
SPECIAL ISSUE

J. Teran Æ Neil Molino Æ R. Fedkiw Æ R. Bridson

Adaptive physics based tetrahedral mesh generation using level sets

Received: 14 September 2003 / Accepted: 13 October 2004 / Published online: 12 July 2005
� Springer-Verlag London Limited 2005

Abstract We present a tetrahedral mesh generation
algorithm designed for the Lagrangian simulation of
deformable bodies. The algorithm’s input is a level set
(i.e., a signed distance function on a Cartesian grid or
octree). First a bounding box of the object is covered
with a uniform lattice of subdivision-invariant tetrahe-
dra. The level set is then used to guide a red green
adaptive subdivision procedure that is based on both the
local curvature and the proximity to the object bound-
ary. The final topology is carefully chosen so that the
connectivity is suitable for large deformation and the
mesh approximates the desired shape. Finally, this
candidate mesh is compressed to match the object
boundary. To maintain element quality during this
compression phase we relax the positions of the nodes
using finite elements, masses and springs, or an optimi-
zation procedure. The resulting mesh is well suited for
simulation since it is highly structured, has topology
chosen specifically for large deformations, and is readily
refined if required during subsequent simulation. We
then use this algorithm to generate meshes for the sim-
ulation of skeletal muscle from level set representations
of the anatomy. The geometric complexity of biological
materials makes it very difficult to generate these models
procedurally and as a result we obtain most if not all
data from an actual human subject. Our current method
involves using voxelized data from the Visible Male [1]
to create level set representations of muscle and bone
geometries. Given this representation, we use simple le-
vel set operations to rebuild and repair errors in the
segmented data as well as to smooth aliasing inherent in
the voxelized data.

Keywords Tetrahedral mesh generation Æ Level set
methods Æ BCC lattice Æ Red green refinement
hierarchy Æ Large deformations Æ Muscle simulation

1 Introduction

We are particularly interested in simulating highly
deformable bodies such as the muscle and fatty tissues
commonly encountered in biomechanics [2, 3], haptics
[4], and virtual surgery [5, 6]. The stability, accuracy, and
efficiency of these simulations are all very dependent
upon the quality of the tetrahedral mesh, see e.g. [6].
Therefore, our mesh generation algorithm is designed
specifically for such large deformation simulations, and
even includes simulation as a substantial component.

Mesh generation is not only a broad field, but is in
some sense many fields, each concerned with the crea-
tion of meshes that conform to quality measures specific
to a target application. Fluid flow and heat transfer
meshes which are not deformed at all, or small defor-
mation solids meshes which are barely deformed, impose
requirements on the mesh that can be quite different
from those for simulating soft biological tissue that may
undergo large deformations. Fleishman et al. [7] uses
simple examples to show that the specific measures of
mesh quality vary depending on the problem being
solved.

Eulerian fluid flow simulations require anisotropi-
cally compressed elements in boundary layers, e.g.
[8–10]. In these calculations, the solution gradient is
typically smaller in the direction of the fluid flow than it
is in orthogonal directions. Obviously, it is desirable to
have the density of the elements be higher in directions
where the gradient is high and lower in directions where
the gradient is low, i.e. elongated elements. In contrast,
highly stretched cells tend to be ill-conditioned when a
mesh deforms significantly, as is typical for soft bodies.
If the mesh is softer in the thin direction, then the cells
will have a tendency to invert, which can terminate a

J. Teran (&) Æ N. Molino (&) Æ R. Fedkiw (&)
Stanford University, Stanford, CA, USA
E-mail: jteran@stanford.edu
E-mail: npmolino@stanford.edu
E-mail: fedkiw@cs.stanford.edu

R. Bridson (&)
University of British Columbia, Vancouver, BC, Canada
E-mail: rbridson@cs.ubc.ca

Engineering with Computers (2005) 21: 2–18
DOI 10.1007/s00366-005-0308-8

simulation. In contrast, if the material is stiffer in the
thin direction, then the calculation will be very expensive
because explicit time step restrictions become even more
stringent with higher stiffness or with small element
cross-section. Thus, although our method has been de-
signed to provide a high degree of adaptivity both to
resolve the geometry and to guarantee quality simula-
tion results, we neither consider nor desire anisotropi-
cally stretched elements. Also, since highly deformable
bodies tend to be devoid of sharp features such as edges
and corners, we do not consider boundary feature
preservation.

Our main concern is to generate a mesh that will be
robust when subsequently subject to large deformations.
For example, although we obviously want an adaptive
mesh with smaller elements in areas where more detail is
desired, it is even more important to have a mesh that
can be adapted during the simulation since these regions
will change. Motivated by crystallography, we use a
body-centered cubic (BCC) mesh (see e.g. [11]) that is
highly structured and produces similar (in the precise
geometric sense) tetrahedra under regular refinement.
This allows us to adaptively refine both while generating
the mesh and during the subsequent simulation.

The signed distance function representation of the
object’s geometry is useful for many reasons. First, it
provides a natural bounding box for the object, which
we tile with a uniform lattice of tetrahedra. Then, it can
be used to guide the creation of an adaptive mesh by
providing geometric information anywhere in space. The
deletion of elements that are completely outside the
object of interest is facilitated by the O(1) inside/outside
testing provided by the level set. Finally, the compres-
sion phase uses the level set value to guide tetrahedron
nodes that remain outside the surface following the
discard phase [12]. Nodes that are interior to the surface
are treated differently to avoid element collapse.

We take measures to produce meshes well suited for
large deformation simulations. The compression stage of
our algorithm can be carried out using a mass spring
system, a finite element constitutive model or an opti-
mization based approach. One advantage of using a
physically based compression algorithm is that it can
forecast how the mesh is likely to respond to the
deformations it will experience during simulation. This is
in contrast to many traditional purely geometric tech-
niques that may produce an initial mesh with good
quality measures, but also with possible hidden defi-
ciencies that can be revealed during simulation, leading
to poor accuracy or element collapse. We also specifi-
cally avoid pathological connectives which engender
mesh defects and collapsing elements.

2 Related work

While Delaunay techniques have been quite successful in
two spatial dimensions, they have not been as successful
in three spatial dimensions (see e.g. [13] for a discussion

of implementation details). They admit flat sliver tetra-
hedra of negligible volume. Shewchuk provides a nice
overview of these methods, including a discussion of
why some of the theoretical results are not reassuring in
practice [14]. Moreover, he discusses how the worst
slivers can often be removed. Cheng et al. [15] also dis-
cuss sliver removal, but state that their theorem gives an
estimate that is ‘‘miserably tiny’’. Edelsbrunner and
Guoy [16] showed that [15] it can be used to remove
most of the slivers, but is not as promising near
boundaries. Another problem with Delaunay methods is
that the Delaunay tetrahedralization of a set of points is
convex whereas the domains of many finite element
calculations are not. Thus, techniques such as the con-
forming Delaunay approach which inserts additional
vertices into the mesh to force it to conform to the
boundary of the domain must be developed. The con-
strained Delaunay tetrahedralization is another method
used to enforce boundary recovery [17]. These ap-
proaches can be complicated and can even produce an
intractably large mesh which is not polynomial in the
complexity of the input domain.

Advancing front methods start with a boundary dis-
cretization and march a ‘‘front’’ inward, forming new
elements attached to the existing ones [18]. Advancing
front techniques conform well to the boundary. This
renders them a useful technique when the specific
polygonal boundary representation of the geometry
must be matched precisely, for example, when meshing a
machine part. When the input geometry is not a polyg-
onal boundary, a triangulation of this boundary must
first be performed. The quality of this surface triangu-
lation has a large impact on the three dimensional
algorithm’s behavior. Poorly shaped surface triangles
will engender ill-shaped tetrahedra [19]. A central deci-
sion in an advancing front algorithm is the placement of
an interior point that marches the front further into the
interior of the object. Local element control is possible
because new nodes are created at the same time that new
elements are created. The node and element creation is
done as needed according to local procedures. Authors
have experimented with various metrics and criteria to
evaluate the placement of the new node, see e.g. [20–22].
Advancing front techniques have difficulty when fronts
merge, however, which unfortunately can occur very
near the important boundary in regions of high curva-
ture [9, 10].

Radovitzky and Ortiz [23] started with a face-cen-
tered cubic (FCC) lattice defined on an octree and used
an advancing front approach to march inward, con-
structing a mesh with the predetermined nodes of the
FCC lattice. They chose FCC over BCC because it gives
slightly better tetrahedra for their error bounds. How-
ever, after any significant deformation the two meshes
will usually have similar character. Moreover, since we
keep our BCC connectivity intact (as opposed to [23]),
we retain the ability to further refine our BCC mesh
during the calculation to obtain locally higher resolution
for improved accuracy and robustness. On the other

3

hand, their approach is better at resolving boundary
features and is thus likely superior for problems with
little to no deformation.

Fuchs [24] begins with a BCC tiling of space which is
adaptively refined to obtain the desired nodal density.
Vertices outside the object are simply projected to the
boundary, and then smoothing is applied to optimize the
position of the vertices. He emphasizes that the BCC
connectivity is never used and instead applies Delaunay
tessellation. That is, only the adaptive BCC lattice is
used to obtain an initial guess for their vertex positions.

Shimada and Gossard [25] packed spheres (or ellip-
soids for anisotropic mesh generation [26, 27]) into the
domain with mutual attraction and repulsion forces, and
generated tetrahedra using the sphere centers as sample
points via either a Delaunay or advancing front method.
However, ad hoc addition and deletion of spheres is
required in a search for a steady state, and both local
minima and ‘‘popping’’ can be problematic. This led Li
et al. [28] to propose the removal of the dynamics from
the packing process, instead marching in from the
boundary removing spherical ‘‘bites’’ of volume one at a
time. This biting was motivated by the advancing front
technique, but used here for sphere packing rather than
mesh generation. The final mesh is computed with a
Delaunay algorithm on the sphere centers. Later, they
extended the biting idea to ellipsoids to generate aniso-
tropic meshes [29].

Our compression phase moves the nodes on the
boundary of our candidate mesh to the implicit surface,
providing boundary conformity. In some sense, this
wrapping of our boundary around the level set is related
to snakes [30] or GDMs [31] which have been used to
triangulate isosurfaces, see e.g. [32]. Neugebauer and
Klein started with a marching cubes mesh and moved
vertices to the centroid of their neighbors before pro-
jecting them onto the zero level set in the neighboring
triangles’ average normal direction [33]. Grosskopf and
Neugebauer improved this method using internodal
springs instead of projection to the centroid, incremental
projection to the zero isocontour, adaptive subdivision,
edge collapse and edge swapping [34]. Kobbelt et al. [35]
used related ideas to wrap a mesh with subdivision
connectivity around an arbitrary one, but had difficulty
projecting nodes in one step, emphasizing the need for
slower evolution. To improve robustness, Wood et al.
[36] replaced the spring forces with a modified Laplacian
smoothing restricted to the tangential direction. Ohtake
and Belyaev [37] advocated moving the triangle cent-
roids to the zero isocontour instead of the nodes, and
matching the triangle normals with the implicit surface
normals.

Although we derive motivation from this work, we
note that our problem is significantly more difficult since
these authors move their mesh in a direction normal to
the surface, which is orthogonal to their measure of
mesh quality (shapes of triangles tangent to the surface).
When we move our mesh normal to the surface,
it directly conflicts with the quality of the surface

tetrahedra. In [38], de Figueiredo et al. evolved a volu-
metric mass spring system in order to align it with (but
not compress it to) the zero isocontour, but the measure
of mesh quality was still perpendicular to the evolution
direction since the goal was to triangulate the zero iso-
contour. Later, however, Velho et al. [39] did push in a
direction conflicting with mesh quality. They deformed a
uniform-resolution Freudenthal lattice to obtain tetra-
hedralizations using a mass spring model, but were re-
stricted to simple geometries, mostly due to the inability
to incorporate adaptivity.

In two spatial dimensions, Gloth and Vilsmeier [40]
also moved the mesh in a direction that opposed the
element quality. They started with a uniform Cartesian
grid bisected into triangles, threw out elements that
intersected or were outside the domain, and moved
nodes to the boundary in the direction of the gradient of
the level set function using traditional smoothing, edge
swapping, insertion and deletion techniques on the mesh
as it deformed.

Human modeling is a popular application of mesh-
ing algorithms. Researchers in surgical simulation,
medical device design and biomechanics of movement
all require detailed models of the human form. Given
the complexity of biological materials, these models are
most often obtained from actual subjects via non-
invasive scanning technologies or instead by dissection
[41–44]. However, this data is usually voxelized or
pixelized and must be converted into a more suitable
format. In [44] and [41] MRI images were manually
labeled to create volumetric muscle meshes for accurate
muscle length and moment arm computations for gait
correction surgery diagnosis. Ref. [43] used the seg-
mented Visible Human data set to create volumetric
muscle from which they designed simplified muscle
models for computing accurate muscle paths in the
upper extremity.

3 The BCC lattice

The first step in our meshing algorithm is to cover a
suitable bounding box of the object with a uniform
lattice. To select the particular lattice, we turn our
attention to the physical world and use a body-centered
cubic (BCC) tetrahedral lattice. This mesh has numerous
desirable properties and is an actual crystal structure
ubiquitous in nature. It appears in substances with
vastly different material properties such as lithium, a soft
malleable metal, and iron which is much harder and
more rigid, see e.g. [11]. Other spatial tilings are possible.
Üngör [45] provides a number of these including tilings
using acute tetrahedra.

The BCC lattice consists of nodes at every point of a
Cartesian grid along with the nodes located at the cell
centers. These node locations may be viewed as
belonging to two interlaced grids. The set of edges in
the BCC lattice comprises the edges of both of these
interlaced grids. Additional edge connections are also

4

made between a node and its eight nearest neighbors in
the other grid. See Fig. 1 where these connections are
depicted in red and the two interlaced grids are de-
picted in blue and in green. The BCC lattice is the
Delaunay complex of the interlaced grid nodes, and
thus possesses all properties of a Delaunay tetrahed-
ralization. Moreover, all the nodes are isomorphic to
each other (and in particular have uniform valence),
every tetrahedron is congruent to the others, and the
mesh is isotropic (so the mesh itself will not errone-
ously induce any anisotropic bias into a subsequent
calculation). The BCC lattice is structured, which may
be exploited in preconditioned iterative solvers, multi-
grid algorithms, etc. and may allow reduced computa-
tional and memory requirements.

A significant advantage of the BCC mesh is that it is
composed entirely of subdivision invariant tetrahedra.
Meshes based on this lattice are therefore easily refined
either initially or during the calculation. Each regular
BCC tetrahedron can be refined into eight tetrahedra,
shown in red in Fig. 2, with a one to eight (1:8) refine-
ment. When the shortest of the three possible choices for
the edge internal to the tetrahedron is taken, the newly
formed tetrahedra are exactly the BCC tetrahedra that
result from a mesh with cells one half the size. Thus,
these eight new tetrahedra are geometrically similar to
the tetrahedra of the parent mesh and element quality is
guaranteed under this regular 1:8 refinement. Fuchs
demonstrates that the BCC tetrahedron is the subdivi-
sion invariant tetrahedron which differs from an equi-
lateral one as little as possible [24].

4 A red green hierarchy

For many applications, computation time and memory
restrictions necessitate adaptivity. In particular, volu-
metric simulations do not require and cannot afford a
uniformly high resolution mesh. Many material response
phenomena such as contact and fracture show highly
concentrated stress patterns, often near high surface
curvature, outside of which larger tetrahedra are
acceptable. In addition, many applications such as vir-
tual surgery can tolerate lower accuracy in the unseen
interior of a body. Thus, we require the ability to gen-
erate adaptive meshes.

As the BCC lattice is built from a Cartesian grid, a
natural approach to adaptivity is to build its analog based
on an octree. We implemented this by adding body cen-
ters to the octree leaves, after ensuring the octree was
graded with no adjacent cells differing by more than one
level. The resulting BCC lattices at different scales were
then patched together with special case tetrahedra. For
more on octrees in mesh generation, see e.g. [46, 47, 23]
(none of which use our multilevel BCC mesh).

However, we found that red green refinement is more
economical, simpler to implement, and more flexible, see
e.g. [48–50]. The general idea of a red green hierarchy is
to regularly (red) refine any tetrahedron where more
resolution is required, and then irregularly (green) refine
tetrahedra to restore the mesh to a valid simplicial
complex. The initial BCC lattice tetrahedra are labelled
red, as are any of their eight children obtained with 1:8
subdivision. Performing a red refinement on a tetrahe-
dron creates T-junctions at the newly-created edge
midpoints where neighboring tetrahedra are not refined
to the same level. One strategy to deal with these
T-junctions is to redistribute the forces on them to the
active computational nodes and to enslave their motion
[51]. However, we choose the more traditional approach
that eliminates them. The red tetrahedra with T-junc-
tions are irregularly refined into fewer than eight chil-
dren by introducing special case children (fewer than
eight). These children are labelled green, and are of
lower quality than the red tetrahedra that are part of the
BCC mesh. A green tetrahedron is never refined. When
higher resolution is desired in a region occupied by a
green tetrahedron, the entire family of green tetrahedra
is removed from its red parent, and the red parent is
refined regularly to obtain eight red children that can
undergo subsequent refinement.

A red tetrahedron that needs a green refinement can
have between one and five midpoints on its edges (in the
case of six we do red refinement and in the case of zero
nothing needs to be done). We only allow the green
refinements shown in Fig. 2. We add extra edge mid-
points if necessary to arrive at one of these allowable
configurations. Specifically, we only allow green tetra-
hedra with one, two, or three edges bisected. In the case
of two bisected edges we require that these two edges are
not incident to a common vertex. If they are, we add a

Fig. 1 a portion of the BCC lattice. The blue and the green
connections depict the two interlaced grids, and the eight red
connections at each node lace these two grids together

Fig. 2 The standard red refinement (left) produces eight children
that reside on a BCC lattice that is one half the size. We allow three
types of green refinement (depicted in green)

5

third midpoint. Also in the case of three bisected edges
we require the three bisected edges to be on a common
face of the tetrahedron. These restrictions (where all
triangles are either bisected or quadrisected) smooth the
gradation further and guarantee higher quality green
tetrahedra. While there can be a cascading effect as the
extra midpoints may induce more red or green refine-
ments, it is a small price to pay for the superior mesh
quality and seems to be a minor issue in practice.

Any criteria may be used to drive refinement, and we
experimented with the geometric rules described in the
next section. A significant advantage of the red green
framework is the possibility of refinement during simu-
lation based on a posteriori error estimates. Note that the
lower quality green tetrahedra can be replaced by finer red
tetrahedra which admit further refinement. However, one
difficulty we foresee is in discarding portions of green
families near the boundary (see Sect. 6), since part of the
red parent may be missing. To further refine this tetra-
hedron, the green family must be replaced with its red
parentwhich can be regularly refined, then some of the red
children need to be discarded and the others must be
compressed to the boundary (see Sects. 7, 8). A simpler
but lower quality alternative is to arbitrarily relabel those
green boundary tetrahedra that are missing siblings as
‘‘red’’, allowing them to be directly refined. We plan to
address this issue in future work.

5 Level set geometry

Medical data such as the National Library of Medicine’s
Visible Human data set often comes in volumetric form
[1]. Thus, it is natural to devise a mesh generation
technique that generates a volumetric mesh from this
data. The data is first converted into a level set using
straightforward and efficient algorithms such as a fast
marching method [52, 53]. Level sets arise naturally in
other applications as well. They are used as a design
primitive in CAGD packages. They are also used as a
technique to generate a surface from scattered point
data [54]. In this section, we briefly review some basic
properties of level sets and then describe how they are
used as inputs to our mesh generation algorithm.

A level set defines the object implicitly with a scalar
function u(x) defined over all of space. Its interior is
the set {x:u(x) < 0}. Similarly, its exterior is the set
{x:u(x) > 0} and its boundary is {x:u(x)=0}. We fur-
ther require that u(x) be a signed distance function, i.e.,
||�u||=1. A signed distance function provides access to
several useful geometric primitives. For example, the
distance of a point to the closest point on the object
boundary is |u|, and a unit normal, N, is simply

N ¼ r/
r/k k ¼ r/;

where the second of the two equalities comes from
||�u||=1.

In general, u is not defined analytically, but is dis-
cretized on either a uniform Cartesian grid [55] or an
octree [56, 57]. In the octree case, we constrain values of
fine grid nodes at gradation boundaries to match the
coarse grid interpolated values, see e.g. [58]. Note that
this is related to the node enslavement ideas of [51]. If a
cell is adjacent to a coarser level cell, the corresponding u
values are reset to be the value that is interpolated from
the values at the coarser level of the octree. For example,
if an edge of a coarser cell has values ua and ub at its
endpoints, and this edge has a node at its midpoint be-
cause it also abuts a finer level of the octree, then u
at the midpoint is constrained to the value umidpoint=
(ua+ub)/2, which ensures a continuous level set function
between different gradation levels of the octree.

When generating a tetrahedron mesh, if the signed
distance function has a resolution much higher than that
of our desired mesh, we apply motion by mean curvature
to smooth the high frequency features. The mean cur-
vature of a level set is defined as

j ¼ r � N ¼ r/
r/k k ¼ r/;

where, again, the final equality follows from ||�u||=1.
Motion by mean curvature is implemented with a
velocity of V=� b j N (b>0), i.e. the level set evolution
equation is

/t ¼ bjkr/k:

After applying motion by mean curvature, u is no longer
a signed distance function, so we reinitialize u by iter-
ating the equation

/s þ Sð/oÞðkr/k � 1Þ ¼ 0;

in fictitious time, s, until a steady state is reached [55].
Here uo represents the original values of u at s=0 and
S(x) is a smoothed sign function. For our level set pre-
processing, we interleave a reinitialization procedure
with every few steps of motion by mean curvature.

For our mesh generation procedure, the level set is
used to guide both the refinement phase and the com-
pression phase of the algorithm. To obtain a finer mesh
near the boundary, one simply refines tetrahedra that
include portions of the interface where u=0. If a tet-
rahedron has nodes with positive values of u and nodes
with negative values of u, it obviously contains the
interface and can be refined. Otherwise, the tetrahedron
is guaranteed not to intersect the interface if the mini-
mum value of |u| at a node is larger than its longest edge
length (tighter estimates are available, of course). The
remaining cases are checked by sampling u appropri-
ately (at the level set grid size Dx), allowing refinement if
any sample is close enough to the interface (|u|<Dx).
Figure 3 shows a sphere adaptively refined near its
boundary. Note how the interior mesh can still be rather
coarse.

One may also wish to adaptively refine in regions of
high curvature. Note that the mean curvature,

6

j=(k1+k2)/2, is the average of the principal curvatures,
k1 and k2. Although this is the simplest curvature mea-
sure to compute, it is an insufficient measure since it can
be small at saddle points where positive and negative
curvatures cancel. Instead we use |k1|+|k2|. The princi-
pal curvatures are computed by forming the Hessian,

H ¼
/xx /xy /xz
/xy /yy /yz
/xz /yz /zz

0
@

1
A;

and projecting out the components in the normal
direction via the projection matrix P=I � NNT. Then
the eigenvalues of PHP/ ||� u || are computed. The zero
eigenvalue is discarded as corresponding to the eigen-
vector N, and the remaining two eigenvalues are k1 and
k2, see e.g. [59]. To detect whether a tetrahedron con-
tains regions of high curvature, we sample at a fine level
and check the curvature at each sample point. Figure 4
shows a torus where the inner ring is refined to higher
resolution even though the principal curvatures there
differ in sign.

6 Selecting a candidate mesh

This section describes how we use the previously dis-
cussed BCC lattice, red green hierarchy, and input level
set to generate a candidate mesh for the object that is
ready for the final compression phase of the algorithm.
Here the final topology of the mesh is selected. The final
stages of the algorithm only adjust the positions of the
nodes, not the connectivity.

To obtain the final topology of the mesh, we first cover
an appropriately sized bounding box of the object with a
coarse BCC mesh. Then we use a conservative discard
process to remove tetrahedra that are guaranteed to lie
completely outside of the zero isocontour: tetrahedrawith
four positive u values all larger than the maximum edge
length are removed. Any such tetrahedron is guaranteed
to lie completely outside of the object.

In the next step, the remaining tetrahedra are refined
according to any user defined criteria, such as indicator
variables or geometric properties. We limit refinement to
a user-specified number of levels. We have experimented
with using both the magnitude of u and various mea-

sures of curvature as discussed in the previous section.
Using simply the magnitude of u produces large tetra-
hedra deep inside the object and a uniform level of
refinement around the surface, which can be useful since
objects interact with each other via surface tetrahedra. A
more sophisticated method uses the surface principal
curvatures, better resolving complex geometry and al-
lows for more robust and efficient simulation when
subject to large deformation. We refine any tetrahedron
near the interface if its maximum edge length is too large
compared to a radius of curvature measure,

k1j j

indicating an inability to resolve the local geometry.
We refine to a user-specified number of levels, resolving
T-junctions in the red green framework as needed.

From the adaptively refined lattice we select a subset
of tetrahedra that closely matches the object. However,
there are specific topological requirements necessary to
ensure a valid mesh that behaves well under deforma-
tion:

– the boundary must be a manifold
– no tetrahedron may have all four nodes on the

boundary
– and no interior edge may connect two boundary

nodes.

If the triangle mesh that is the boundary of the tet-
rahedra is non-manifold, it is impossible for it to match
the boundary of the object which is necessarily manifold.
The remaining two conditions ensure that the mesh is
robust to subsequent deformations. Boundary forces can
readily crush tetrahedra with all nodes on the boundary.
Flattening or indenting the portion of the surface where
there is a tetrahedron with all four nodes on the
boundary is impossible without actually crushing or
inverting it. Similarly, an interior edge (i.e. one that is
not a segment of the boundary mesh) with both end-
points on the boundary makes it impossible to indent the
surface between those two nodes.

Our strategy to satisfy these conditions is to select all
the tetrahedra incident on a set of ‘‘enveloped’’ nodes
that are sufficiently interior to the zero isocontour. This
guarantees that every tetrahedron is incident on at least
one interior node (thus automatically satisfying the

Fig. 3 Tetrahedral mesh of a sphere (18 K elements). The cutaway
view illustrates that the interior mesh can be fairly coarse even if
high resolution is desired on the exterior boundary

Fig. 4 Tetrahedral mesh of a torus (8.5 K elements). Using the
principal curvatures increases the level of resolution in the inner
ring

7

second condition above). Specifically, we envelop the set
of nodes where u < 0 that have all their incident edges
at least 25% inside the zero isocontour as determined by
linear interpolation of u along the edge. This also tends
to avoid the bad interior segments and encourage a
manifold boundary for reasonably convex regions, i.e.
regions where the geometry is adequately resolved by the
nodal samples.

Additional processing is used to guarantee appro-
priate topology even in regions where the mesh may be
under-resolved. In a first pass, we bisect any remaining
interior edge and all edges incident on non-manifold
nodes. The red green procedure is then used to remove
all T-junctions. If any refinement is necessary, we
recalculate the set of enveloped nodes and their incident
tetrahedra as above. In subsequent passes, any non-
manifold node and the deeper (i.e. smaller u) end of any
interior segment are added to the enveloped set. As an
option, we may add any boundary node with surface
degree three to the set of enveloped nodes (if these nodes
were to remain, the final surface mesh would typically
contain angles over 120�). We check that these additions
do not create more problems, continuing to add
boundary nodes to the set of enveloped nodes until we
have met all requirements. Typically at most two passes
are necessary. This quickly and effectively results in a
candidate mesh of high quality elements that approxi-
mates the object fairly closely (from the viewpoint of an
initial guess for the compression phase of the algorithm)
and that has connectivity well suited for large defor-
mation simulations. See Fig. 5 for an example candidate
mesh.

7 Physics based compression

Now that we have a candidate mesh with nicely shaped
elements that closely matches the boundary of the ob-
ject, it remains to compress the boundary of the tetra-
hedron mesh to the zero isocontour of the level set. If the
mesh boundary were simply snapped to the boundary of
the signed distance function, the element quality would
be severely degraded. To ameliorate this, we adjust the
positions of the interior nodes to compensate for the
motion of the boundary and to maintain mesh quality.
Here we simulate the object as an elastic body with
boundary conditions that drive the mesh boundary to
conform to the level set boundary.

To this end, we outfit our candidate mesh with a
deformable model based on either masses and springs or
the finite element method. The two techniques differ in
how the external forces are computed, but both have
equilibrium positions that try to maintain high quality
tetrahedra.

The compression is driven using either a force or
velocity boundary condition on the surface nodes.
Applying forces is more robust as it allows the interior
mesh to push back, resisting excessive compression while

it seeks an optimal state. However, if the internal resis-
tance of the mesh becomes larger than the boundary
forces, the boundary will not be matched exactly. Thus,
instead of adjusting forces, we switch from force to
velocity boundary conditions after an initial stage that
carries out most of the needed compression.

At each boundary vertex, we choose the direction of
the force or constrained velocity component as the
average of the incident triangles’ normals. No force (or
velocity constraint) is applied in other directions so the
mesh is free to adjust itself tangentially. The magnitude
of the force or velocity constraint is proportional to the
signed distance from the level set boundary. Specifically,
the magnitude is scaled by u, so the further the node is
from the zero isocontour, the harder it is driven towards
it. Also, the direction switches as the zero set is crossed
because u is negative inside and positive outside. Using
the mesh normal rather than the implicit surface normal
is important because it actually tends to smooth out
jagged parts of the candidate mesh, whereas �u may
cause the elements to fold over themselves.

Both physics based compression techniques calculate
a set of forces that are applied to the nodes. Then,
Newton’s second law F=ma, must be integrated for-
ward in time. This is done using a slightly-modified
version of the central Newmark scheme (see e.g., [60,
61]). The elastic forces (those that do not depend on
velocity) are treated explicitly, whereas the damping
(velocity-dependent) forces are treated implicitly. Let x
represent the node positions, v their velocities, and a
their accelerations. Then, the time-stepping proceeds as
follows:

– vn+1/2=vn+((Dt)/2)a(tn,xn,vn+1/2) (implicit update)
– Modify vn+1/2 in place to limit strain, strain rate, etc.

as described below
– xn+1=xn+Dtvn+1/2 (explicit update)
– vn+1=vn+((Dt)/2)(a(tn,xn,vn)+a(tn+1,xn+1,vn+1))

(implicit update)

Fig. 5 Candidate mesh of the cranium

8

– Modify vn+1 in place to limit strain, strain rate, etc. as
described below.

This time-stepping scheme is basically a second order
accurate leap frog scheme on position combined with a
second order accurate trapezoidal rule for velocity. It is

stable for Dt\O Dx
ffiffiffiffiffiffiffiffiffiffi
q=ke

p� �
; where q is the material

density and ke is the material stiffness. In particular, it
circumvents stringent quadratic, i.e. O(Dx2), time step
restrictions based on the damping forces. Moreover,
since all our damping forces are linear and symmetric
negative semi-definite, we can use a conjugate gradient
solver for the implicit step.

The reason for the first implicit time step on velocity
is that using an explicitly-half-stepped velocity for the
position update may not be monotone, even though it is
stable. This may introduce spurious oscillations in cal-
culations which are mollified by using the implicit
velocity at time tn+1/2 for the position update instead.
For more details see [61].

In the second and fifth steps of the integration algo-
rithm, we use a velocity modification procedure to
artificially limit the maximum strain of a tetrahedral
altitude to 50%, and to artificially limit the strain rate of
a tetrahedral altitude to 10% per time step [62]. Since
altitudes do not connect two mesh nodes together, all of
these operations are carried out by constructing a virtual
node at the intersection point between an altitude and
the plane containing the base triangle. The velocity of
this point is calculated using the barycentric coordinates
and velocities of the triangle, and the mass is the sum of
the triangle’s nodal masses. The resulting impulses on
this virtual node are then redistributed to the triangle
nodes, conserving momentum.

The time step restriction imposed for stability is less
restrictive for meshing as material parameters can be
taken to be considerably softer than during most prac-
tical deformable object simulations.

7.1 Mass spring models

The use of springs to aid in mesh generation dates back
at least to Gnoffo, who used them to move nodes for two
dimensional fluid dynamics calculations [63, 64]. Löhner
et al. solved the compressible Euler equations using
variable spring stiffnesses to distribute the error evenly
over the solution domain [65]. Later, [66] used varia-
tional principles analogous to the energy of a system of
springs to achieve the same goal. Other authors also
measured the error of a CFD calculation along edges of
a mesh and then used a spring network to equidistribute
these errors over the edges [67–69]. Bossen and Heckbert
point out that inter-nodal forces which both attract and
repel (like springs with nonzero rest lengths) are superior
to Laplacian smoothing where the nodes only attract
each other [70]. Thus, we use nonzero rest lengths in our
springs, i.e. simulating the mesh as if it were a real
material. All edges are assigned linear springs obeying

Hooke’s law, and the nodal masses are calculated by
summing one quarter of the mass of each incident tet-
rahedron.

Edge springs are not sufficient to prevent element
collapse. As a tetrahedron gets flatter, the edge springs
provide even less resistance to collapse. Various methods
to prevent this have been introduced, e.g. [71] proposed
a pseudo-pressure term, [72] used an elastic (only, i.e. no
damping) force emanating from the barycenter of the
tetrahedron. [73] showed that these barycentric springs
do not prevent collapse as effectively as altitude springs.

In our model, every tetrahedron has four altitude
springs, each attaching a tetrahedron node to a fictitious
node on the plane of its opposite face. Then, the elastic
and damping forces are calculated just as for a normal
spring. Suppose that for a given tetrahedron, xi and vi
for i=1,2,3,4, represent the positions and velocities of
the four nodes. Consider the altitude from the fourth
node as the apex of the tetrahedron. Let n̂ be a unit
normal to the face determined by x1,x2,x3. Also, let
w1,w2,w3 be the barycentric coordinates of xint, the
projection of x4onto the plane determined by x1,x2,x3. In
particular,

xint ¼ ðI � n̂n̂T Þx4 ¼ w1x1 þ w2x2 þ w3x3:

Similarly, we have vint=w1v1+w2v2+w3v3. Then, the
elastic force due to this altitude spring is

f ðeÞ ¼ ke

lo
ðjjx4 � xintjj � loÞn̂

and the damping force is

f ðdÞ ¼ kd

lo
n̂n̂T ðv4 � vintÞ;

where lo is the restlength of the altitude, ke is the material
stiffness and kd is the material damping parameter.

These forces must then be distributed among the
tetrahedron nodes. This is done according to the bary-
centric weights of the fictitious node. The elastic forces
are fi

(e)=wif
(e) for i=1,2,3 and f4

(e)=�f (e), and the
damping forces are similarly redistributed fi

(d)=wif
(d)

for i=1,2,3 and f4
(d)=�f (d). Note that an analysis sim-

ilar to that carried out in [61] reveals that, up to scaling,
any other forces used (i.e. apart from the normal
direction with barycentric weights) must either violate
conservation of linear and angular momentum, or must
act to deform the base triangle.

This model has damping forces that are linear in the
nodal velocities,

f ðdÞ1

f ðdÞ2

f ðdÞ3

f ðdÞ4

0
BBB@

1
CCCA ¼

�kd

lo

w1n̂
w2n̂
w3n̂
�n̂

0
BB@

1
CCA

w1n̂
w2n̂
w3n̂
�n̂

0
BB@

1
CCA

T v1
v2
v3
v4

0
BB@

1
CCA:

Moreover, because the damping matrix is a scaled
outer product matrix, the damping forces are symmetric

9

and negative semi-definite in the nodal velocities. This
allows the damping terms to be integrated using a fast
conjugate gradient (CG) solver for implicit integration.
For additional efficiency, we compute and cache the
position-dependent components of the damping forces
that are constant throughout the CG iterations. Optional
accelerations for altitude springs include the ability to use
only the shortest altitude spring in a given tetrahedron or
the ability to only use altitude springs that are com-
pressed beyond a threshold of their rest lengths. Note
that these acceleration structures may also be computed
and cached before the CG iterations.

When simulating a deformable object with a mass
spring network, the material behavior should be inde-
pendent of mesh refinement. The frequency of a spring
scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ke=mlo

p
(note our ‘‘spring constant’’ is ke/lo),

so the sound speed scales as lo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ke=mlo

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kelo=m

p
:

Requiring the sound speed to be a material property
implies that ke must scale as m/lo. Thus, we set the spring
stiffness for an edge spring using the harmonic average
of the masses of the two nodes at the ends of the spring
and its restlength. Similarly, for altitude springs we use
the harmonic average of the nodal mass and the triangle
mass.

7.2 Finite element method

Another physics based technique for this compression
phase is to discretize the equations of continuum
mechanics with the finite element method. The equations
of elasticity are a more natural and more flexible way of
encoding a materials response to distortion. In discret-
ized finite element form, they resist the three-dimen-
sional distortion of elements. A big advantage of finite
element techniques over mass spring networks is the
versatility provided by the framework. Finite elements
allow for an arbitrary constitutive model. In this section
we describe the use of finite elements during this com-
pression phase of our algorithm as well as discuss the
constitutive model implied by the altitude springs de-
scribed in the previous section.

While any number of constitutive models could be
used, an interesting strategy is to use the real constitutive
model of the material when generating its mesh. In this
sense, one might hope to predict how well the mesh will
react to subsequent deformation during simulation, and
possibly work to ensure simulation robustness while
constructing the mesh.

The simplest example of a hyperelastic material is
the St. Venant-Kirchhoff model, or linear elasticity.
For this, we use the nonlinear Green strain tensor to
measure the deformation of the object. Let F=¶x / ¶u
be the deformation gradient where x(u) represents a
point’s position in world coordinates as a function of
its coordinates in material coordinates. Then, the
Green Strain is defined via G=1/2(FTF � I). Isotropic,
linearly-elastic materials have a stress strain relation-
ship of the form

Se ¼ ktrðGÞI þ 2lG

where k and l are the Lamé coefficients. Damping stress
is modeled similarly with Sd=atr(m) I+2b m, where
m=¶G/¶t is the strain rate. The total second Piola-Kir-
chhoff stress tensor is then S=Se+Sd.

Although simple, St. Venant-Kirchhoff elasticity is
not very practical outside of the small strain regime [74].
We have found that a more robust constitutive model
for large deformation simulations is the one for neo-
Hookean materials. For this constitutive model, it is
more natural to use the left Cauchy-Green tensor
b=FFT to measure the deformation. For neo-Hookean
materials, the Cauchy stress is

r ¼ l
J
ðb� IÞ þ k ln J

J
I ;

where J = detF is the relative volume change (i.e. it is
the ratio between the volume of the deformed tetrahe-
dron to the volume of the undeformed tetrahedron).
This constitutive model increases the resistance to
deformation as an element undergoes an excessive
change in volume.

The neo-Hookean hydrostatic pressure term ((k lnJ/
J)I) little effect on deformations that distort an element’s
quality (i.e aspect ratio, min and max dihedral angles)
while causing minimal change in volume. Altitude
springs work more efficiently to preserve an element’s
quality. The finite volume formulation of [75] allows us
to interpret the forces created by altitude springs as an
equivalent internal stress of the form

r ¼
X4
i¼1

3fi

Ai
ninT

i ;

where Ai are the areas of the faces of a given element, ni
are unit vectors in the directions of the tetrahedron
altitudes and fi are the magnitudes of the altitude spring
forces (see appendix �1). This is a more attractive re-
sponse to element deformation than the neo-Hookean
hydrostatic pressure because the stress works to retain
mesh quality by preserving shape rather than volume.

To discretize these constitutive models, we use finite
elements with linear basis functions in each tetrahedron.
The displacement of material is a linear function of the
tetrahedron’s four nodes. >From the nodal locations
and velocities we obtain the Jacobian of this linear
mapping, F, and its derivative, _F ;and use them to com-
pute the strain and the strain rate, which in turn are used
to compute the stress tensor. Finally, because the stress
tensor encodes the force distribution inside the material,
we can use it to calculate the force on the nodes. See [75]
for the specific finite volume formulation that we use.

8 Optimization based compression

As an alternative to—or as an additional step before or
after—physical simulation, one can directly optimize

10

mesh quality metrics such as aspect ratios. This does not
provide the same feedback on potential problems for
subsequent simulation, but can give better quality
measures since they are directly pursued with each
movement of a node. Coupled with our robust connec-
tivity (see Sect. 6), this produces excellent results. Freitag
and Ollivier-Gooch [76] demonstrated that optimizing
node positions in a smoothing sweep, i.e. placing one
node at a time at a location that maximizes the quality of
incident elements, is superior to Laplacian smoothing in
three spatial dimensions. We combine this optimization
sweeping with boundary constraints by first moving
boundary nodes in the incident triangles’ average nor-
mal direction by an amount proportional to the local
signed distance value. Then the optimization is con-
strained to only move boundary nodes in the tangential
direction.

It is important to move boundary nodes gradually
over several sweeps just as with physical simulation,
since otherwise the optimization tends to gets stuck in
local extrema. This could be overcome with more global
optimization techniques than our simple node-by-node
greedy sweep, but it appears to be simpler, more robust,
and faster to simply use several (roughly ten) greedy
sweeps to match the boundary. We also found it helpful
to order the nodes in the sweep with the boundary nodes
first, their interior neighbors next, and so on into the
interior (this ordering is determined by a simple breadth-
first search from the boundary nodes). Then we sweep in
the reverse order and repeat. This efficiently transfers
information from the boundary compression to the rest
of the mesh. Typically, we do five sweeps that begin by
moving the boundary nodes 1/3 of the signed distance in
the mesh normal direction, then finish off with five to ten
sweeps where boundary nodes are moved the full signed
distance to ensure a tight boundary fit. To speed up the
sweeps, we do not bother moving nodes that are incident
on tetrahedra of sufficiently high quality relative to the
worst tetrahedron currently in the mesh. In the initial
sweeps we end up only optimizing roughly 10% of the
nodes, and in the final sweeps we optimize 30%-50% of
the nodes (Figure 6, 7).

While more efficient gradient methods may be used
for the nodal optimization, we found a simple pattern
search (see e.g. [77]) to be attractive for its robustness,
simplicity of implementation, and flexibility in easily
accommodating any quality metric including non-
smooth max/min metrics. For interior nodes we used
seven well spread-out directions in the pattern search.
We implemented the normal direction constraint on
boundary nodes simply by choosing five equally spaced
pattern directions orthogonal to the average mesh nor-
mal at the node, thus not allowing the optimization to
consider nodal positions outside of the tangent plane.
The initial step size of the pattern search was .05 times
the minimum distance to the opposite triangle in any
tetrahedron incident on the node (to avoid wasting time
on steps that crush elements). After four ‘‘strikes’’
(searches at a given step size that yielded no improve-

ment in quality, causing the step size to be halved) we
move to the next node. For interior nodes we use as a
quality metric the minimum of

a
L
þ 1

4
cosðhM Þ

over the incident tetrahedra, where a is the minimum
altitude length, L is the maximum edge length, and hM is
the maximum angle between face normals. For surface
nodes we add to this an additional measure of the
quality of the incident boundary triangles, the minimum
of

at

Lt
þ 1

wM

where at is the minimum triangle altitude, Lt is the
maximum triangle edge, and wM is the maximum tri-
angle angle. We found that including the extra terms
beyond the tetrahedron aspect ratios helped guide the
optimization out of local minima and actually resulted
in better aspect ratios. We have not performed a detailed
study of which metrics perform better, and thus expect
the optimization results could be improved in general
and especially for particular applications where a spe-
cific metric is important (e.g. geometry factors arising
from finite element error analysis).

9 Discussion

We demonstrate several examples of tetrahedral meshes
that were generated with our algorithm. The results for
all three compression techniques are comparable, with
the FEM simulations taking slightly longer (ranging
from a few minutes to a few hours on the largest meshes)
than the mass spring methods, but produce a slightly
higher quality mesh. For example, the maximum aspect
ratio of a tetrahedron in the cranium generated with
finite elements is 6.5, whereas the same mesh has a
maximum aspect ratio of 6.6 when the final compression
is done using a mass spring model. Mass spring net-
works have a long tradition in mesh generation, but a

Fig. 6 Tetrahedral mesh (left) and cutaway view (right) of a
cranium (80K elements)

11

finite element approach offers greater flexibility and
robustness that we anticipate will allow better three-
dimensional mesh generation in the future. Currently the
fastest method is the optimization based compression,
roughly faster by a factor of ten.

We track a number of quality measures including the
maximum aspect ratio (defined as the tetrahedron’s
maximum edge length divided by its minimum altitude),
minimum dihedral angle, and maximum dihedral angle
during the compression phase. The maximum aspect
ratios of our candidate mesh start at about 3.5 regardless
of the degree of adaptivity, emphasizing the desirability
of our combined red green adaptive BCC approach.
This number comes from the green tetrahedra (the red
tetrahedra have aspect ratios of

ffiffiffi
2
p

). In the more com-
plicated models, the worst aspect ratio in the mesh tends
to increase to around 6–8 for the physics based com-
pression methods and to around 5–6 for the optimiza-
tion based compression.

For the craniummodel, the physics based compression
methods gave a maximum aspect ratio of 6.5 and average
aspect ratio of 2.1, with dihedral angles bounded between
17� and 147�. The dragon mesh has a maximum aspect
ratio of 7.6 and an average aspect ratio of 2.2, with
dihedral angles bounded between 13� and 154�. The
buddha model was more challenging, giving a worst as-
pect ratio of 8.1 and average of 2.3, and dihedral angles
between 13� and 156�. Using optimization on the same
examples yielded better results, listed inTable 1, wherewe
have also listed a measure of adaptivity, the ratio of the
longest edge in the mesh to the shortest. The aspect ratios
all drop below 6, i.e. less than twice the initial values.

Of course, these results are dependent on the types
and strengths of springs, the constitutive model used in
the FEM, and the quality measures used in the optimi-
zation based technique. It is easier to achieve good
quality with the optimization technique since one simply
optimizes based on the desired measure, as opposed to
the physics based techniques where one has to choose
parameters that indirectly lead to a quality mesh.

However, we stress that the measure of mesh quality is
the measure of the worst element at any point of dy-
namic simulation. It does little good to have a perfect
mesh that collapses immediately when the simulation
begins. For meshes that undergo little to no deformation
(fluid flow, heat flow, small strain, etc.) this quality
measure is either identical to or very close to that of the
initial mesh. However, for large deformation problems
this is not the case, and the physics based compression
techniques hold promise in the sense that the resulting
mesh may be better conditioned for simulation. We be-
lieve an interesting possibility for the future would be to
consider hybrid approaches that use the physics based
compression algorithms to guide an optimization pro-
cedure to avoid local minima.

10 Example: muscle simulation

Musculoskeletal simulation is an active research area in
biomechanics of movement, biomedical device design,
surgery simulation and computer graphics. We demon-
strate the robustness of our meshing algorithm by sim-
ulating volumetric, deformable skeletal muscle. Our
meshing algorithm allows us to create high resolution
muscle, tendon and bone geometries from the Visible
Human data set [1]. The data for these biological
materials are originally voxelized in the form of a

Fig. 7 Tetrahedral mesh and
cutaway view of a model
Dragon (500 K elements) and
Buddha (800 K elements)

Table 1 Quality measures for the optimization example meshes.
The aspect ratio is defined as the longest edge over the shortest
altitude. The max/min edge length ratio indicates the degree of
adaptivity

Example Cranium Dragon Buddha

max aspect ratio 4.5 5.3 5.9
avg aspect ratio 2.3 2.3 2.3
min dihedral 18� 16� 16�
max dihedral 145� 150� 150�
max/min edge 94 94 100

12

segmented series of consecutive images that can be used
to create a level set description of each tissue geometry.
The level set representation of tissue and bone geometry
is particularly useful for correcting many problems
inherent in the data. The voxelized data is considerably
aliased, but this can be repaired with a few time steps of
motion by mean curvature in most cases. Also, level sets
are very well suited for constructive solid geometry
operations. Much of the segmented data that we have is
incomplete due to the difficulty of the segmentation
process. However, using basic geometric primitives we
have been able to rebuild parts of tissues with CSG using
anatomical texts as a reference [8]. Once a satisfactory
implicit representation has been obtained, it can then be
used with either the dynamic or optimization based
algorithm. Figure 9 shows adaptive resolution muscles,
tendons and bones in the upper extremity that were
created using dynamic meshing with a finite element
constitutive model. The bones are modeled as rigid
bodies and were created using the extension of our
algorithm to surfaces (see Sect. 11).

Before any muscle simulation can be performed, a
kinematic structure for the skeleton must be developed to
set boundary conditions at the tendonous muscle
attachments. The joints in the shoulder girdle are partic-
ularly intricate and involve a complex coupling of degrees
of freedom through the glenohumeral and acromiocla-
vicular joints. Our meshing algorithm allows us to create
models of the bones that resolve sub-millimeter anatom-
ical detail. This resolution allows us to make use of
landmarks on the bone geometries that can be used to set
up local coordinate frames as was done in [42].

We simulate both contraction of the right biceps and
triceps with a state-of-the-art biomechanical model for
hyperelastic material response, neurological activation
level and fiber anatomy. Muscle is a fibrous structure
composed of fasicles embedded in a matrix of isotropic
material [78], and we use a nonlinear transversely-iso-
tropic quasi-incompressible constitutive model [75, 79,
80] to represent this structure during simulation. The
hyperelastic strain energy associated with this model is a
sum of three terms: the first term represents the incom-
pressibility of biological tissues and penalizes volume
change; the second term represents the embedding ma-
trix; and the third term is the transversely-isotropic
component that models muscle fiber contraction and is
based on the standard muscle force/length curve [81].
This model can be used in both muscle and tendon,
however, tendon tends to be as much as an order of
magnitude stiffer and muscle has an additional con-
tractile force added to the fiber component that depends
on the muscle activation level.

In addition to activation level, muscle (and tendon)
models need information about the local fiber direction.
Muscle fiber arrangements vary in complexity from
being relatively parallel and uniform to exhibiting sev-
eral distinct regions of fiber directions. We use a B-spline
solid as in [82, 83] to represent more intricate muscle
fiber architectures and to assign a fiber direction to

individual tetrahedra in the mesh. During both isometric
and isotonic contraction, muscles are given a varying
activation level throughout the simulation. The activa-
tion levels are computed from key-frames of the skeletal
animation, using an established biomechanics analysis
known as muscle force distribution [84] to compute
activations of redundant sets of muscles. These compu-
tations are performed using a simplified muscle model
(see Fig. 10) that treats muscle as a piecewise linear band
that wraps around various geometric primitives repre-
senting muscle/muscle and muscle/bone collision.

Fig. 8 shows sample frames from our musculo-skel-
etal simulations. The images on the left depict relaxed
and active muscle during isometric contraction. In this
simulation the activation level in the two muscles in-
creases from 0 (fully relaxed) to 1 (fully activated) and
back to 0 over the span of two seconds. The bulging in
the bellies of the muscles results from larger stiffness in
the tendons. The rightmost images in Fig. 8 show several
frames of musculo-skeletal motion. The motion of the
kinematic skeleton was key-framed (although our
framework allows for motion data from other sources
such as motion capture). At each key-frame in the ani-
mation, an inverse dynamics analysis was computed for
the biceps and triceps activation levels required to
maintain the static pose. These activation levels were
then interpolated in time and used for the dynamic
muscle simulation.

Figure 12 shows the relative change in maximum
aspect ratio observed during an isometric contraction of
the biceps for meshes created using the optimization
algorithm and using the dynamics algorithm. Similar
results were observed for the triceps and during isotonic
contraction. These results suggest that initial mesh
quality may be misleading and not sufficient to guar-
antee performance of a mesh throughout simulation. In
all of our comparisons, the optimization based meshes
were of higher quality initially, but tended to undergo as
much as a 70% change in maximum aspect ratio during
muscle contraction, whereas the dynamics based meshes
tended to degrade by only 25%. Of course, if the initial
optimization mesh is of significantly higher quality then
the overall maximum aspect ratio will still be lower. We
are not yet claiming that a particular method is better,
but simply pointing out that the initial mesh quality is
not always a reliable predictor of performance during
subsequent simulation.

11 Surface meshing

The general theme of our algorithm is applicable in any
dimension and on general manifolds. First, we tile
ambient space as regularly as possible, then we select a
subset of elements that are nicely connected and
roughly conform to the object, and finally we deform
them to match the boundary. Figure 13 shows the re-
sult of triangulating a two-dimensional manifold with
boundary. We began with a surface mesh of the dragon

13

actually created as the boundary of a tetrahedral mesh
from our method with additional subdivision, edge-
swapping, and nodal smoothing. See [40] for example.
We found that this simple technique avoids topological
difficulties that may be encountered in simpler level set
surface triangulation algorithms. We further interac-
tively specified a ‘‘trimming’’ level set indicating areas
of the surface to trim away, using a sculpting tool
described in [85]. We discarded a subset of the surface
triangles inside the trimming level set using the same
topological considerations that are used in selecting
candidate volumetric tetrahedral meshes. This candi-

date surface mesh was then driven to the trimming
boundary using physics based compression with masses
and springs. At every time step of the compression, the
mesh nodes were projected back onto the surface of the
dragon to ensure a good match to the geometry. This
technique is useful because high quality two-dimen-
sional surface meshes are important for well-condi-
tioned thin shell simulations of objects such as fascias,
membranes, skin, and cloth.

12 Conclusions

We presented an algorithm for producing a high quality
tetrahedral mesh directly from a level set. The focus of
this algorithm is the generation of a tetrahedral mesh
designed specifically for large deformation. Key points
of our algorithm that make it particularly well suited for
large deformation are: the use of a red green strategy in
conjunction with a BCC lattice, making the usually
temperamental red green approach robust and suitable
for subsequent simulation (and enhancing multiresolu-
tion capabilities); the identification and avoidance of
connectivity that is problematic for large deformations
in constructing the mesh; and the use of simulation and
constitutive models to generate the mesh, thus identify-
ing potential weaknesses before simulation even begins

Fig. 8 The figure on the left
depicts a posterior (from behind)
view of the upper arm and
shows contraction of the triceps
muscle and the partially
occluded biceps muscle from
passive (left) to full activation
(right). The figure on the right
demonstrates muscle
contraction with underlying
skeletal motion

Fig. 9 Adaptive resolution
meshes of muscles in the arm

Fig. 10 Inverse kinematics muscles

14

(in fact this is what originally led us to the problematic
connectivity).

Also, we developed a way to augment the use of
masses and springs in mesh generation with altitude

springs to prevent elements from collapsing. This for-
mulation results in damping forces which are linear in
the nodal velocities. Moreover, the damping matrix is
symmetric negative semi-definite, which allows an effi-
cient conjugate gradient solver to be used for implicit
time integration.

Finally, we demonstrated the strength or our algo-
rithm by simulating deformable volumetric skeletal
muscle and its interaction with an underlying skeleton.
We created level set representations of soft tissues and
bones from the segmented Visible Human data set. The
deformable tissues were constructed using the tetrahe-
dron meshing algorithms and the rigid bones were done
using the extension of the algorithm to surfaces. The
initial implicit representation of the anatomical struc-
tures allowed us to make use of standard level set pro-
cedures to smooth out inherent aliasing as well as to
perform basic constructive solid geometry procedures to
repair errors in the segmented data.

Acknowledgements Research supported in part by an ONR YIP
award and PECASE award (ONR N00014-01-1-0620), a Packard
Foundation Fellowship, a Sloan Research Fellowship, ONR
N00014-03-1-0071, ONR N00014-02-1-0720, ARO DAAD19-03-1-
0331, NSF ITR-0121288, NSF ACI-0205671, NSF DMS-0106694,
NSF ACI-0323866 and NSF IIS-0326388. In addition, N. M. and
R. B. were supported in part by a Stanford Graduate Fellowships,
and J. T. was supported in part by an NSF Graduate Research
Fellowship.

Appendix

Consider the tetrahedron defined by the points
x1,x2,x3,x4 and the altitude spring from x4 to the triangle
x1,x2,x3. The Cauchy stress in the tetrahedron due to
this spring is

ralt ¼
3f
A4

n4nT
4 ;

where f is the scalar force in an altitude spring (see Sect.
6), A4 is the area of the triangle x1,x2,x3 and n4 is the

Fig. 11 Muscles of the upper
limb

Relative Change in Maximum Aspect Ratio

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

111

Frame

Optimization Mesh

Dynamics Mesh

21 31 41 51 61

Fig. 12 Plot of changes in maximum aspect ratios during simula-
tion of isometric contraction for dynamics and optimization based
meshes

Fig. 13 Our method is easily extended to create a triangle mesh of a
manifold with boundary. The peeled away regions of the dragon
were modeled with a second level set

15

outward pointing normal of the tetrahedron on face
x1,x2,x3.

This can be shown by considering the results of [75].
A finite volume interpretation of the constant strain
tetrahedron finite element forces shows that the nodal
force response to an internal Cauchy stress r can be
written as

fi ¼ r
Ajnj þ Aknk þ Alnl

3

� �
:

Using this result, the force on x4 due to ralt is

f4 ¼ fn4
A1nT

4 n1
A4

þ A2nT
4 n2

A4
þ A3nT

4 n3
A4

� �
:

A simple geometric argument shows that �(A1n4
Tn1)/A4

is the ratio of the projected area of the face x2,x3,x4 on
the plane through x1,x2,x3 with A4. This is the bary-
centric weight of x4 in the plane x1,x2,x3 on the point x1.
Defining the barycentric weight as w1, we can similarly
derive

A2nT
4 n2

A4
¼ �w2;

A3nT
4 n3

A4
¼ �w3:

Therefore, the force on x4 is

f4 ¼ fn4ð�w1 � w2 � w3Þ ¼ �fn4:

Similarly,

f1 ¼ fn4
A2nT

4 n2

A4
þ A3nT

4 n3

A4
þ A4nT

4 n4

A4

� �

¼ fn4ð1� w2 � w3Þ ¼ fn4w1

f2 ¼ fn4
A1nT

4 n1

A4
þ A3nT

4 n3

A4
þ A4nT

4 n4

A4

� �

¼ fn4ð1� w1 � w3Þ ¼ fn4w2

f3 ¼ fn4
A1nT

4 n1

A4
þ A2nT

4 n2

A4
þ A4nT

4 n4

A4

� �

¼ fn4ð1� w1 � w2Þ ¼ fn4w3;

which are precisely the altitude spring forces.

References

1. U.S. National Library of Medicine (1994) The Visible Human
Project. http://www.nlm.nih.gov/research/visible/

2. Martins J, Pires E, Salvado R, Dinis P (1998) A numerical
model of passive and active behavior of skeletal muscles.
Comput Meth Appl Mech Eng 151:419–433

3. Hirota G, Fisher S, State A, Lee C, Fuchs H (2001) An implicit
finite element method for elastic solids in contact. Comput
Anim

4. Cotin S, Delingette H, Ayache N (1996) Real-time volumetric
deformable models for surgery simulation. Proc of Vis in Bio-
med Comput, pp 535–540

5. Ganovelli F, Cignoni P, Montani C, Scopigno R (2000) A
multiresolution model for soft objects supporting interactive
cuts and lacerations. Eurographics, pp 271–282

6. Bro-Nielsen M, Cotin S (1996) Real-time volumetric deform-
able models for surgery simulation using finite elements and
condensation. Comput Graph Forum 15(3):57–66

7. Fleishmann P, Kosik R, Selberherr S (1999) Simple mesh
examples to illustrate specific finite element mesh requirements.
In: 8th international meshing roundtable, pp 241–246

8. Marcum DL (1995) Generation of unstructured grids for vis-
cous flow applications. AIAA

9. Garimella R, Shephard M (1998) Boundary layer meshing for
viscous flows in complex domains. In: 7th international mesh-
ing roundtable, pp 107–118

10. Lohner R, Cebral J (1999) Generation of non-isotropic
unstructured grids via directional enrichment. In: 2nd sympo-
sium on trends in unstructured mesh generation

11. Burns G, Glazer AM (1990) Space groups for solid state
scientists, 2nd edn. Academic, New York

12. Osher S, Sethian J (1988) fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi for-
mulations. J Comp Phys 79:12–49

13. Weatherill NP, Hassan O (1994) Efficient three-dimensional del-
aunay triangulation with automatic point creation and imposed
boundary constraints. Int J NumerMeth Eng 37:2005–2039

14. Shewchuk J (1998) Tetrahedral mesh generation by delaunay
refinement. In: Procedings of the 14th annual symposium on
computer and geomics, pp 86–95

15. Cheng SW, Dey TK, Edelsbrunner H, Facello MA, Teng SH
(2000) Sliver exudation. J ACM 47(5):883–904

16. Edelsbrunner H, Guoy D (2002) An experimental study of
sliver exudation. Eng Comput 18(3):229–240

17. Shewchuk J (2002) Constrained Delaunay tetrahedralizations
and provably good boundary recovery. In: 11th international
meshing roundtable

18. Schöberl J (1997) NETGEN - an advancing front 2D/3D mesh
generator based on abstract rules. Comput Vis Sci 1:41–52

19. Möller P, Hansbo P (1995) On advancing front mesh gener-
ation in three dimensions. Int J Numer Meth Eng 38:3551–
3569

20. Lo SH (1991) Volume Discretization into tetrahedra - I, Veri-
fication and orientation of boundary surfaces. Comput Struct
39(5):493–500

21. Lo SH (1991) Volume discretization into tetrahedra - II, 3D
triangulation by advancing front approach. Comput Struct
39(5):501–511

22. Mavriplis DJ (1995) An advancing front delaunay triangulation
algorithm designed for robustness. J Comp Phys 117:90–101

23. Radovitzky RA, Ortiz M (2000) Tetrahedral mesh generation
based in node insertion in crystal lattice arrangements and
advancing-front Delaunay triangulation. Comput Meth Appl
Mech Eng 187:543–569

24. Fuchs A (1998) Automatic grid generation with almost regular
Delaunay tetrahedra. In: 7th international meshing roundtable,
pp 133–148

25. Shimada K, Gossard D (1995) Bubble mesh: automated trian-
gular meshing of non-manifold geometry by sphere packing.
ACM3rdsymposiumonsolidmodelandapplication,pp409–419

26. Yamakawa S, Shimada K (2000) High quality anisotropic tet-
rahedral mesh generation via packing ellipsoidal bubbles. In:
9th international meshing roundtable, pp 263–273

27. Yamakawa S, Shimada K (2003) Anisotropic tetrahedral
meshing via bubble packing and advancing front. Int J Numer
Meth Eng 57:1923–1942

28. Li X, Teng S, Üngör A (1999) Biting spheres in 3D. In: 8th
international meshing roundtable, pp 85–95

29. Li X, Teng S, Üngör A (1999) Biting ellipses to generate
anisotropic mesh. In: 8th international meshing roundtable, pp
97–108

30. Kass M, Witkin A, Terzopoulos D (1987) Snakes: active con-
tour models. Int J Comput Vis, pp 321–331

31. Miller J, Breen D, Lorensen W, O’Bara R, Wozny M (1991)
Geometrically deformed models: a method for extracting closed
geometric models from volume data. Comput Graph (SIG-
GRAPH Proc.), pp 217–226

16

32. Sadarjoen IA, Post FH (1997) Deformable surface techniques
for field visualization. Eurographics, pp 109–116

33. Neugebauer P, Klein K (1997) Adaptive triangulation of ob-
jects reconstructed from multiple range images. Vis

34. Grosskopf S, Neugebauer PJ (1998) Fitting geometrical
deformable models to registered range images. European
Workshop on 3D structure from multiple images of large-scale
environments (SMILE), pp 266–274

35. Kobbelt LP, Vorsatz J, Labsik U, Seidel HP (1999) A shrink
wrapping approach to remeshing polygonal surfaces. Euro-
graphics, pp 119–130

36. Wood Z, Desbrun M, Schröder P, Breen D (2000) Semi-regular
mesh extraction from volumes. Vis. pp 275–282

37. Ohtake Y, Belyaev AG (2002) Dual/primal mesh optimization
for polygonized implicit surfaces. In: Proceedings of the 7th
ACM Symposium on Solid Model Appl, ACM, New York, pp
171–178

38. de Figueiredo LH, Gomes J, Terzopoulos D, Velho L (1992)
Physically-based methods for polygonization of implicit sur-
faces. In: Proceedings of the conference on graphic interface, pp
250–257

39. Velho L, Gomes J, Terzopoulos D (1997) Implicit manifolds,
triangulations and dynamics. J Neural Parallel Scientif Comput
15(1–2):103–120

40. Gloth O, Vilsmeier R (2000) Level Sets as Input for Hybrid
Mesh Generation. In: 9th international meshing roundtable, pp
137–146

41. Arnold A, Salinas S, Asakawa D, Delp S (2000) accuracy of
muscle moment arms estimated from MRI-based musculo-
skeletal models of the lower extremity. Comput Aided Surg
5:108–119

42. Garner B, Pandy M (1999) A kinematic model of the upper
limb based on the visible human project (VHP) image dataset.
Comput Meth Biomech Biomed Eng 2:107–124

43. Garner B, Pandy M (2001) Musculoskeletal model of the upper
limb based on the visible human male dataset. Comput Meth
Biomech Biomed Eng 4:93–126

44. Arnold A, Blemker S, Delp S (2001) Evaluation of a deform-
able musculoskeletal model for estimating muscle-tendon
lengths during crouch gait. Comput Aided Surg 29:263–274

45. Üngör A (2001) Tiling 3D euclidean space with acute tetrahe-
dra. In: Proceedings of the canadian conference on Computer
Geomics, pp 169–172

46. Yerry MA, Shephard MS (1984) Automatic three-dimensional
mesh generation by the modified Octree technique. Int J Numer
Meth Eng 20:1965–1990

47. Shephard MS, Georges MK (1991) Automatic three-dimen-
sional mesh generation by the finite Octree technique. Int
J Numer Meth Eng 32:709–739

48. Bey J (1995) Tetrahedral grid refinement. Computing 55:355–
378

49. Grosso R, Lürig C, Ertl T (1997) The multilevel finite element
method for adaptive mesh optimization and visualization of
volume data. Visualization, pp 387–394

50. de Cougny HL, Shephard MS (1999) Parallel refinement and
coarsening of tetrahedral meshes. Int J Numer Meth Eng
46:1101–1125

51. Bessette G, Becker E, Taylor L, Littlefield D (2003) Modeling
of impact problems using an H-adaptive, explicit lagrangian
finite element method in three dimensions. Comput Meth Appl
Mech Eng 192:1649–1679

52. Tsitsiklis J (1995) Efficient algorithms for globally optimal
trajectories. IEEE Trans Automat Control 40:1528–1538

53. Sethian J (1996) A fast marching level set method for
monotonically advancing fronts. Proc Natl Acad Sci 93:1591–
1595

54. Zhao HK, Osher S, Fedkiw R (2001) Fast surface reconstruc-
tion using the level set method. In: 1st IEEE Wrkshp on Var-
iational and Level Set Methods 8th Int Conf on Comput Vis,
pp 194–202

55. Osher S, Fedkiw R (2002) Level set methods and dynamic
implicit surfaces. Springer, Berlin Heidelberg New York

56. Strain J (1999) Fast tree-based redistancing for level set com-
putations. J Comput Phys 152:664–686

57. Strain J (1999) Tree methods for moving interfaces. J Comput
Phys 151:616–648

58. Westermann R, Kobbelt L, Ertl T (1999) Real-time exploration
of regular volume data by adaptive reconstruction of isosur-
faces. The Vis Comput 15(2):100–111

59. Ambrosio L, Soner HM (1996) Level set approach to mean
curvature flow in arbitrary codimension. J Diff Geom 43:693–
737

60. Hughes T (1987) The finite element method: linear static and
dynamic finite element analysis. Prentice Hall, Englewoodcliff

61. Bridson R, Marino S, Fedkiw R (2003) Simulation of clothing
with folds and wrinkles. In: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Comput Anim, pp
28–36

62. Bridson R, Fedkiw R, Anderson J (2002) Robust treatment of
collisions, contact and friction for cloth animation. ACM
Trans Graph (SIGGRAPH Proc) 21:594–603

63. Gnoffo P (1982) A vectorized, finite-volume, adaptive-grid
algorithm for Navier-stokes calculations. Num Grid Generat,
pp 819–835

64. Gnoffo P (1982) A finite-volume, adaptive grid algorithm ap-
plied to planetary entry flowfields. AIAA

65. Lohner R, Morgan K, Zienkiewicz OC (1986) Adaptive grid
refinement for compressible euler equations. Wiley, New York,
pp 281–297

66. Nakahashi K, Deiwert GS (1987) Self-adaptive-grid method
with application to airfoil flow. AIAA 25(4):513–520

67. Dompierre J, Vallet M, Fortin M, Habashi WG, Aı̈t-Ali-Yahia
D, Boivin S, Bourgault Y, Tam A (1995) Edge-based mesh
adaptation for CFD. In: Conference on Numerical Methods
for the Euler and Navier-Stokes Equations

68. Vallet M, Dompierre J, Bourgault Y, Fortin M, Habashi WG
(1996) Coupling flow solvers and grids through an edge-based
adaptive grid method. Fluids Engineering Div Conference, vol 3

69. Fortin M, Vallet M, Dompierre J, Bourgault Y, Habashi WG
(1996) Anisotropic mesh adaptation: theory, validation, and
applications. Comput Fluid Dynamics

70. Bossen FJ, Heckbert PS (1996) A pliant method for anisotropic
mesh generation. In: Proceedings of the 5th international
meshing roundtable, pp 63–76

71. Palmerio B (1994) An attraction-repulsion mesh adaption
model for flow solution on unstructured grids. Comput Fluids
23(3):487–506

72. Bourguignon D, Cani MP (2000) Controlling anisotropy in
mass-spring systems. Eurographics, Eurographics Assoc, pp
113–123

73. Cooper L, Maddock S (1997) Preventing collapse within mass-
spring-damper models of deformable objects. In: Proceedings
of the 5th international conference in central europe on com-
puter graphics and vision

74. Bonet J, Wood R (1997) Nonlinear continuum mechanics for
finite element analysis. Cambridge University Press, Cambridge

75. Teran J, Blemker S, Ng V, Fedkiw R (2003) Finite volume
methods for the simulation of skeletal muscle. In: Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on
computer Animation, pp 68–74

76. Freitag L, Ollivier-Gooch C (1997) Tetrahedral mesh
improvement using swapping and smoothing. Int J Num Meth
Eng 40:3979–4002

77. Torczon V (1997) On the convergence of pattern search algo-
rithms. SIAM J Opt 7(1):1–25

78. Fung YC (1981) Biomechanics: mechanical properties of living
tissues. Springer, Berlin Heidelberg New York

79. Yucesoy CA, Koopman BH, Huijing PA, Grootenboer HJ
(2002) Three-dimensional finite element modeling of skeletal
muscle using a two-domain approach: linked fiber-matrix mesh
model. J Biomech 35:1253–1262

80. Weiss J, Maker B, Govindjee S (1996) Finite-element impe-
mentation of incompressible, transversely isotropic hyperelas-
ticity. Comput Meth Appl Mech Eng 135:107–128

17

81. Zajac F (1989) Muscle and tendon: properties, models, scaling,
and application to biomechanics and motor control. Crit Rev
Biomed Eng 17(4):359–411

82. Ng-Thow-Hing V, Fiume E (1997) Interactive display and
animation of B-spline solids as muscle shape primitives. In:
Thalmann D, van de Panne M (eds) Proceedings of the euro-
graphics workshop on computer animation and sim. Springer,
Berlin Heidelberg New York

83. Ng-Thow-Hing V, Fiume E (2002) Application-specific muscle
representations. In: Sturzlinger W, McCool M (eds) Proc of Gr
Inter Canadian Information Processing Society, pp 107–115

84. Crowninshield R (1978) Use of optimization techniques to
predict muscle forces. Trans ASME 100:88–92

85. Bridson R (2003) Computational aspects of dynamic surfaces.
PhD thesis, Stanford University

18

	Sec1
	Sec3
	Sec5
	Sec7
	Fig1
	Fig2
	Sec9
	Sec11
	Fig3
	Fig4
	Sec13
	Fig5
	Sec15
	Sec17
	Sec19
	Sec21
	Fig6
	Sec23
	Fig7
	Tab1
	Sec25
	Sec27
	Fig8
	Fig9
	Fig10
	Ack
	Sec29
	Fig11
	Fig12
	Fig13
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52
	CR53
	CR54
	CR55
	CR56
	CR57
	CR58
	CR59
	CR60
	CR61
	CR62
	CR63
	CR64
	CR65
	CR66
	CR67
	CR68
	CR69
	CR70
	CR71
	CR72
	CR73
	CR74
	CR75
	CR76
	CR77
	CR78
	CR79
	CR80
	CR81
	CR82
	CR83
	CR84
	CR85

