2 in a matrix that has 3 rows:

\[\text{det} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 0 \cdot \ldots + 1 \cdot (-1)^{1+2} (1 \cdot 1 - 0 \cdot 0) + 0 \cdot \ldots \]
Now, consider a matrix A and A' where A' is A with the i^{th} and j^{th} rows swapped. Let E_{ij} denote the ERO matrix which does this swap. We know

$$E_{ij} A = A'$$

and we know $\det A' = -\det A$ and $\det E_{ij} = -1$

so then

$$\det E_{ij} A = \det A' = -\det A = \det E_{ij} \det A$$

$$\Rightarrow \det E_{ij} A = \det E_{ij} \det A$$

What about an ERO matrix that multiplies a row by c?

Example:

$$\det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = 2$$

THM: If A' is A with the i^{th} row multiplied by c, then

$$\det A' = c \det A = \det E_i^c \det A$$

We have almost all of the ERO matrices we regularly use.

What are we missing?

- adding multiples of one row to another!
Suppose E_{ij}^c is the ERO matrix which adds c·row j to row i.

Example:

$$E_{12}^2 = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\det \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 1(1 \cdot 1 - 0 \cdot 0) + 2(-1)^{1+2}(0 \cdot 1 - 0 \cdot 0) + 0 = 1$$

THM: If A' is A with a multiple (c) of row j added to row i, so $A' = E_{ij}^c A$, then

$$\det A' = \det A = \det E_{ij}^c \det A$$

Additional THM: For any square matrix A, $\det A \neq 0$ if and only if A is invertible.

(This says that if A is invertible then $\det A \neq 0$ and if $\det A \neq 0$ then A is invertible.)

Some hints:

1) You can also expand (use the cofactor formula) along a column (rather than a row).

2) Zeros are your friend! If there is a row or column with a lot of zeros, expanding along it saves a lot of computation.
FACT: If A is a square matrix, then $\det A^r = \det A$.

THM: If A is invertible then

$$\det A^{-1} = \frac{1}{\det A}$$

Example:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} \frac{d}{ad - bc} & -\frac{b}{ad - bc} \\ -\frac{c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}$$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{d}{ad - bc} \cdot \frac{a}{ad - bc} - \frac{-b}{ad - bc} \cdot -\frac{c}{ad - bc}$$

$$= \frac{ad}{(ad - bc)^2} - \frac{bc}{(ad - bc)^2} = \frac{ad - bc}{(ad - bc)^2} \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$= \frac{1}{ad - bc} = \frac{1}{\det \begin{bmatrix} a & b \\ c & d \end{bmatrix}}$$