
www.elsevier.com/locate/gmod

Graphical Models 68 (2006) 66–89
Tetrahedral and hexahedral invertible
finite elements

G. Irving *, J. Teran, R. Fedkiw

Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA 94305, USA

Received 17 January 2005; received in revised form 28 March 2005; accepted 29 March 2005
Available online 13 June 2005
Abstract

We review an algorithm for the finite element simulation of elastoplastic solids which is
capable of robustly and efficiently handling arbitrarily large deformation. In fact, the model
remains valid even when large parts of the mesh are inverted. The algorithm is straightforward
to implement and can be used with any material constitutive model, and for both volumetric
solids and thin shells such as cloth. We also discuss a mechanism for controlling plastic defor-
mation, which allows a deformable object to be guided towards a desired final shape without
sacrificing realistic behavior, and an improved method for rigid body collision handling in the
context of mixed explicit/implicit time-stepping. Finally, we present a novel extension of our
method to arbitrary element types including specific details for hexahedral elements.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Finite elements; Stability; Inversion; Large deformation; Plasticity; Volumetric solids; Shells;
Tetrahedral elements; Hexahedral elements
1. Introduction

Significant effort has been placed into making finite element simulation robust in
the regime of large deformations, including the arbitrary Lagrangian–Eulerian
1524-0703/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.gmod.2005.03.007

* Corresponding author.
E-mail addresses: irving@cs.stanford.edu (G. Irving), jteran@stanford.edu (J. Teran), fedkiw@cs.

stanford.edu (R. Fedkiw).

mailto:irving@cs.stanford.edu
mailto:jteran@stanford.edu
mailto:fedkiw@cs. stanford.edu
mailto:fedkiw@cs. stanford.edu


G. Irving et al. / Graphical Models 68 (2006) 66–89 67
(ALE) formulations pioneered by [1], continuous remeshing (see e.g. [2,3] and the
references therein), etc. However, as noted in [4], these approaches are often compu-
tationally intensive and difficult to implement, which has primarily limited their use
to two spatial dimensions. Moreover, Bessette et al. [4] points out that these difficul-
ties often lead authors to less optimal techniques such as element deletion. This not
only degrades the accuracy of the simulation, but is unsuitable for graphics applica-
tions where disappearing tetrahedra cause visual artifacts.

Since constitutive models for real materials are meaningful only for uninverted
material, standard finite element simulation algorithms fail as soon as a single tetra-
hedron inverts. For this reason, various authors have proposed techniques for untan-
gling inverted meshes. For example, Vachal et al. [5] used feasible set methods and
optimization to untangle two-dimensional meshes, Escobar et al. [6] extended vari-
ous tetrahedron quality metrics intended for mesh smoothing to the case of inverted
tetrahedra allowing untangling to occur simultaneously with optimization, etc. How-
ever, none of these techniques are guaranteed to work, and fail quite often in practice
especially if the boundary of the mesh is also tangled. And the failure to untangle a
single tetrahedron forces the simulation to fail for most real world constitutive
models.

As pointed out by Espinosa et al. [3], element inversion can occur even if the ver-
tex positions of the mesh are identical to their true continuum values. A common
case of this is illustrated in Fig. 1 where a triangle with three nodes on the boundary
is forced to invert during a collision with another object. Even if an object as a whole
deforms by only a small amount, say 10%, an individual element may undergo severe
deformation due to errors in the discrete representation of the continuous material.
In fact, large deformation and inversion can arise even when simulating incompress-
ible material, since one typically cannot conserve volume for each individual ele-
Fig. 1. A highly curved region of an object is pushed inwards during a collision with a gray object (left),
and a triangle used to represent this deformation is forced to invert (right).



68 G. Irving et al. / Graphical Models 68 (2006) 66–89
ment. Given that it is difficult or impossible to prevent inversion in all cases, we pro-
pose a simpler approach that allows elements to invert gracefully and recover.

If the particular material behavior and underlying physics is unimportant, there
are several techniques for treating inversion. For mass-spring systems, altitude
springs work surprisingly well [7] (see also the work on ‘‘Van Helsing’’ [8]). In fact,
one can even add altitude springs to finite element models, but this changes the
underlying partial differential equations and thus the behavior of the material (losing
one of the key benefits of the finite element method as compared to mass-spring sys-
tems). Moreover, one cannot use constitutive models that lose meaning for inverting
elements (which is most of them). Of course, one could switch from finite element
methods to mass-spring methods for flat, degenerate, and inverted elements but this
leads to force discontinuities (detrimental to implicit time integration or quasistatic
simulation), visual artifacts such as popping, etc. Various authors have proposed
methods similar in spirit to altitude springs. Teschner et al. [9] changes the underly-
ing partial differential equation by adding a volume preservation term to penalize
inversion. Muller and Gross [10] first computes and removes the rotation from mate-
rial to spatial coordinates, and then applies a linear model in the unrotated space.
Although the linear model works well for inverted elements, it is severely limited
in the types of materials it can approximate. In fact, we stress that a spring is the
most common linear model that correctly accounts for rotation.

In [11], we took a different approach motivated by the desire to continuously (or
smoothly) extend the finite element method so that it behaves gracefully for both
degenerate and inverted elements, even for arbitrary constitutive models. This is
especially important as a number of recent graphics publications have advocated
the use of more advanced constitutive models to capture more realistic physical
behavior. Moreover, many materials found in nature exhibit complex nonlinearities
under large deformation, such as the biphasic nature of biological tissue and the
anisotropic behavior of muscle. Our approach begins by computing a diagonaliza-
tion of the deformation mapping in order to determine the ‘‘direction’’ along which
a given tetrahedron is inverted. The constitutive model is then extended into the
inverted regime using C0, C1 or higher continuity around the flat state, resulting
in smooth behavior even in extreme situations. The resulting forces always act to
restore the tetrahedron to its original shape, allowing objects to recover cleanly
from flat or inverted configurations, as shown in Fig. 2. The generality and robust-
ness of the approach was illustrated with a number of simulations of objects under-
going large deformations, including nonlinear and anisotropic constitutive models,
plasticity with and without control, both volumetric objects and thin shells, and
fracture.

This paper is an extended version of Irving et al. [11] including a review of the
material presented therein. In addition, we also present an extension to arbitrary ele-
ment types with specific details and simulation results for hexahedral elements. This
is readily accomplished because the modifications required to handle inversion in-
volve only the first Piola–Kirchoff stress P which is independent of the element type.
Therefore, an arbitrary element can be made robust through inversion by modifying
the computation of P at each quadrature point.



Fig. 2. A torus with zero strength collapses into a puddle. When the strength is increased, the torus
recovers.

G. Irving et al. / Graphical Models 68 (2006) 66–89 69
2. Related work

Terzopoulos et al. [12–14] pioneered deformable models in computer graphics
including early work on plasticity and fracture. Finite element simulations have been
used to model a hand grasping a ball [15], to simulate muscles [16], for virtual sur-
gery [17], and to simulate data from the NIH visible human data set [18,19]. O�Brien
and Hodgins [20] and O�Brien et al. [21] simulated brittle and ductile fracture, respec-
tively, while Yngve et al. [22] coupled this work to explosions. Finite elements were
also used for fracture in [23]. Other work includes the adaptive framework of Deb-
unne et al. [24], the rotation based approach in [25,10], the hybrid finite element free
form deformation approaches in [26,27], and the finite volume muscle models of Ter-
an et al. [28]. Other interesting approaches to the simulation of deformable objects
include [29,30].

Many authors have worked to improve the robustness of mass-spring systems.
Palmerio [31] used a pseudo-pressure term in addition to edge springs, Bourguignon
and Cani [32] used springs emanating from the barycenter of each tetrahedron to
preserve volume, and Cooper and Maddock [33] introduced altitude springs to pre-
vent triangles from collapsing. Molino et al. [7] later improved this model and
applied it in three spatial dimensions to the case of tetrahedral mesh generation.



70 G. Irving et al. / Graphical Models 68 (2006) 66–89
If altitude springs are used correctly, not only is inversion not a problem, but the ele-
ments will work to un-invert. Unfortunately, spring systems do not allow the mod-
eling of arbitrary constitutive models.

We also show examples of our method at work for the in-plane deformations of
lower dimensional manifolds such as cloth and shells. Here, since triangles cannot
invert in three spatial dimensions, our method is similar to the work of Etzmuss
et al. [34], except that they do not consider degenerate elements. For out-of-plane
forces, we use the bending model of Bridson et al. [35] (see also [36]), and for
self-collisions we use the method of Bridson et al. [37]. Moreover, for volumetric
collisions we also use the method in [37] simply applied to the triangulated boundary
surface of the tetrahedron mesh. Other interesting work on cloth and shells includes
the implicit time stepping of Baraff and Witkin [38], the bending model of Choi and
Ko [39], the adaptive simulation work of Grinspun et al. [40], and the self-collision
untangling strategy of Baraff et al. [41].
3. Measuring deformation

A deformable object is characterized by a time dependent map / from material
coordinates X to world coordinates x. The stress at a given point X in the material
depends only on the deformation gradient F (X) = ox/oX of this mapping. Since we
are using a purely Lagrangian framework, all mappings are based in material space.
In order to discretely represent /, material space is divided into finite elements such
as tetrahedrons or hexahedrons. In order to interpolate values defined on vertices in
a consistent manner, we make use of isoparametric elements parameterized by n [42].
The point is that nodal values of a variable xi can be expressed throughout the
element via

xðnÞ ¼
Xne
i¼1

xiN iðnÞ;

where ne is the number of vertices in the element and each Ni (n) is an interpolating
function associated with node i. Using this and the chain rule allows us to compute
the deformation gradient as

F ¼ ox

oX
¼ ox

on

oX

on

� ��1

¼
Xne
i¼1

xi
oNiðnÞ
on

Xne
i¼1

Xi
oNiðnÞ
on

 !�1

.

For simplicity we assemble the spatial positions of the element vertices in a 3 · ne
matrix Ds ¼ ½x1; . . . ; xne �, and similarly for material positions, Dm ¼ ½X1; . . . ;Xne �.
Additionally, we assemble the derivatives oNi=on in a ne · 3 matrix

H ¼ ½oN1

on

T
; . . . ; oNne

on

T�T. With these conventions, F can be written as

F = DsH (n) (DmH (n))�1.
To estimate nodal forces for a given element, we must evaluate F at several quad-

rature points ng. Since the element is fixed in material coordinates,

H (ng) (DmH (ng))
�1 is constant and can be precomputed for efficiency. More



G. Irving et al. / Graphical Models 68 (2006) 66–89 71
importantly, as long as the initial mesh is reasonable, the ne · 3 matrix
H (ng) (DmH (ng))

�1 is well conditioned, and therefore Fg = DsH (ng) (DmH (ng))
�1 is

well defined and finite regardless of the current state of the object. Furthermore,
the values of Fg at the quadrature points contain all the information about the defor-
mation of each element. In particular, we can monitor inversion at each quadrature
point simply by checking the sign of detFg.

Once we have F, the next step is usually to define the Green strain G =
1/2(FTF � I), and compute stress and forces based on G. We do not do this, how-
ever, since G is invariant with respect to all orthogonal transformations, including
reflection, and is therefore incapable of detecting inversion. Furthermore, G is
already nonlinear in the deformation, and it is therefore more difficult to interpret
the large deformation behavior of a constitutive model based on G than one based
on F, which is linearly related to deformation. Thus, for the remainder of this paper,
we make the (nonrestrictive) assumption that the constitutive model is written explic-
itly in terms of F.

In the case of tetrahedral elements, we use barycentric interpolation resulting in con-
stant deformation gradients, and only one quadrature point is required. As a result the
4 · 4matrixH has a particularly simple structure consisting of the identity matrix atop
a row consisting of all�1 entries. Therefore, in [11], we absorbedH intoDs andDm to
obtain Ds = [x2 � x1,x3 � x1,x4 � x1], Dm = [X2 � X1,X3 � X1,X4 � X1], and
F ¼ DsD

�1
m . Furthermore, if the material is isotropic, we can save storage space by per-

forming a QR-decomposition of Dm and storing only the upper triangular part, as
noted in [23]. This corresponds to rotating material space, and therefore has no effect
on an isotropic material. This optimization can be performed for an anisotropic model
by rotating the anisotropic terms via the rotation from the QR-decomposition.

Hexahedral elements are also commonly used and are determined by trilinearly
interpolating nodal values throughout the primitive element [�1,1]3. The associated
interpolating functions are given as

N 4ði�1Þþ2ðj�1ÞþkðnÞ ¼
ð1þ ð�1Þin1Þð1þ ð�1Þjn2Þð1þ ð�1Þkn3Þ

8
;

where i, j, k = 1, 2. Note that these elements do not yield a compact expression for
the deformation gradient as in the case of tetrahedral elements. Additionally, the
deformation gradient typically needs to be evaluated at eight different quadrature
points within each element making hexahedral elements considerably more expensive
than tetrahedral elements.
4. Force computation

When the constitutive model is given as a first Piola–Kirchhoff stress P, an ele-
ment�s contribution to the finite element force on one of its nodes xa is given as

fea ¼
Z
Xe
m

P
oNa

oX

T

dX ¼
Z
Xi

P
oNa

oX

T oX

on

����
����dn



72 G. Irving et al. / Graphical Models 68 (2006) 66–89
where Xe
m represents the element in material space and Xi represents the ideal ele-

ment. This integral can be approximated using quadrature as

fea ¼
Xng
g¼1

Pg
oNa

oX

� �T

g

oX

on

� �
g

�����
�����W g ¼

Xng
g¼1

PgðDmHgÞ�T oNa

on

� �T

g

oX

on

� �
g

�����
�����W g;

where ng is the number of quadrature points, Pg is the first Piola–Kirchhoff stress at a
quadrature point g, and Wg is the weight associated with quadrature point g. The
second equality comes from oNa

oX
¼ oNa

on
ðoX
on
Þ�1 ¼ oNa

on
ðDmHÞ�1. The element�s contribu-

tion to all its nodal forces can be compactly represented as G ¼ ½fe1; . . . ; f
e
ne
� ¼Png

g¼1Gg where

Gg ¼ PgðDmHgÞ�T
HT

g

oX

on

� �
g

�����
�����W g ¼ PgBmg

using the definition of H. Note that since the 3 · ne matrix Bmg is constant, the nodal
forces are linearly related to P. Therefore, the key to obtaining robust forces in the
face of large deformation is an accurate calculation of P.

If a constitutive model is given in terms of a Cauchy stress r or second Piola–Kir-
chhoff stress S, we can easily convert to a first Piola–Kirchhoff stress via the formulas
P = FS and P = JrF�T where J = detF. Alternatively, one could rewrite the force
formula Gg ¼ PgBmg directly in terms of the other stresses as Gg ¼ rgBsg or
Gg ¼ FgSgBmg. Unlike the first Piola–Kirchhoff case where obtaining a valid Pg is
sufficient to obtain robust forces, computing a valid rg or Sg is not enough. For
example, if the element is a single point, Fg and thus Gg ¼ FgSgBmg are identically
zero. In such instances there are no restorative forces. Therefore, we write all consti-
tutive models in terms of P before force computation.

In the case of tetrahedral elements, only one quadrature point is needed per ele-
ment and an element�s contribution to the elastic force on node i is equivalent to
gi = �P (A1N1 + A2N2 + A3N3)/3, where AjNj are the area weighted normals (in
material coordinates) of the faces of the tetrahedron incident to node i. This was
shown in [28] and results from the fact that a first Piola–Kirchhoff stress P is a map-
ping from area-weighted normals in material space to traction vectors in world
space. See also [11] for more details.

For hexahedral elements, eight quadrature points per element are typically used.
Particularly common is the second-order quadrature that uses the points

n4ði�1Þþ2ðj�1Þþk ¼ ð�1Þi 1ffiffiffi
3

p ; ð�1Þj 1ffiffiffi
3

p ; ð�1Þk 1ffiffiffi
3

p
� �

in the ideal domain with weights W4 (i � 1) + 2 (j � 1) + k = 1 where i, j, k = 1, 2.
5. Diagonalization

Since rigid body rotations do not change the physics of a deformable object, the
stress P satisfies P (UF) = UP (F) for any rotation U. (Here P (F) denotes function



G. Irving et al. / Graphical Models 68 (2006) 66–89 73
application.) Furthermore, if we temporarily assume an isotropic constitutive model,
P is invariant under rotations of material space, i.e., P (FVT) = P (F)VT. Therefore, if
we diagonalize F via rotations U and V to obtain F ¼ UF̂VT, P becomes

P ¼ PðFÞ ¼ UPðF̂ÞVT ¼ UP̂VT; ð1Þ
where a hat superscript denotes the corresponding rotated quantity. Since the elastic
energy of an isotropic material is invariant under world and material rotations, it can
depend only on the invariants of F, or equivalently on the entries of the diagonaliza-
tion F̂ (see e.g. [43]). Therefore, the gradient of the energy, r̂, will also be diagonal.
Moreover, since the three stresses are related via r̂ ¼ ð1=JÞP̂F̂T

and P̂ ¼ F̂Ŝ, the
diagonalization of F actually results in the simultaneous diagonalization of all three
stresses. In particular, P̂ in Eq. (1) is diagonal for an isotropic constitutive model.
For an anisotropic constitutive model, a diagonal F̂ does not result in a diagonal
P̂. However, this is not restrictive, and we show examples of anisotropic constitutive
models in Section 6.1.

The diagonalization of F is not unique, however. While the ordering of the entries
of the diagonal matrix F̂ is unimportant, the signs of the entries determine the par-
ticular direction of inversion. The standard SVD convention of choosing all nonneg-
ative entries works only when detFP 0. When detF < 0, the signs of the entries
must be chosen carefully in order to guarantee that the forces act to uninvert the ele-
ment. In this case, F̂ has either one or three negative entries. We heuristically assume
that each element is as uninverted as possible, and thus we assume that only one en-
try (not three) is negative. Moreover, the entry with the smallest magnitude is chosen
to be negative. This is motivated by the geometric fact that an inverted tetrahedron
can be uninverted by moving any one node across the plane of the opposite face, and
it is most efficient to choose the node that is closest to the opposite face.

We compute the correct diagonalization by finding any diagonalization and cor-
recting the signs. When doing this, we must be careful to ensure that the final U and
V are pure rotations, i.e., detU = detV = 1. This is because deformable objects are
not invariant under reflections of material or world space, and Eq. (1) does not hold
if either U or V is a reflection. We compute the SVD of F ¼ UF̂VT as follows. First
we form the normal equations FTF ¼ VF̂UTUF̂VT ¼ VF̂

2
VT. Then we rearrange to

obtain an eigenproblem, FTFV ¼ VF̂
2
for the symmetric positive semidefinite FTF.

Here, V is an orthogonal matrix of eigenvectors and F̂
2
is a diagonal matrix with

nonnegative entries. Robust computation of eigensystems for 3 · 3 matrices (even
with repeated or zero eigenvalues) is a solved problem. And since it is relevant to ri-
gid body simulations, it has received a lot of attention. Note that if V is a reflection
with detV = �1 we can simply multiply a column of V by �1 to make V a rotation
with detV = 1. The entries of F̂ are then determined by taking the square root of the
diagonal elements of F̂

2
, and U can be found via U ¼ FVF̂

�1
for well-shaped ele-

ments. However, if a diagonal entry of F̂ is near zero, we do not use this formula
for the corresponding column of U, but instead take it to be orthogonal to the other
columns. For example, in the extreme case where F = 0, we choose U = I. Finally, to
treat inversion where detF < 0, we have det U = �1 implying that U is a reflection.
This is removed by negating the minimal element of F̂ and the corresponding column



Fig. 3. A hexahedron mesh collapses into a puddle and recovers.

74 G. Irving et al. / Graphical Models 68 (2006) 66–89
of U. Fig. 2 illustrates degeneracy and inversion handling for a tetrahedral torus
mesh. Moreover, we have tested our approach for a variety of degenerate configura-
tions, such as when a tetrahedron collapses to a single point or line, and the method
always leads to robust recovery from inversion. Fig. 3 shows similar results for a
hexahedral mesh.

5.1. Other rotations

Typically, authors use a polar decomposition to remove the world rotation of a
tetrahedron producing a symmetric Fs with F = QFs. To recover from inversion,
one must be careful to control the signs of the eigenvalues of Fs as in the diagonal-
ization case. However, we know of no way to do this without first computing the full
diagonalization F ¼ UF̂VT, and forming the polar decomposition via Q = UVT,
Fs ¼ VF̂VT. Polar decomposition was used by Etzmuss et al. [34] for cloth simulation
and [10] for volumetric solids, but neither showed how to correctly handle inverting
or degenerate elements. However, for the cloth case, we note that triangles do not
invert in three spatial dimensions (although they can become degenerate). Both tet-
rahedra in three spatial dimensions and triangles in two spatial dimensions can invert
and become degenerate.



G. Irving et al. / Graphical Models 68 (2006) 66–89 75
Alternatively, one could attempt to remove the world rotation with a QR-decom-
position, i.e., F = QFr with Fr an upper triangular matrix. However, any stress which
depends linearly on Fr will be anisotropic in a mesh dependent way, since it is not
invariant under rotations of material space. To see this, it suffices to note that if V
is a rotation of material space, then FVT = QFrV

T, and FrV
T is not upper triangular.

Therefore, QR-decomposition is inadvisable even if physical accuracy is not a
requirement. Moreover, this is a problem with any method for removing rotations,
such as [25], that does not use Q = UVT for the world rotation.

Note that our approach departs from the typical goal of determining (or approx-
imating) the rotation from material space to world space, i.e., Q from the polar
decomposition. Instead, we look for two rotations U and V such that UT and VT ro-
tate the world and material spaces, respectively, to a space where the deformation
gradient is a diagonal matrix. This is preferable to the space obtained using Q in
which the deformation gradient is a more complex symmetric matrix.
6. Constitutive models

Once we have carefully diagonalized F, we can extend our constitutive models to
behave reasonably under inversion. The diagonal setting makes this quite simple.

If St. Venant–Kirchhoff material is compressed beyond a certain point, it gets
weaker and weaker as the compression increases, and the stress drops to zero as
the object becomes flat. Moreover, if an element inverts, the forces act to keep the
element inverted. See Fig. 4 (upper left). As noted in [43], this makes the St. Ve-
nant–Kirchhoff model completely useless for modeling large deformations. O�Brien
and Hodgins [20] noted these difficulties, but dismissed them since they were simu-
lating rigid materials. However, as discussed previously, stiff or incompressible ob-
jects may still have inverted elements due to discretization error, especially on the
coarse grids common in the computer graphics community.

To alleviate the problems with the St. Venant–Kirchhoff model, various authors
(e.g. [17]) have proposed adding a pseudo-pressure term to prevent element inver-
sion. In fact, the classical neo-Hookean constitutive model already does this as
shown in Fig. 4 (upper right). The singularity at the origin means that infinite energy
is required to completely flatten an element, and as long as the equations for this
constitutive model are accurately simulated, inversion is prevented. However, pre-
venting inversion also prevents the handling of situations where inversion is the de-
sired, correct response, as in Fig. 1. Moreover, since the forces become arbitrarily
large, the system can become arbitrarily stiff and difficult to integrate, making it dif-
ficult to handle situations such as that shown in Fig. 7 where a volumetric Buddha
model is pulled through rigid, interlocking gears.

To avoid the unnecessary stiffness associated with the neo-Hookean constitutive
model, we modify the constitutive model near the origin to remove the singularity
by either linearizing at a given compression limit or simply clamping the stress at
some maximum value. Moreover, as shown in Fig. 4 (lower right), we extend the
model past the origin into the inverted regime in order to obtain valid forces for



Fig. 4. The relationship between the first Piola–Kirchhoff stress P̂ and the deformation gradient F̂ for
various constitutive models.

76 G. Irving et al. / Graphical Models 68 (2006) 66–89
inverted elements. These forces act to uninvert the element. Note that since we have
removed both spatial and material rotations by diagonalizing, the modified model is
automatically rotation invariant and isotropic.

The major strength of the diagonal setting is that these modifications can be ap-
plied to arbitrary constitutive models. This is quite natural, since the diagonal setting
is also commonly used in the experimental determination of material parameters.
The resulting model is identical to the physical model most of the time, and allows
the simulation to continue if a few elements invert. Furthermore, our extensions pro-
vide C0 or C1 continuity around the flat case, which avoids sudden jumps or oscilla-
tions which might effect neighboring elements.

While it may seem nonphysical to modify a constitutive model for inversion han-
dling, most constitutive models lose accuracy long before inversion occurs. It is
exceedingly difficult to measure material response in situations of extreme compres-
sion, so constitutive models are often measured for moderate deformation and
continued heuristically down to the flat cases. Given that some accuracy loss is



G. Irving et al. / Graphical Models 68 (2006) 66–89 77
unavoidable when elements are extremely degenerate, it is preferable to provide
smooth, consistent handling of inversion in order to avoid unnecessary corruption
of the more meaningful parts of the simulation.

If a specific qualitative material behavior is desired but the exact quantitative
model is less important, we can use the diagonal setting to construct a suitable con-
stitutive model. For example, most biological material is soft under small deforma-
tion, but becomes stiffer as the deformation increases. A simple model capturing this
behavior is given by choosing threshold values for compression and elongation, spec-
ifying the slope of the stress curve outside these threshold values and at the unde-
formed state, and using a cubic spline to interpolate between them. This model,
equipped with a linear pressure component, was used for the simulations of the vol-
umetric Buddha model shown in Figs. 6 and 7, and the hexahedral simulation in Fig.
8. Note that any isotropic constitutive model expressed in diagonal form will auto-
matically preserve angular momentum, since if P̂ is diagonal, Ŝ ¼ F̂

�1
P̂ is symmetric

(see e.g. [43]). For the torus puddle, hexahedron puddle, and plastic sphere simula-
tions (see Figs. 2 and 9), where the focus is on degeneracy and plasticity, respectively,
we used the simple rotated linear model P̂ ¼ 2lðF̂� IÞ þ k trðF̂� IÞ depicted in Fig.
4 (lower left).

Once we have computed the diagonalized stress P̂ at a given quadrature point, the
force computation becomes

G ¼ UP̂VTBm ¼ UP̂B̂m; ð2Þ
where B̂m ¼ VTBm can be computed and stored if the rotation is fixed for multiple
force computations, as in some versions of Newmark time integration (see
Section 9).

6.1. Anisotropy

If the constitutive model includes anisotropic components, it is no longer invari-
ant under rotations of material space. However, we can continue to fully diagonalize
F, and rotate the anisotropic terms using V. Since we still work with a diagonal F̂, the
large deformation behavior of the constitutive model is still apparent and easy to
modify to handle inversion. For example, if the material is stronger in a certain mate-
rial direction a, we diagonalize F and use VTa in the computation of P̂. P̂ is no longer
a diagonal matrix, but we can still compute forces using Eq. (2). When constructing
anisotropic constitutive models that allow inversion, we write P̂ as a diagonal matrix
plus F̂ times a symmetric matrix for the anisotropic terms. Then Ŝ ¼ F̂

�1
P̂ is sym-

metric (preserving angular momentum) as required.
We illustrate the handling of anisotropy with an example simulation of skeletal

muscle in the upper limb (see Fig. 5). We use a nonlinear transversely isotropic qua-
si-incompressible constitutive model. See Teran et al. [44] for more details. This is an
intricate region of the body articulated with complex joints in the shoulder, elbow,
and wrist. Inaccuracy in the joint models and motion data leads to skeletal configu-
rations that are incompatible with the musculature creating boundary conditions
that degenerately deform muscles and tendons leading to spurious element inversion.



Fig. 5. A simulation of muscles driven by a key-framed skeleton. The muscle is represented with a
transversely isotropic constitutive model, and the strength along the fiber direction in the muscle is based
on activation levels.

78 G. Irving et al. / Graphical Models 68 (2006) 66–89
However, these configurations often only occur in limited regions of the mesh and
only for brief moments during a given motion. Our algorithm allows simulations
to progress past these temporary problems by letting elements invert and then later
recover.

6.2. Damping

Damping forces can be implemented by rotating the velocity gradient _F by the
same U and V used to diagonalize F, computing the damping stress P̂ in the rotated
frame, and computing the force exactly as for the elastic case. Note that the rotated
velocity gradient will in general not be diagonal.

As in the case of anisotropic elastic forces, a damping model will only preserve

angular momentum if P̂ can be expressed as F̂Ŝ, with Ŝ symmetric. This was not a
problem for anisotropy since the anisotropic terms are usually not important for flat
or inverted elements. However, in order to prevent visually unpleasant oscillations,
we do not want the damping forces to disappear for flat elements. For example,
the analogous damping model to the rotated linear constitutive model,

P̂ ¼ bð _̂Fþ _̂F
T

Þ þ a trð _̂FÞ, does not preserve angular momentum unless F̂ is a uniform



Fig. 6. A deformable Buddha with a cape undergoing large deformation when hit by a ball (top). The
same with the Buddha removed to illustrate the deformation (bottom) (cape, 84K triangles; Buddha, 357K
tetrahedrons).

G. Irving et al. / Graphical Models 68 (2006) 66–89 79
scaling. However, since the angular momentum errors are small around the unde-
formed state, and highly deformed elements are usually interacting with other ob-
jects, we have not found this lack of conservation to be visually noticeable. In
simulations where more physical accuracy is desired, we use a correct damping mod-
el for moderate deformations and a more robust but nonphysical model for the few
flat or inverted elements.

6.3. Plasticity

We represent plastic deformation with a multiplicative decomposition of the defor-
mation F = FeFp, where Fp represents the permanent plastic deformation and Fe the
elastic deformation, see e.g. [43] or [45]. The multiplicative formulation allows a com-
plete separation between plastic flow and elastic forces, and makes constraints such as
volume preservation simple to enforce. In contrast, the additive plasticity formulation
of [21] does not support true incompressibility, though this might not be a significant
problem for graphics applications. Note that if the elastic constitutive model is isotro-
pic, the rotational part of Fp is arbitrary, e.g., we can choose Fp to be symmetric.

We restrict ourselves to rate-independent plasticity models, and use the return
mapping algorithm to transfer deformation from the elastic part Fe to the plastic
part Fp whenever a yield criterion on Fe is exceeded. The details of the computation



Fig. 7. A volumetric Buddha model is pushed down with a cylinder and pulled between rigid interlocking
gears, then recovers its shape elastically (300K tetrahedrons).

Fig. 8. A hexahedralized volume pulled between rigid interlocking gears (56K hexahedrons).

80 G. Irving et al. / Graphical Models 68 (2006) 66–89



Fig. 9. A plastic sphere controlled towards a flattened disk shape is pulled through rigid interlocking gears
(upper left, upper right, and lower left). A more obvious example of plasticity control (lower right).

G. Irving et al. / Graphical Models 68 (2006) 66–89 81
of plastic flow are as follows. Compute the trial elastic deformation Fe;trial ¼ FF�1
p ,

and find the diagonalization Fe;trial ¼ UF̂e;trialV
T. If a yield criterion on F̂e;trial is

exceeded, project back onto the yield surface producing a new diagonal matrix
F̂e;proj. Compute the trial plastic deformation Fp;trial ¼ F̂

�1

e;projU
TF (dropping V since rota-

tions of Fp are unimportant). If Fp,trial exceeds a separate limit criterion, project it
back onto the limit surface producing the final Fp. Compute and store F�1

p for future
use.

This structure supports an arbitrary plastic yield criterion while still ensuring that
the plastic deformation does not become too extreme. This is important, since the
time step required for stability depends on the conditioning of Fp. In particular, Fp

should never invert. This can be implemented in the diagonal framework by ensuring
that the projection of F̂e always results in an F̂e;proj with positive entries. The final
limiting of Fp,trial can then be adjusted to ensure a well-conditioned Fp. Fig. 11 shows
a simulation of ductile fracture using this technique. See [46] for more details.
7. Controlling plasticity

Various authors, such as [47–49], have considered controlling physics based
simulations. The ability to control a simulation alleviates the need for laborious para-
meter tuning to achieve a desired effect, and makes possible animations which could



Fig. 10. Half of a torus (shell) simulated with in-plane and bending plasticity (3.5K triangles).

82 G. Irving et al. / Graphical Models 68 (2006) 66–89
not be achieved through physical accuracy alone. In the context of plasticity, we can
use the plastic limiting projection step to control the plastic deformation toward any
desired state without sacrificing realism. To do this, we compute a goal deformation
Fp,goal at the beginning of the simulation. In the plastic projection step, we are given a
tentative plastic flow from the old deformation Fp to the trial deformation Fp,trial.
In order to always move towards Fp,goal, we choose the final plastic deformation to
be the point on the segment from Fp to Fp,trial which is closest to Fp,goal. This compu-
tation is actually performed on the logarithms of each Fp after removing the world
rotation. Since the mapping from rest to goal state will rarely preserve volume
locally, volume preservation should not be used during the elastic projection step.

Allowing some flexibility in the plastic flow allows the deformation to pick up
additional fine detail not present in the goal state. For example, Fig. 9 shows a
plastic sphere pulled through interlocking gears. The sphere is controlled towards
the flattened disk shape. In particular, the goal state does not include the teeth marks
present in the final state of the sphere. A more obvious example of control is shown
in Fig. 9. Both of these examples used the simple yield criterion ilog Fei 6 c.
8. Thin shells and cloth

The diagonalized framework is readily extended to handle the in-plane behavior
of triangles for modeling thin shells and cloth (see Fig. 6). Here, F is a 3 · 2 matrix



Fig. 11. A Buddha undergoing ductile fracture (300K tetrahedrons).

G. Irving et al. / Graphical Models 68 (2006) 66–89 83
decomposed as F ¼ UF̂VT where U is a 3 · 2 matrix with orthonormal columns, F̂ is
a 2 · 2 diagonal matrix, and V is a 2 · 2 rotation matrix. Everything else follows in a
straightforward manner.

Inversion does not occur for freely moving thin shells and cloth, since an
‘‘inverted’’ triangle is indistinguishable from a triangle that has been rotated
180� out of plane. However, when triangles degenerate to lines or points special
care is needed. Moreover, when a shell approximates a two-dimensional surface
such as during surface mesh generation (see e.g. [7]), ‘‘inversion’’ can occur.
That is, a triangle can be tested for inversion by considering the sign of the
dot product between its face normal and a known approximation to the surface
normal at the center of the triangle. If this sign is negative, the triangle can be
considered inverted, and the signs of the entries of F̂ can be corrected as be-
fore. Thus, the triangle acts to uninvert by flipping the direction of its face
normal.

For bending forces, we use the formulation of Bridson et al. [35], which is similar
to that of Grinspun et al. [36]. The bending model is independent of the in-plane
model, and in-plane plasticity is analogous to the three-dimensional case. To allow
plastic bending, we apply the plastic flow algorithm to the rest angles between each
pair of adjacent triangles. An example of a shell simulation showing both in-plane
and bending plasticity is shown in Fig. 10.



84 G. Irving et al. / Graphical Models 68 (2006) 66–89
9. Time-stepping and collision handling

We use the Newmark time-stepping scheme of Bridson et al. [35] with explicit inte-
gration for the elastic forces and implicit integration for the damping forces. Treating
only the damping forces implicitly removes the strict quadratic time step restriction
required by fully explicit schemes without introducing the extra artificial damping
characteristic of fully implicit schemes. As most damping models are linear in the
velocities with a positive definite, symmetric Jacobian, the implicit integration can
be implemented using a fast conjugate gradient solver.

We modify Bridson et al.�s [35] scheme slightly to improve the handling of rigid
body collisions. Specifically, we use the velocity from the last implicit update as input
to the rigid body collision algorithm, and use constraints in the velocity update to pre-
vent motion in the direction normal to the rigid body for points experiencing a colli-
sion. The resulting algorithm to move from step n to n + 1 is as follows:

• ~vnþ1=2 ¼ vn þ Dt
2
aðtn; xn;~vnþ1=2Þ.

• ~xnþ1 ¼ xn þ Dt~vnþ1=2.
• Process rigid body collisions using ~xnþ1 and vn, producing final positions xn+1 and
modified velocities ~vn.

• vnþ1 ¼ ~vn þ Dtðaðtn; xn;~vnÞ þ aðtnþ1; xnþ1; vnþ1ÞÞ=2.

Note that the last line is exactly the trapezoidal rule applied to the velocities. This
algorithm supports a variable time step with second order accuracy and monotone
behavior. Since the positions change only in lines 2 and 3 of the algorithm, we can
compute F and its diagonalization only once per time step after step 3. Plastic flow
is also computed at this time. With this optimization, the cost of diagonalization
becomes negligible compared to the cost of the implicit velocity updates.

The rigid body collision processing is based on the algorithm of Bridson et al. [35].
We represent rigid bodies as implicit surfaces, which simplifies collision detection.
Each such node is projected to the surface of the object, and its normal velocity is
set to that of the object if it is not already moving away from it. We incorporate fric-
tion by changing the relative tangential velocity vT,rel to

vnewT;rel ¼ max 0; 1� l
DvN þ DxN=Dt

jvT;relj

� �
vT;rel;

where DxN and DvN are the changes in position and normal velocity from the pro-
jection step. The DxN/Dt term ensures that the particle will experience the correct
friction for the change in position imparted by the object. This term was not consid-
ered in [35].

Any node involved in a collision is flagged, and its normal velocity is held fixed
during the final trapezoidal rule step. Enforcing normal velocities of colliding parti-
cles via constraints during the velocity update further increases the stability of the
collision scheme, since it allows a nonlocal response to collision. This strategy is sim-
ilar to that proposed in [38], who implemented rigid body collisions in their fully
implicit scheme via constraints in the conjugate gradient solver.



G. Irving et al. / Graphical Models 68 (2006) 66–89 85
Since projecting points to the surface of an object tends to crush elements, the
ability to handle flat or inverted elements is essential to enable the use of reasonable
time steps. Also, since the rigid body collision algorithm is applied to surface vertices
only, not surface triangles, it is useful to apply the algorithm to the interior points as
well as the surface points, to prevent small rigid bodies from slipping between surface
points into the interior of the object. The importance of this increases for very soft
objects, as very soft surface triangles can easily expand and pass around even mod-
erately sized obstacles.

For self-collisions we extract the boundary surface and apply the cloth collision
algorithm of Bridson et al. [37]. This algorithm is applied ‘‘outside’’ of the time-step-
ping algorithm outlined above. Although a surface-only collision algorithm does not
prevent the interior of the object from extending outside its boundary, our method
has no difficulty with this inversion and only the surface is needed for rendering.
10. Examples

We used the algorithm of Molino et al. [7] to generate the tetrahedral meshes
used in this paper. Even without preconditioning in the CG solver, computation
times were generally under 20 min per frame for the largest meshes. Of course,
coarser meshes can be simulated in just a few minutes a frame. For example,
the torus simulation in Fig. 2 ran at around 10–20 s/frame with the 115K element
mesh, and .5–1 s/frame with an 11K element mesh. All the simulations involved
large numbers of inverted elements: a typical frame from the Buddha simulation
in Fig. 7 had about 29K inverted tetrahedrons out of a total of 357K tetrahedrons,
or about 8% of the mesh.

The Buddha with cape example in Fig. 6 was simulated in two layers, with one-
way coupling from the Buddha to the cloth using the collision processing algorithm
from Section 9. We used the exact triangulated surface geometry of the Buddha in
order for the cloth to resolve the many features of the Buddha mesh. To evaluate
the Buddha as an implicit surface at a cloth vertex v, we find the closest point p to
v on the Buddha surface (which may lie on a vertex, edge, or face) and define the
‘‘normal’’ at v to be in the direction from v to p or p to v, whichever points outwards.

The hexahedral meshes shown in Figs. 3 and 8 were cut out of regular cubic grids
in the obvious way. For self-collision handling and rendering, we divide each bound-
ary quadrilateral into two triangles. This adds no new degrees of freedom, and does
not effect the hexahedral force computation.
11. Comparison of tetrahedral and hexahedral elements

Given the ability to robustly handle inverted elements, it becomes possible to use
all vertex degrees of freedom in order to represent deformation without danger of
breaking the simulation. Therefore, we can compare the efficiency of tetrahedral
and hexahedral elements simply by comparing the effort required to evaluate the



86 G. Irving et al. / Graphical Models 68 (2006) 66–89
force on each vertex. This can be further broken down into the number of quadra-
ture points per vertex and the cost of each quadrature point. A standard cubic grid of
hexahedrons has approximately one element per vertex, and eight quadrature points
per element, or about eight quadrature points per vertex. Dividing each hexahedron
into five tetrahedra with a Freudenthal cut produces five quadrature points per ver-
tex. The regular BCC tetrahedral lattice used in [7] has four tetrahedra for each face
in a cubic grid and doubles the number of vertices by adding the center of each cube,
resulting in six quadrature points per vertex. In both of these examples, the number
of quadrature points per vertex is larger for hexahedral meshes than for tetrahedral
meshes. Since the work required per quadrature point is also larger for hexahedra
due to the use of 8 · 3 matrices, tetrahedral elements are significantly faster per ver-
tex than hexahedral elements.
12. Discussion

We stress here that element inversion does not imply that mass or even volume is
necessarily lost. In fact, there are precedents for our approach in the finite element lit-
erature. When considering incompressible or nearly incompressible materials, linear
tetrahedral elements suffer from severe volumetric and strain locking precluding their
use. The problem occurs because tetrahedra have limited flexibility under the con-
straint that their volume has to be preserved (or almost preserved), especially when
they are connected into amesh of elements that all have this same volume preservation
constraint. Boroomand and Khalilian [50] partially alleviate this problem by allowing
material to flow between elements so that the overall volume can be preserved without
preserving the volume of each individual element. Another very interesting approach
is the F-bar approach of de Souza Neto et al. [51] (see also [52]). The F-bar approach
defines a modified deformation gradient �F, which replaces the volume change in each
element with the average volume change over a patch of several elements. This is sim-
ilar in spirit to composite element approaches, see e.g. [53,54]. The F-bar approach al-
lows individual elements to change volume asmuch as they want as long as the volume
of the patch is preserved, significantly alleviating difficulties with locking.

Element inversion can be viewed in the context of incompressibility and locking.
Restricting individual linear tetrahedra to a non-inverted state is too restrictive for
some deformations, and it would be better to consider a patch of elements as in
the F-bar technique. That is, one could imagine a method that allows an individual
tetrahedron to invert as long as a larger patch of tetrahedra that contain the inverted
element does not invert. Then mass (or volume) is not lost, but just transferred to
other tetrahedra in the patch.
13. Conclusions

We have presented a new method for modifying an elastic constitutive model to
behave robustly for inverted elements, which works by carefully diagonalizing the



G. Irving et al. / Graphical Models 68 (2006) 66–89 87
deformation mapping prior to computing forces. Examples were presented to dem-
onstrate that this algorithm works well for volumetric and thin shell simulations
involving degeneracy, complex geometries, anisotropic constitutive models, plasticity
with and without control, ductile fracture, and coupling between different types of
deformable objects. Although we originally presented this method for tetrahedra
(only) in [11], here we generalized its application to quadrature points in arbitrary
elements presenting specific details and simulations for the case of hexahedra.
Acknowledgments

Research supported in part by an ONR YIP award and a PECASE award (ONR
N00014-01-1-0620), a Packard Foundation Fellowship, a Sloan Research Fellow-
ship, ONR N00014-03-1-0071, ARO DAAD19-03-1-0331, NSF IIS-0326388, NSF
ACI-0323866, NSF ITR-0205671, and NIH U54-GM072970. In addition, G.I.
and J.T. were supported in part by NSF Graduate Research Fellowships. We also
thank Mike Houston for providing computing resources used for rendering.
References

[1] C. Hirt, A. Amsden, J. Cook, An arbitrary Lagrangian–Eulerian computing method for all flow
speeds, J. Comput. Phys. 135 (1974) 227–253.

[2] G. Camacho, M. Ortiz, Adaptive Lagrangian modelling of ballistic penetration of metallic targets,
Comput. Meth. Appl. Mech. Eng. 142 (1997) 269–301.

[3] H. Espinosa, P. Zavattieri, G. Emore, Adaptive FEM computation of geometric and material
nonlinearities with application to brittle failure, Mech. Mater. 29 (1998) 275–305.

[4] G. Bessette, E. Becker, L. Taylor, D. Littlefield, Modeling of impact problems using an h-adaptive,
explicit Lagrangian finite element method in three dimensions, Comput. Meth. Appl. Mech. Eng. 192
(2003) 1649–1679.

[5] P. Vachal, R. Garimella, M. Shashkov, Untangling of 2D meshes in ALE simulation, J. Comput.
Phys. 196 (2004) 627–644.

[6] J. Escobar, E. Rodrı́guez, R. Montenegro, G. Montero, J. González-Yuste, Simultaneous untangling
and smoothing of tetrahedral meshes, Comput. Meth. Appl. Mech. Eng. 192 (2003) 2775–2787.

[7] N. Molino, R. Bridson, J. Teran, R. Fedkiw, A crystalline, red green strategy for meshing highly
deformable objects with tetrahedra, in: 12th International Meshing Roundtable, 2003, pp. 103–114.

[8] R. Kautzman, A. Maiolo, D. Griffin, A. Bueker, Jiggly bits and motion retargetting: bringing the
motion of hyde to life in Van Helsing with dynamics, in: SIGGRAPH 2004 Sketches and
Applications, ACM Press, New York, 2004.

[9] M. Teschner, B. Heidelberger, M. Muller, M. Gross, A versatile and robust model for geometrically
complex deformable solids, in: Proceedings of the Computer Graphics International, 2004.

[10] M. Muller, M. Gross, Interactive virtual materials, in: Graph. Interface, 2004.
[11] G. Irving, J. Teran, R. Fedkiw, Invertible finite elements for robust simulation of large deformation,

in: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2004,
pp. 131–140.

[12] D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, Elastically deformable models, Comput. Graph.
(Proc. SIGGRAPH 87) 21 (4) (1987) 205–214.

[13] D. Terzopoulos, K. Fleischer, Modeling inelastic deformation: viscoelasticity, plasticity, fracture,
Comput. Graph. (SIGGRAPH Proc.) (1998) 269–278.



88 G. Irving et al. / Graphical Models 68 (2006) 66–89
[14] D. Terzopoulos, K. Fleischer, Deformable models, Visual Comput. (4) (1988) 306–331.
[15] J.-P. Gourret, N. Magnenat-Thalmann, D. Thalmann, Simulation of object and human skin

deformations in a grasping task, Comput. Graph. (SIGGRAPH Proc.) (1989) 21–30.
[16] D. Chen, D. Zeltzer, Pump it up: computer animation of a biomechanically based model of muscle

using the finite element method, Comput. Graph. (SIGGRAPH Proc.) (1992) 89–98.
[17] G. Picinbono, H. Delingette, N. Ayache, Non-linear and anisotropic elastic soft tissue models for

medical simulation, in: IEEE International Conference on Robot. and Automation, 2001.
[18] Q. Zhu, Y. Chen, A. Kaufman, Real-time biomechanically-based muscle volume deformation using

FEM, Comput. Graph. Forum 190 (3) (1998) 275–284.
[19] G. Hirota, S. Fisher, A. State, C. Lee, H. Fuchs, An implicit finite element method for elastic solids in

contact, in: Proceedings of the Computer Animation, 2001, pp. 136–146.
[20] J. O�Brien, J. Hodgins. Graphical modeling and animation of brittle fracture, in: Proceedings of the

SIGGRAPH 99, vol. 18, 1999, pp. 137–146.
[21] J. O�Brien, A. Bargteil, J. Hodgins, Graphical modeling of ductile fracture, ACM Trans. Graph.

(SIGGRAPH Proc.) 21 (2002) 291–294.
[22] G. Yngve, J. O�Brien, J. Hodgins, Animating explosions, in: Proceedings of the SIGGRAPH 2000,

vol. 19, 2000, pp. 29–36.
[23] M. Muller, L. McMillan, J. Dorsey, R. Jagnow. Real-time simulation of deformation and fracture of

stiff materials, in: Comput. Anim. Sim. �01, Proceedings of the Eurographics Workshop, Eurographics
Association, 2001, pp. 99–111.

[24] G. Debunne, M. Desbrun, M. Cani, A. Barr, Dynamic real-time deformations using space and time
adaptive sampling, in: Proceedings of the SIGGRAPH 2001, vol. 20, 2001, pp. 31–36.

[25] M. Muller, J. Dorsey, L. McMillan, R. Jagnow, B. Cutler. Stable real-time deformations, in: ACM
SIGGRAPH Symposium on Computer Animation, 2002, pp. 49–54.

[26] S. Capell, S. Green, B. Curless, T. Duchamp, Z. Popović, Interactive skeleton-driven dynamic
deformations, ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002) 586–593.

[27] S. Capell, S. Green, B. Curless, T. Duchamp, Z. Popović, A multiresolution framework for dynamic
deformations, in: ACM SIGGRAPH Symposium on Computer Animation, ACM Press, New York,
2002, pp. 41–48.

[28] J. Teran, S. Blemker, V. Ng, R. Fedkiw, Finite volume methods for the simulation of skeletal muscle,
in: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2003, pp. 68–74.

[29] D. James, D. Pai, DyRT: dynamic response textures for real time deformation simulation with
graphics hardware, ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002) 582–585.

[30] D. James, K. Fatahalian, Precomputing interactive dynamic deformable scenes, ACM Trans. Graph.
(SIGGRAPH Proc.) 22 (2003) 879–887.

[31] B. Palmerio, An attraction–repulsion mesh adaption model for flow solution on unstructured grids,
Comput. Fluids 23 (3) (1994) 487–506.

[32] D. Bourguignon, M.P. Cani, Controlling anisotropy in mass-spring systems, in: Eurographics,
Eurographics Association, 2000, pp. 113–123.

[33] L. Cooper, S. Maddock, Preventing collapse within mass-spring-damper models of deformable
objects, in: The 5th International Conference in Central Europe on Computer Graphics and Vis.,
1997.

[34] O. Etzmuss, M. Keckeisen, W. Strasser, A fast finite element solution for cloth modelling, in: Pacific
Graph., 2003, pp. 244–251.

[35] R. Bridson, S. Marino, R. Fedkiw, Simulation of clothing with folds and wrinkles, in: Proceedings of
the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003, pp. 28–36.

[36] E. Grinspun, A. Hirani, M. Desbrun, P. Schroder, Discrete shells, in: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, 2003, pp. 62–67.

[37] R. Bridson, R. Fedkiw, J. Anderson, Robust treatment of collisions, contact and friction for cloth
animation, ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002) 594–603.

[38] D. Baraff, A. Witkin, Large steps in cloth simulation, in: Proceedings of the SIGGRAPH 98, 1998,
pp. 1–12.



G. Irving et al. / Graphical Models 68 (2006) 66–89 89
[39] K.-J. Choi, H.-S. Ko, Stable but responsive cloth, ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002)
604–611.

[40] E. Grinspun, P. Krysl, P. Schroder, CHARMS: a simple framework for adaptive simulation, ACM
Trans. Graph. (SIGGRAPH Proc.) 21 (2002) 281–290.

[41] D. Baraff, A. Witkin, M. Kass, Untangling cloth, ACM Trans. Graph. (SIGGRAPH Proc.) 22 (2003)
862–870.

[42] T. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis,
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[43] J. Bonet, R. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge
University Press, Cambridge, 1997.

[44] J. Teran, E. Sifakis, S. Salinas-Blemker, V. Ng-Thow-Hing, C. Lau, R. Fedkiw, Creating and
simulating skeletal muscle from the visible human data set, IEEE Trans. Vis. Comput. Graph. 11 (3)
(2005) 317–328.

[45] F. Armero, E. Love, An arbitrary Lagrangian–Eulerian finite element method for finite strain
plasticity, Int. J. Numer. Meth. Eng. 57 (2003) 471–508.

[46] N. Molino, J. Bao, R. Fedkiw, A virtual node algorithm for changing mesh topology during
simulation, ACM Trans. Graph. (SIGGRAPH Proc.) 23 (2004) 385–392.

[47] N. Foster, D. Metaxas, Controlling fluid animation, in: Computer Graphics International 1997, 1997,
pp. 178–188.

[48] J. Popović, S. Seitz, M. Erdmann, Z. Popović, A. Witkin, Interactive manipulation of rigid body
simulations, ACM Trans. Graph. (SIGGRAPH Proc.) 19 (2000) 209–217.

[49] A. Treuille, A. McNamara, Z. Popovic, J. Stam, Keyframe control of smoke simulations, ACM
Trans. Graph. (SIGGRAPH Proc.) 22 (2003) 716–723.

[50] B. Boroomand, B. Khalilian, On using linear elements in incompressible plane strain problems: a
simple edge based approach for triangles, Int. J. Numer. Meth. Eng. 61 (2004) 1710–1740.

[51] E. de Souza Neto, F.A. Pires, D. Owen, F-bar-based linear triangles and tetrahedra for finite strain
analysis of nearly incompressible solids. Part I: formulation and benchmarking, Int. J. Numer. Meth.
Eng. 62 (2005) 353–383.

[52] F.A. Pires, E. de Souza Neto, D. Owen, On the finite element prediction of damage growth and
fracture initiation in finitely deforming ductile materials, Comput. Meth. Appl. Mech. Eng. 193 (2004)
5223–5256.

[53] Y. Guo, M. Ortiz, T. Belytschko, E. Repetto, Triangular composite finite elements, Int. J. Numer.
Meth. Eng. 47 (2000) 287–316.

[54] P. Thoutireddy, J. Molinari, E. Repetto, M. Ortiz, Tetrahedral composite finite elements, Int. J.
Numer. Meth. Eng. 53 (2002) 1337–1351.


	Tetrahedral and hexahedral invertible finite elements
	Introduction
	Related work
	Measuring deformation
	Force computation
	Diagonalization
	Other rotations

	Constitutive models
	Anisotropy
	Damping
	Plasticity

	Controlling plasticity
	Thin shells and cloth
	Time-stepping and collision handling
	Examples
	Comparison of tetrahedral and hexahedral elements
	Discussion
	Conclusions
	Acknowledgments
	References


