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Figure 1: Shooting a bullet through Jell-OTM.

Abstract

We utilize the shape derivative of the classical Griffith’s energy in a
level set method for the simulation of dynamic ductile fracture. The
level set is defined in the undeformed configuration of the object,
and its evolution is designed to represent a transition from undam-
aged to failed material. No re-meshing is needed since the resulting
topological changes are handled naturally by the level set method.
We provide a new mechanism for the generation of fragments of
material during the progression of the level set in the Griffith’s en-
ergy minimization. Collisions between different material pieces are
resolved with impulses derived from the material point method over
a background Eulerian grid. This provides a stable means for collid-
ing with embedded interfaces. Simulation of corotational elasticity
is based on an implicit finite element discretization.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations;

Keywords: ductile fracture, level set method, physically based
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1 Introduction

Our focus is on ductile fracture of elasto-plastic solids. We use a
level set method to evolve damaged regions of material with an em-
bedded approach to reduce meshing complexity. Level set methods
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have proven very effective for handling topological changes for flu-
ids, and we show that they can also be used to reduce remeshing
efforts for failure of solids. The level set evolves in material space
to minimize Griffith’s energy as an alternative to the principle stress
criteria popular in computer graphics. This is a generalization of the
work in [Allaire et al. 2007] to large-strain, ductile materials. The
level set description of the material region is used to simplify the
determination of material connectivity in the embedded meshing
approach from [Teran et al. 2005; Sifakis et al. 2007] and is simi-
lar to the ideas used in [Losasso et al. 2006]. Also, we accurately
compute the integrals in the FEM discretization of the elastic forces
taking into account sub-cell geometric detail as is commonly done
with XFEM discretizations [Belytschko et al. 2009]. We provide a
new mechanism for generating fragments of material in damaged
regions (as defined by the level set evolution). Finally, we employ
a material point method treatment of collision response.

Here we highlight our novel contributions. First, we extend the
method of [Allaire et al. 2007] from quasistatic, linear elasticity to
dynamics and arbitrary constitutive models. Second, we general-
ize this work to embedded geometries where the material bound-
ary is initially defined from a level set. Also, we provide a new
fragment generation algorithm to prevent volume loss inherent in
[Allaire et al. 2007]. This fragment generation procedure is specif-
ically designed for an evolving level set definition of healthy and
damaged material. The resulting algorithm is significantly less
complex than the explicit remeshing strategies commonly used in
computer graphics. Lastly, we demonstrate the application of the
material point method (MPM) to the longstanding problem of em-
bedded surface collisions. Collisions with these types of surfaces
(e.g. resulting from marching tetrahedra) are notoriously difficult to
resolve due to the inherently ill-conditioned sliver triangles arising
from isosurface contouring. We also provide an additional improve-
ment to the MPM approach with the introduction of barycentrically
bound ghost particles. These are used to improve material cover-
age of the background MPM grid in large deformation scenarios.
Our algorithm is robust and easy to implement; however, this par-
tially comes from representing thin crack structures as having finite
thickness, which may prohibit the simulation of some phenomena.
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(a) Embedded domain. (b) Cube divided into tetrahedra. (c) Tetrahedra cut by a level set. (d) Material portion of cut tetrahedra.

Figure 2: The leftmost image illustrates our level set based embedding in a regular grid in 2D. Boundary cells are shown in green, virtual
nodes are depicted with green triangles, nodes that have a discrete stencil independent of embedding are in blue. The images at the right
depict tetrahedralization and embedding on a 3D uniform grid (with cells cut into 6 tetrahedra).

2 Related work

Simulation of fracture and failure phenomena was introduced to
computer graphics in the pioneering work of [Terzopoulos and
Fleischer 1988]. Early approaches typically made use of simple
separation along mesh element boundaries [Norton et al. 1991;
Mazarak et al. 1999; Smith et al. 2001; Müller et al. 2001] or even
element deletion [Forest et al. 2002]. The available geometric de-
tail in this type of approach was increased somewhat by subdivi-
sion of elements in the mesh prior to splitting [Mor and Kanade
2000; Bielser and Gross 2000]; however, this tended to introduce
elements with poor aspect ratios. More geometrically rich frac-
ture patterns were generated by allowing failure along more arbi-
trary paths (albeit with the expense of re-meshing) [Neff and Fi-
ume 1999; O’Brien and Hodgins 1999; O’Brien et al. 2002]. Re-
cently, such approaches have been used to create some very com-
pelling results for a variety of materials [Wicke et al. 2010; Clausen
et al. 2013; Wojtan and Turk 2008; Wojtan et al. 2009; Goktekin
et al. 2004; Bargteil et al. 2007]. Embedded methods have been de-
veloped to minimize the complexity of re-meshing by embedding
material surfaces into the existing mesh [Müller and Gross 2004;
Molino et al. 2004; Bao et al. 2007; Sifakis et al. 2007; Gissler et al.
2007; Parker and O’Brien 2009]. Although these works generalized
the approach to fracture, the embedding idea goes back at least to
free form deformations [Sederberg and Parry 1986; Faloutsos et al.
1997; Capell et al. 2002; Teran et al. 2005]. Also, particle-based
methods can provide flexibility for topology change [Pauly et al.
2005]. Computer graphics approaches primarily use a principal
stress failure criterion [Molino et al. 2004; O’Brien and Hodgins
1999; O’Brien et al. 2002; Müller et al. 2001; Müller and Gross
2004; Kaufmann et al. 2009]. This has also been used for nearly
rigid materials where an instantaneous linear elastic response after
collision events was used to determine stresses [Bao et al. 2007;
Zheng and James 2010; Su et al. 2009]. Grain boundaries in this
type of treatment can help to quickly create plausible fracture pat-
terns [Bao et al. 2007; Hellrung et al. 2009; Zheng and James 2010].
Other interesting models for crack patterns were developed in [Iben
and O’Brien 2006; Iben and O’Brien 2009; Neff and Fiume 1999].

3 Level set based embedded meshing

As in [Losasso et al. 2006], we use a signed distance function φ
in material coordinates X to create an embedded Lagrangian mesh
for our material (see Figure 2). The mesh consists of all tetrahedral
elements in a regular background lattice with at least one node Xi

having φ(Xi) < 0. However, our method produces connectivity

in this mesh that is slightly different than that of the background
lattice. We refer to any node incident on a boundary tetrahedron
that has a positive φ value as a virtual node since it is outside but
still participates in the discretization by virtue of the embedding.
We create a linear approximation of the sub-element location of the
zero isocontour to define the boundary of the material region. That
is, we introduce either a triangle or quadrilateral on each boundary
tetrahedron depending on the number of edge crossings. We define
a boundary tetrahedron as one having nodes with both positive and
negative φ values. Note that the vertices of the embedded surface
are not degrees of freedom in our discretization. Only the tetrahe-
dron nodes give rise to actual degrees of freedom.

The level set will evolve to minimize Griffith’s energy, which we
describe in Section 5. During this process, we treat the evolution
as a phase change from “healthy” to “damaged” material. As this
process occurs, we create a mesh for both damaged and healthy re-
gions. To illustrate this, let φ define the healthy region prior to evo-
lution as that where φ < 0, and let φ̂ denote the new level set after
evolution. Our energy evolution is defined so that material can-
not transition from damaged to healthy. Therefore, the region with
φ̂ < 0 is contained in the region with φ < 0 (and in fact φ̂ ≥ φ).
To create the healthy and damaged material meshes, we first create
sub-element approximations to the zero isocontour of both φ and φ̂
using the previously described process of triangle and quadrilateral
insertion on boundary elements (as defined by the respective level
sets). Note that both level sets will often cut the same tetrahedron,
and therefore some elements may have material surfaces introduced
by both level sets. Since our strict evolution from healthy to dam-
aged enforces φ̂ ≥ φ, there will never be any crossings between
these surfaces.

We combine sub-element geometric information with the level set
values to define the meshes in a variation of the material connec-
tivity criteria of [Teran et al. 2005; Sifakis et al. 2007]. First, we
create a copy of each tetrahedron that has at least one node with
φ̂ < 0. That is, this copy has its nodes disconnected from its neigh-
bors with the introduction of potentially temporary virtual nodes.
These elements will form the healthy mesh. Second, we create a
copy for all tetrahedra that either have (i) a vertex with the product
φ̂φ < 0 (these nodes transitioned from healthy to damaged in the
evolution to φ̂) or (ii) an incident edge that is cut by both φ̂ and φ
(these edges correspond to where the transition occurred at a ma-
terial node, but without incurring a sign change). These tetrahedra
comprise the newly damaged region as defined by the evolution and
are added to the system as fragment pieces. Note that some tetrahe-
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Figure 3: Elements are duplicated for the healthy (blue) and damaged (green) regions. The degrees of freedom along segments are merged if
an endpoint is material on both segments (yellow dots) or if the segment is cut by both level sets for the damaged region (yellow lines).

dra will give rise to copies for both damaged and healthy regions.
This copying procedure is the same as in [Teran et al. 2005; Sifakis
et al. 2007]. In the final step, we merge nodes across element faces
based on material connectivity. However, our means of establishing
this is simplified greatly by our level set and sub-element geometric
information. Specifically, faces of adjacent healthy tetrahedral ele-
ments (those copied based on the one φ̂ < 0 criterion) are merged
if at least one original node on the face has φ̂ < 0. Faces of ad-
jacent damaged copies are merged if they either share a node that
transitioned (φ̂φ < 0) or if they share an edge that was cut twice.
This process is illustrated in Figure 3.

During any time step, the portion of the domain undergoing fracture
can be considered as composed of two regions: a healthy region Ω0

h

and a damaged region Ω0
d that is being shed from the healthy region

through fracture. The fragments created from the damaged region
may be subdivided into smaller pieces via pre-scored grain bound-
aries as in [Bao et al. 2007], and we do so in the examples seen in
Figures 9 and 10; this post-processing does not affect the definition
of the damaged region itself. In some cases (e.g. Figures 5, 6 and
8) it may be more visually pleasing to omit the damaged region and
forgo fragments altogether. In the latter case, some loss of material
occurs as a consequence. In addition to the new fragments (those
created in the transition from φ to φ̂), there are fragments created
in previous time steps which are simulated but are not subject to
further fracture.

4 Elasto-plastic dynamics

We use a hyperelastic idealization of the material response to defor-
mation augmented with a simple finite-strain multiplicative plastic-
ity law combined with a Finite Element Method (FEM) discretiza-
tion. We make only slight modifications to the standard tetrahedral
discretization outlined in e.g. [Sifakis and Barbic 2012], which we
outline below.

For hyperelastic materials, the first Piola-Kirchoff stress P is re-
lated to an energy density Ψ as P = ∂Ψ

∂F
, where F is the defor-

mation gradient. In our case, the total elastic energy e is defined in
terms of the hyperelastic energy density as

e =

∫
Ω0

h
∪Ω0

d

Ψ(F (X, t))dX. (1)

Assuming we introduce discontinuities between regions as outlined

in Section 3, the FEM elastic force on node j is

fj(x) = − ∂e

∂xj
(x) = −

∫
Ω0

h
∪Ω0

d

P∇Nj dX = −
∑
k

VkPk∇Nj

(2)

where xj is the position of node j, x is the vector of all xj and Nj
is the piecewise linear interpolating function associated with node
j. Note that if j belongs to the healthy region then Nj is supported
only on Ω0

h, and if j belongs to the damage region then Nj is sup-
ported only on Ω0

d. The integrands in Equation 2 are piecewise
constant because they are functions of the gradients of piecewise
linear interpolating functions and therefore we can compute them
exactly by computing the volume of the polyhedral material region
in each element Vk.

4.1 Time stepping

We use a backward-Euler update of the particle velocities and po-
sitions to allow for larger time steps. This is done by solving the
non-linear system

M

(
vn+1 − vn

∆t

)
= f(xn + ∆tvn+1) (3)

for the time n + 1 velocities vn+1. The linearization of the elastic
forces f simply requires the linearization of the first Piola-Kirchoff
stress P , and we refer the reader to [McAdams et al. 2011] and
[Sifakis and Barbic 2012] for the details. We use the FEM mass
matrix whose entries are

Mij =

∫
Ω0

h
∪Ω0

d

NiNjdX. (4)

Note that M decouples into a healthy part and a damage part and
is sparse since the support of any Ni and Nj only overlap if node
i and j are incident on the same tetrahedron. We evaluate these
integrands analytically over the polyhedral subelement embedded
material regions. This is done with the divergence theorem as in
[Hellrung et al. 2012].

4.2 Elasto-plastic constitutive model

In practice we define our elasto-plastic constitutive relation from
the corototational energy density in [McAdams et al. 2011] as
Ψ̃(F ) = µ‖F − R‖F + λ

2
(tr(S − I))2. Here, F = RS is

the polar decomposition of the deformation gradient.
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Figure 4: Ring fractures upon hitting ground with material config-
uration (left) and the deformed configuration (right) shown.

After each update of Equation 3 we incorporate the plastic re-
sponse of [Irving et al. 2004]. This amounts to decomposing the
element wise deformation gradient into elastic Fe and plastic Fp
parts F n+1 = F n+1

e F n+1
p . This effects the elastic response

via the energy density Ψ as we then consider it to be defined as
Ψ(F ) = Ψ̃(F (F n+1

p )−1) in the next time step.

5 Griffith’s energy evolution

We use a Griffith’s energy minimization as our fracture evolution
criterion as in [Allaire et al. 2007]. Reusing the notation for the
healthy region Ω0

h = {X|φ(X) < 0} and the damaged material
Ω0
d as described in Section 3, the Griffith’s energy is defined as

eg(φ) =

∫
Ω0

h

Ψ dX +

∫
Ω0

d

κ dX. (5)

The coefficient κ is the rate of Griffith’s energy release. It can be
used to limit the tendency to shrink Ω0

h and is therefore intuitively
used to increase the material’s resistance to fracture. Without this
term, we could easily release the elastic energy stored in Ω0

h by
evolving until we had Ω0

h = ∅.

A straightforward derivation (see Appendix A for details) shows
that the Fréchet derivative of eg(φ) in the direction of δη is given
by ∫

∂Ω0
h

(κ−Ψ)δη dA. (6)

We use this shape derivative in a gradient descent approach as

∂φ

∂s
= −δ(φ)(κ−Ψ), (7)

where the delta function δ(φ) localizes the evolution to the interface
and s is a pseudo-time evolution parameter. The transition from φ

to the new interface, described by φ̂, can then be implemented with
a forward-Euler scheme, yielding the update step

φ̂ = φ+ ∆sδε(φ)(Ψ− κ). (8)

Note that a spatially varying function can be used for κ, thus allow-
ing to guide the fracture pattern whenever a more directed evolution
is preferred. Figure 5 shows how different choices for κ lead to dif-
ferent propagation speeds.

Since the level set function is defined on the mesh nodes, we need
to compute the energy density Ψ on the nodes as well. We do this

Figure 5: Stretching Jell-OTM with different energy release rates.

by computing its value as specified in Section 4.2 within each mesh
tetrahedron Tk (where it is piecewise constant), and then employing
a weighted average over all elements that contain this node:

Ψ(Xp) =

∑
k,Xp∈Tk

Ψ(Tk)
∫
Tk
Np(X)dX∑

k,Xp∈Tk

∫
Tk
Np(X)dX

, (9)

with Np being the linear basis function of node p.

To ensure that material only transitions from healthy to damaged,
we disregard any changes to φ at nodes where its value decreases
as this would correspond to a growth in the healthy region and thus
would violate the irreversibility of fracture. For the delta func-
tion, we use the representation of [Vese and Chan 2002], δε(φ) =
1
π

ε
ε2+φ2 . In practice, we enforce a CFL restriction on ∆s so that

φ̂ does not move the boundary of the healthy region by more than
a grid cell in the undeformed configuration. This results in the ne-
cessity for multiple executions of (8), though sometimes it might be
more visually pleasing to use only a limited number of steps (as we
did in the case of Figure 5). An illustration of the energy evolution
is given in Figure 6.

To avoid artefacts, we must reinitialize φ̂ during the pseudo-time
evolution after each change so that it maintains its signed-distance
property. To do so, we first identify the location of the new inter-
face, as defined by φ̂, within the boundary elements of the mesh
as detailed in Section 3. We then use the embedded surface tri-
angles and quadrilaterals to recompute the exact distance from
the surface to the mesh vertices of the containing boundary ele-
ments. This re-evaluation procedure is only necessary at nodes
where the level set value, and thus the interface, has changed, i.e. if
|φ(Xi) − φ̂(Xi)| > ε, where ε is be chosen as a multiple of ma-
chine precision. We then use these exact distances as initialization
for a more effective fast sweeping or fast marching reinitialization
(e.g. [Zhao 2005]) to propagate the signed distance property to all
other mesh nodes.

6 Collisions

We use an impulse-based response for rigid collision bodies and
self collision. This is difficult because the embedded meshes that
define the material regions have many sliver triangles since they are
generated by marching tetrahedra. We found that the material point
method for collision impulses outlined in [Huang et al. 2011] was
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Figure 6: Notch tears when stretched with energy density (top left), material configuration (bottom left) and deformed configuration (right).

effective at applying impulses when the surface geometry contained
sliver elements. This technique uses the gradients of interpolating
functions on a regular background grid to estimate normals to the
boundary of the material region. This is convenient because it does
not rely on high-quality boundary geometry. However, this robust-
ness does come at the expense of accuracy, and we alleviate this by
augmenting the original method by seeding barycentrically bound
ghost particles.

We will now outline this collisions handling. For simplicity, we will
restrict our description to two colliding bodies, but any number of
objects is possible. We compute the connected components of all
mesh particles based on material connectivity as given by the mesh.
We will use a subscript b to indicate that we store the contributions
to a grid node i separately for each body.

Since the accuracy of the collision algorithm that follows is im-
proved by an increase of the number of material particles that con-
tribute to any affected grid node, we create ghost particles in every
mesh element in addition to the degrees of freedom of the mesh. We
useR andG to denote the real and ghost particles, with P = R∪G
(or Rb, Gb, and Pb when referring only to those particles in body
b). These dependent particles do not represent any new degrees of
freedom but are solely defined by their barycentric relation to their
parent mesh vertices, with the barycentric weight wqp = 0 if q is not
bound to p. The positions and candidate velocities of ghost particle
are computed in a straightforward manner as the linear combination
of their parents. That is,

xnq =
∑
p∈R

wqpx
n
p vn+1

q =
∑
p∈R

wqpv
n+1
p , (10)

where q ∈ G. The computation of the mass for ghost particles
has to be done sightly more carefully to conserve total mass. The
particles masses mn

pk corresponding to an element Tk and a real
particle p are computed respecting the embedded boundaries as the
integral

mn
pk =

∫
Tk

ρ0NpdX. (11)

The mass associated with a node p can thus change if material gets
damaged or breaks off during the fracture evolution. The mass∑
km

n
pk of real particle p is distributed to p and embedded parti-

cles q proportional to their barycentric weights wqp (where wpp = 1)
so that

mn
q =

∑
p∈R

wqpm
n
pk

Wpk
mn
p =

∑
k

mn
pk

Wpk
Wpk = 1 +

∑
q∈G∩Tk

wqp,

(12)

where p ∈ R, q ∈ G, q ∈ Tk, and Wpk was chosen so that∑
q∈P

mn
q =

∑
p∈R

mn
p +

∑
k

∑
q∈G∩Tk

mn
q

=
∑
p∈R

∑
k

mn
pk

Wpk
+
∑
k

∑
q∈G∩Tk

∑
p∈R

wqpm
n
pk

Wpk

=
∑
p∈R

∑
k

mn
pk

Wpk

1 +
∑

q∈G∩Tk

wqp


=
∑
p∈R

∑
k

mn
pk

=
∑
k

∫
Tk

ρ0dX

accounts for the total mass.

Next, we rasterize the particle masses to the collision grid as

mn
bi =

∑
p∈Pb

mn
pSi(x

n
p ), (13)

where the Si are standard trilinear (grid-based) nodal shape func-
tions. We use the positions of the previous time step, xnp , as the
values of the current time step will depend on any changes we make
to the velocity field to avoid collisions.

The nodal velocity on the grid is computed as the ratio of rasterized
momentum to mass. Using the candidate velocities vn+1

p from the
backward Euler update of Equation (3),

v̄n+1
bi =

∑
p∈Pb

mn
pv

n+1
p Si(x

n
p )

mn
bi

. (14)

We use the gradient of the nodal mass to find the outward normals
of grid node i for body b

nnbi =
∇mn

bi

‖∇mn
bi‖

=

∑
p∈Pb

mn
p∇Si(xnp )

‖
∑
p∈Pb

mn
p∇Si(xnp )‖ . (15)

Note that for some grid nodes, the material barely overlaps with the
support of the associated shape function, and ghost particles cannot
offer any improvements. These nodes also barely contribute to the
velocity field due to their low mass weights, so in practice this ghost
particle strategy leads to acceptable results.

If particles from two different bodies register at the same grid node,
a collision may occur. All contact velocities are relative to the ve-
locity of the center of mass at this grid node

vcom,n+1
(bc),i =

v̄n+1
bi mn

bi + v̄n+1
ci mn

ci

mn
bi +mn

ci

. (16)
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(a) Candidate particles velocities (b) Rasterized grid velocities (c) Corrected grid velocities (d) Corrected particle velocities

Figure 7: Collisions are processed by transferring velocities to a background grid, where collisions are detected and corrected. These
corrected velocities are then transferred back to the simulation mesh.

To detect and process a collision, we need a single collision normal
direction. In practice, however, if bodies b and c are colliding, we
will have nnbi 6= −nnci. We can correct this by computing an shared
direction for the collision

nn(bc)i =
nnbi − nnci
‖nnbi − nnci‖

nn(cb)i = −nn(bc)i. (17)

An approach of the two bodies happens if

(v̄n+1
bi − v̄n+1

ci ) · nn(bc)i > 0. (18)

In this case, we project out the normal components of each ap-
proaching velocity

vn+1
bi = v̄n+1

bi − [(v̄n+1
bi − vcom,n+1

i ) · nn(bc)i]nn(bc)i. (19)

This detection based on separate bodies does not cover collisions
of different parts of the same piece of material. However, this lim-
itation could be circumvented by subdividing a body into smaller
regions that register separately onto the Eulerian grid. These subre-
gions could then in turn collide with each other (neighboring ones
excluded to not interfere with elasticity forces). However, for our
examples such an extension necessary was not necessary.

After all grid velocities are corrected we interpolate the new ve-
locities back to the degrees of freedom of the Lagrangian mesh as

vn+1
p,new = ξ[vnp +

∑
i

Si(x
n
p )(vn+1

bi − vnbi)]

+ (1− ξ)
∑
i

Si(x
n
p )vn+1

bi ,
(20)

with b such that p ∈ b; ξ ∈ [0, 1] is a control parameter that defines
the ratio between PIC (Particle-In-Cell method [Evans et al. 1957])
versus FLIP (Fluid-Implicit-Particle method [Brackbill and Ruppel
1986]). For our simulations, we found that full FLIP, i.e. ξ = 1,
serves our purposes best. Since typically only a small portion of
the Lagrangian particles are involved in collisions, we do not need
the numerical viscosity introduced by PIC for stability.

Lastly, we update all particle velocities with the new values and
correct the positions accordingly to be consistent with the backward
Euler time discretization:

vn+1
p ← vn+1

p,new xn+1
p = xnp + ∆tvn+1

p . (21)

The collision algorithm is summarized in Figure 7.

7 Full algorithm

The complete update at each time step reads as follows:

1. Elasticity update: solve Equation (3) for candidate velocities

2. Collisions handling: rasterize masses and momenta (using
current positions and newly-acquired candidate velocities) of
mesh vertices and ghost particles; compute grid-based veloc-
ities and body normals; detect grid-based collisions and re-
solve them by projecting out the respective normal compo-
nents; interpolate velocities back to mesh dofs

3. Level set evolution: compute energy density as stated in Sec-
tion 4.2; move the interface according to Equation (7)

4. Mesh cutting and fragment generation: embed the surface
of the new healthy region into the mesh; use the old and new
interfaces to generate new fragments as detailed in Section 3;
reinitialize level set function to a signed distance field.

8 Results

We demonstrate the compelling effects possible with this approach
with a number of complex fracture scenarios. Representative run-
times are given in Table 1. Figures 1, 9 and 10 demonstrate our abil-
ity to resolve collisions with an external projectile while simultane-
ously simulating the failure response. Figure 4 depicts the sequen-
tial generation of fragments of material during a collision-induced
failure process. Figures 8 and 5 demonstrate failure resulting from
external loading (Figure 6 illustrates the effect of the elastic en-
ergy in this process). In the examples in Figure 9 and 10 we fur-
ther split damage fragments using pre-scored grain boundaries as in
[Bao et al. 2007].

9 Limitations and discussion

Our level set approach to ductile fracture requires no Lagrangian
re-meshing effort and is very easy to implement. Furthermore, the

example dofs level set grid min/frame
Stretching Jell-OTM 1.9M 128 × 128 × 128 4.1
Shooting Jell-OTM 1.0M 128 × 128 × 128 1.1
Stretching armadillo 1.0M 96 × 96 × 96 1.1

Table 1: Example degree of freedom counts, level set grid resolu-
tions and simulation times. Simulations were performed on a 16-
core Intel Xeon E5-2690 2.90GHz machine.
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Figure 8: An armadillo is stretched until its limbs tear off.

level set evolution in the Griffith’s energy minimization requires
little more information than is already needed during standard sim-
ulation of deformable objects. Although this makes the method
easier to implement than many methods that utilize aggressive re-
meshing, it also brings with it some limitations. The primary lim-
itation is caused by the level set definition of the material regions,
which precludes the representation of infinitely thin failure regions,
i.e. we cannot represent individual crack tip curves. Our grid based
collision handling is not as precise as [Bridson et al. 2002] and
can cause small regions of overlap in some areas and separation
distances in others. However in contrast to said work, the MPM
method provides the capability to resolve collisions between em-
bedded interface, independent of the aspect ratios of the embedded
triangles. Nonetheless, the method presents a nice balance between
accuracy and complexity of implementation. Its foundation in Grif-
fith’s energy and its ability to employ arbitrary fracture patterns lead
to compelling, realistic fracture effects, as demonstrated in our re-
sults.
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A Derivation of the level set speed

We will now detail the derivation of Equation (6) and our level set
speed. The problem is of the general form

J(Ω) :=

∫
Ω

f(X)dX,

for a smooth, open set Ω ⊂ Rd and sufficiently well-behaved func-
tion f . The problem at hand is the analysis of the behavior of J
under small perturbations of the domain of integration Ω. For a
small, suitable perturbation (I + θ)(Ω) = {X + θ(X)|X ∈ Ω}
the rate of change to J can be expressed as the shape derivative (see
[Sokolowski and Zolesio 1992]), which we will denote as J

′
(Ω)[θ],

where the direction of change, θ, is indicated in brackets.

A very useful way to compute the shape derivative for this case is
the following result (cf. e.g. [Sokolowski and Zolesio 1992]). For

Figure 9: Shooting a bullet through a plastic wall.

the above definitions, the shape derivative of J is given by

J ′(Ω)[θ] =

∫
Ω

∇ · (θ(X)f(X))dX

=

∫
∂Ω

θ(X) · n(X)f(X)dA(X),

(22)

where n denotes the outward normal to ∂Ω. This result can also be
interpreted as a special case of the Reynolds’ transport theorem

d

dτ

∫
Ω(τ)

fdV =

∫
Ω(τ)

∂f

∂τ
dV +

∫
∂Ω(τ)

(vb · n)fdA.

To show that the statement of Equation (22) holds, let Ω
′

= (I +
εθ)(Ω) be a small perturbation of Ω in the direction of θ, and let
γ: Rd → Rd, Ω 7→ Ω

′
the mapping between the two sets, i.e.

γ(X) = (I+εθ)(X). Then, we can apply a change of coordinates
to obtain

J((I + εθ)(Ω)) =

∫
Ω

′
f(Y )dY

=

∫
Ω

f(γ(X)) det(Dγ)(X)dX,

where Dγ denotes the Jacobian of γ. The directional derivative of
J is then given by

J ′(Ω)[θ] =
∂

∂ε
|ε=0J((I + εθ)(Ω))

=
∂

∂ε
|ε=0

∫
Ω

f(γ(X)) det(Dγ)(X)dX

=

∫
Ω

∇f(X) · θ(X) + f(X)∇ · θdX

=

∫
Ω

∇ · (fθ)dX
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Figure 10: Shooting two spheres at an armadillo.

where we used det(Dγ)|ε=0 = det(D(I + εθ))|ε=0 = 1 as well as

∂

∂ε
|ε=0 det(Dγ) =

∂

∂ε
|ε=0 det(D(I + εθ))

=
∂

∂ε
|ε=0(1 + ε∇ · θ +O(ε2))

=∇ · θ,

and∇f · θ+ f∇· θ = ∇· (fθ) for any differentiable scalar valued
function f and vector field θ. The divergence theorem completes
the derivation.

To apply this result, we first interpret the energy eg defined by
Equation (5) as a functional in the healthy region Ω0

h and then use
Equation (22) to differentiate the energy in the direction of a small
perturbation θ:

e′g(Ω
0
h)[θ] =

∫
∂Ω0

h

Ψθ · nhdA+

∫
∂(Ω\Ω0

h
)

κθ · nddA.

Since ∂(Ω \ Ω0
h) = ∂Ω0

h and nh = −nd where θ 6= 0, we can
rewrite this as

e′g(Ω
0
h)[θ] =

∫
∂Ω0

h

(Ψ− κ)θ · nhdA.

By setting θ(x) = −δηnh(x) (in the notation of Section 5), we
obtain Equation (6), which allows us to minimize the energy in a
gradient descent. This level set speed, vls = Ψ− κ corresponds to
the idea of Griffith that a transition from healthy phase to damaged
phase only occurs if the release of elastic energy exceeds a threshold
κ.
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