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We present a new technique for transferring momentum and velocity between particles 
and grid with Particle-In-Cell (PIC) [1] calculations which we call Affine-Particle-In-Cell 
(APIC). APIC represents particle velocities as locally affine, rather than locally constant as 
in traditional PIC. We show that this representation allows APIC to conserve linear and 
angular momentum across transfers while also dramatically reducing numerical diffusion 
usually associated with PIC. Notably, conservation is achieved with lumped mass, as 
opposed to the more commonly used Fluid Implicit Particle (FLIP) [2,3] transfers which 
require a “full” mass matrix for exact conservation. Furthermore, unlike FLIP, APIC retains 
a filtering property of the original PIC and thus does not accumulate velocity modes 
on particles as FLIP does. In particular, we demonstrate that APIC does not experience 
velocity noise that is characteristic of FLIP in a number of Material Point Method (MPM) 
hyperelasticity calculations. Lastly, we demonstrate that when combined with the midpoint 
rule for implicit update of grid momentum that linear and angular momentum are exactly 
conserved.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

PIC methods have been used for decades to simulate many different physical phenomena. Examples include compress-
ible flow, incompressible flow, plasma physics, computational solids and many more [4]. PIC utilizes a hybrid particle/grid 
representation of material to retain the accuracy of Lagrangian techniques without sacrificing the robustness of Eulerian 
techniques. In all cases, the hybrid nature of the approach requires the transfer of state to and from Lagrangian particles 
and Eulerian grid. Unfortunately, this frequent remapping can introduce significant error and noise. The most apparent er-
ror is excessive dissipation incurred from double interpolation. The FLIP approach of Brackbill et al. [2,3] was developed 
to reduce the dissipation by transferring changes in grid quantities to particles, rather than directly interpolating as in PIC. 
This also greatly improved the angular momentum conservation properties of the particle/grid transfers [5–7]. However, as 
pointed out in [7] exact conservation with FLIP is only possible with the use of the “full” mass matrix. Unfortunately, since 
the full mass matrix can be singular for certain particle configurations, it is necessary in practice to interpolate between 
a mass-lumped and full mass matrix to avoid issues caused by a poorly conditioned mass matrix [7]. However, even with 
mass lumping, FLIP greatly reduces the angular momentum losses from transfers in the original PIC.
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Fig. 1. Ringing test. An elastic cube with initial velocity pointing to the right hits an elastic wall with its top and bottom fixed. (See section 6.7 for more 
details.) Particle velocities are drawn to illustrate the noisy modes persistent with FLIP transfers. PIC and APIC transfers do not suffer from this due to the 
filtering property. However, APIC is not excessively damped like PIC. The time points shown here are t = 2

24 s, t = 5
24 s, and t = 40

24 s. The target has almost 
stopped moving by the last frame in each case, so the final resting configuration for the target in each case closely resembles the last frame. Notably the 
particle velocities are non-zero when the simulation comes to rest, and thus consist of purely transfer null modes.

While all PIC approaches suffer to some degree from finite grid [8,9] (or ringing [10,11]) instabilities, FLIP appears 
to exacerbate null modes in the transfer operator from particle to grid. This is particularly true with MPM [12,13] PIC 
techniques for simulating history dependent materials. The problems arise from the mismatch in particle and grid degrees 
of freedom. Typically there are many more particles than grid nodes and thus information is lost in the particle to grid 
transfer. While the original PIC transfers can be seen as a filter of particle degrees of freedom by modes resolvable on the 
grid, FLIP does not have this property. FLIP transfers can be shown to cause unpredictable behavior since certain particle 
velocity modes persist, invisible to the dynamics on the grid and reappear after particle movement. Notably, the particle 
velocities are not used to move the particle positions. Particle positions are directly interpolated from the grid, which is 
equivalent to using an interpolated, PIC velocity for position updates. This idea has also been used for example in [14]. 
However, while this reduces the effect of the velocity modes greatly, it does not completely remove the problem. We 
illustrate this in Fig. 1. Other recent results in MPM have noted similar issues with noise in FLIP transfers [15–18].

The typical PIC transfer of particle velocities vp to grid velocities vi is done by first transferring mass and momentum 
from particle to grid and then dividing out mass to get velocity as

mi =
∑

p

mp N(xp − xi), (mv)i =
∑

p

mpvp N(xp − xi), vi = 1

mi
(mv)i (1)

where xp and xi are particle and grid node locations and N(xp − xi) represent interpolating functions defined on the grid. 
After a physical update of the momentum is done on the grid, new grid velocities ṽi are then directly interpolated to 
particles as

ṽp =
∑

i

ṽi N(xp − xi). (2)

With this simple convention, linear and angular momentum are conserved in the transfer from particle to grid as long as 
the interpolating functions satisfy a partition of unity property. In the transfer from grid to particle, linear momentum is 
conserved, but angular momentum is not. Notably, these transfers are linear operations, and since there are typically many 
more particles than grid degrees of freedom, there are particle velocity null modes that are lost when transferring to grid. 
Since the PIC transfer from grid to particle is just interpolation, this process can be seen as filtering out particle velocity 
modes that are not seen on the grid. The loss of the kinetic energy in these modes is what leads to the excessive dissipation 
of PIC.

The energy loss in PIC style transfers is unacceptable for many application areas, and FLIP style transfers can be used in-
stead. FLIP uses the same transfer from particles to grid as PIC, however with FLIP, velocities are incremented by interpolated 
differences in grid velocities (rather than directly interpolated as in PIC) when transferring from grid to particles

ṽp = vp +
∑

(ṽi − vi)N(xp − xi). (3)

i



C. Jiang et al. / Journal of Computational Physics 338 (2017) 137–164 139
Since velocities are incremented, rather than overwritten with information from the grid, energy in particle null modes is 
not lost and thus the excessive dissipation is avoided. However, these modes are still invisible to the grid, since the transfer 
from particle to grid is the same in PIC and FLIP. Thus, although these modes are not lost, they have no direct effect on the 
governing physics which can lead to unpredictable behavior like those discussed in [8–11,19,20,15–18].

We present a new technique designed to retain the filtering property of the original PIC transfers to guarantee stable 
behavior. We do this by storing both velocity and velocity derivatives on each particle. This can be thought of as adding 
an extra Taylor series term to increase accuracy. This idea was also used in [21], however they used FLIP transfers and 
thus do not attain the filtering property. We show that by representing particle velocities as locally affine, rather than 
locally constant, particle/grid transfers can be defined that: (1) filter out null modes invisible to the grid, (2) have dissi-
pation comparable to that of FLIP and (3) conserve angular and linear momentum (both from particle to grid and grid 
to particle). Furthermore, this is all done with simple mass lumping foregoing the need for poorly conditioned full mass 
matrices.

There are a few existing approaches that use similar ideas to what we propose. Our work builds on that of Jiang et al 
[22]. The transfers used there are discretely angular momentum conserving only for explicit symplectic Euler integration. For 
any other integration scheme, angular momentum may be gradually lost. Wallstedt and Guilkey also augment particles with 
derivatives of the field variables from grid to reduce dissipation in [21]. However they still use FLIP style incremental updates 
and thus still suffer from null mode persistence. Furthermore, their transfer from grid to particle is not angular momentum 
conserving. Gritton et al [18,17] have recently developed methods to resolve the noise introduced by transfer null modes 
by taking the SVD of the transfer operator. Nairn [15] use a linear combination of the FLIP and PIC transfers to reduce 
noise. Hammerquist and Nairn [16] also develop a modified PIC technique designed to reduce the noise of FLIP transfers by 
retaining the filtering property of PIC. Also, our approach is similar to some aspects of the Constrained Interpolation Profile 
(CIP) methods which also store derivative information to reduce diffusion and improve conservation, but for semi-Lagrangian 
interpolation [23].

The choice of interpolating functions is very important in MPM applications. Indeed this is also true in our development 
of particle/grid transfers and we discuss some requirements in Section 3.2. As pointed out in [24], discontinuities in the 
derivatives of interpolating functions lead to discontinuities in the flow map derivatives (or deformation gradient), and as 
a consequence, discontinuities in stress as particles move across interpolation support boundaries. GIMP interpolating func-
tions developed by Bardenhagen and Kober [25] can be used to fix this. Steffen et al [24] show that B-spline interpolation 
also works. We adopt this convention and use quadratic or cubic B-spline interpolation in all of our examples. In some 
examples we additionally use the Lagrangian FEM update of deformation gradient outlined in [22], which Nguyen et al [26]
note is equivalent to convected particle domain interpolation (CPDI) [27].

2. Momentum transfers

Our method is a mathematical means for switching between particle based samples of momenta and grid based samples 
of momenta. It is agnostic to the physical behavior of the material. It simply serves as alternative means of performing a 
process that is common to most if not all PIC calculations. As with [21], we note that the momenta transfer processes can 
be improved by augmenting particles with velocity derivatives. This addition requires an appropriate modification to the 
traditional PIC and FLIP transfer strategies. Here, we summarize the main technical ideas behind our grid/particle transfers. 
The purpose of this section is to give the intuition for the development of the transfers. The formulas for the transfers we 
advocate are slightly different and are given in Sections 3.3 and 3.5. For example, in this section we do not consider the 
motion of the grid positions over the time step to simplify the notation.

The particle momentum state is represented by a sample of mass mp , velocity vp and velocity derivative Cp . The grid 
momentum state is represented by node samples of mass mi and velocity vi . Our transfer from particle to grid determines 
the grid quantities mi and vi in terms of the particle quantities mp, vp and Cp . We then assume, as is generally the case, that 
grid momenta are updated according so some arbitrary physical equations. We also assume that grid mass is not changed 
during the update and thus grid momenta change as vi become ṽi . Thus, we describe the process of transferring from grid 
to particle in terms of determining new particle state ṽp and C̃p in terms of the updated grid velocities ṽi .

Note that as in [21] we do not transfer velocities gradients Cp from particle to grid, rather we use them to define grid 
momenta more accurately. In fact, our transfer from particle to grid is the same as that in [21]. However, where they use 
a FLIP transfer of grid velocities to particles, we design a grid to particle transfer that retains the filtering property of the 
original PIC.

In the discussion that follows we use conservation of linear and angular momenta when transferring from grid to par-
ticle and vice verse as a motivation. We emphasize that this conservation is only related to the mathematical change of 
state from particle mass, velocity and velocity gradient, to grid mass and velocity (and vice verse). This conservation is 
unrelated to any such behavior that arises physically and is simply a desirable property to attain when switching between 
discrete representations of the same material. Furthermore, we note that while other transfers may not achieve this perfect 
conservation property, their errors are typically proportionate to grid resolution and decrease under refinement of discrete 
space and time.
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2.1. Rigid-particle-in-cell (RPIC)

The intuition for our transfers is largely derived from a simpler case: particle-wise rigid-body velocity. This can be 
thought of as defining a velocity field local to xp as v(x) = vp + Cp(x − xp) with skew symmetric Cp . That is, Cp = ω∗

p where 
ωp is the angular velocity of the rigid body and Cp = ω∗

p is the skew symmetric matrix equivalent to Cpx = ωp × x for 
arbitrary vector x. We refer to this case as RPIC. We do not recommend using RPIC since it ultimately suffers from excessive 
dissipation similar to PIC [22]. Nonetheless, it provides most of the insights needed for making transfers with general affine 
conservative so we present them here.

2.1.1. Particle to grid
With a piecewise rigid assumption, we conceptualize particle xp as a rigid body consisting of point masses that the 

particle distributes to the grid with a standard PIC transfer: mip = mp N(xp − xi). That is, rigid body p consists of point 
masses mip located at xi . Note that this rigid body then has inertia tensor Kp = ∑

i mip(xi − xp)∗(xi − xp)∗T . Also note that 
the standard PIC grid mass is then mi = ∑

p mip . With this idealization, the linear momenta of the points in the rigid body 
are then (mv)ip = mip(vp + Cp(xi − xp)) where again Cp is assumed to be skew symmetric to represent rigid body velocity. 
We can thus define the grid linear momenta to be the sum of the contributions from all rigid bodies p: (mv)i = ∑

p(mv)ip . 
Notably, this transfer is equivalent to the particle to grid transfer formulas used in [21].

The transfer conserves linear and angular momenta in the following sense. Define the total linear momentum of all par-
ticles as pP = ∑

p mpvp and the total angular momentum (about the origin) as LP = ∑
p Kpωp + xp × mpvp (see Section 5.1

for justification of these definitions). After the transfer from particle to grid, we have pG = ∑
i(mv)i and LG = ∑

xi × (mv)i
as the analogous quantities defined over the grid. It can be shown that pP = pG and LP = LG (see Section 5.1 for details). 
That is, we can say that the linear and angular momentum of the grid state is the same as that of the particle rigid body 
state after the transfer from particle to grid.

2.1.2. Grid to particle
The transfer from grid to particle is done after a momentum update on the grid. Using ṽi to denote the grid velocities 

after the grid momentum update (again assuming that the grid mi do not change over the step), we design transfers of ṽi
to get ṽp and skew C̃p that give a rigid body state whose linear and angular momentum are consistent with that of the 
updated grid state. That is, we want ṽp and skew C̃p = ω̃∗

p such that the new linear momentum is conserved p̃G = ∑
i mi ṽi =∑

p mp ṽp = p̃P and new angular momentum is conserved L̃G = ∑
xi × mi ṽi = ∑

p(Kpω̃p + xp × mp ṽp) = L̃P . If we define 
the transfer of the linear velocity as with standard PIC, ṽp = ∑

i ṽi N(xp − xi), then linear momentum is conserved, as with 
PIC. However, with this transfer alone, angular momentum is lost. Specifically, it can be shown that local to particle p, 
l̃p = ∑

i(xi − xp) × mip ṽi is lost. This arises from representing the information in the grid state mip ṽi as only mpvp . Clearly, 
one particle can not represent the angular momentum seen on the grid in mip ṽi . The idea is to represent that angular 
momentum in a rigid body, rather than a simply translating body to prevent the loss. Thus, if we define angular velocity 
ω̃p to be ω̃p = K−1

p l̃p (and C̃p = ω̃∗
p ), then a simple argument shows that both linear and angular momentum are conserved 

in the transfer from grid to particle. That is, the transfers give a rigid body state whose linear and angular momentum are 
consistent with that of the updated grid state. See Section 5.1 for proofs of these claims. Also, we again note that we have 
neglected to consider the motion of the grid nodes and the particles over the step in our discussion of conservation. These 
should be taken into account, and we do consider this for the transfers advocated in Section 3.5. We only omit this in the 
preceding discussion for simplification of notation, it does not effect the main idea of the transfers essentially.

2.2. Affine-particle-in-cell (APIC)

While the RPIC treatment of angular velocity does greatly improve the angular momentum conservation properties of 
the original PIC, a full velocity gradient is needed to reduce dissipation sufficiently. We refer to this strategy as APIC. For 
APIC, we will extend the particle-wise, local velocity field to be an arbitrary affine function as v(x) = vp + Cp(x − xp). 
Here the matrix Cp is fully arbitrary, unlike the skew symmetric view in RPIC. The problem then is to determine the 
transfers from particle to grid and vice versa. This can be done in a manner directly analogous to what was presented in 
Section 2.1, and we provide those details in Section 5.6. However, when developing a scheme that is perfectly conservative 
over the entire time step (i.e., both transfers and grid updates are conservative), a more general notion of transfer is useful. 
The discussion of transfers so far has assumed that information will be transferred from particles to the grid and then 
immediately back to particles without any other changes in grid or particle positions. While we show that these transfers 
can be made perfectly conservative, this is typically not enough in practice. The point of hybrid particle/grid schemes 
is that part of the evolution will occur on the grid. This introduces an element of time into the conservation problem. 
For example, immediately following the transfer from particle to grid, the angular momentum should be computed as 
LG = ∑

i xn
i × mn

i vn
i . Before the transfer back to particles, the grid state will have changed, and angular momentum will 

be computed as LG = ∑
i xn+1

i × mn
i vn+1

i . We introduce a degree of flexibility into the definition of the APIC transfers to 
account for this. When transferring to the particles, we have access to xn

p , xn
i , xn+1

p , and xn+1
i , which gives us more possible 

options. We are also free to choose the state that we store. For example with RPIC, rather than storing angular velocity 
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ωp as state, we could store rotational angular momentum l̃p . This additional flexibility is very useful, since it allows us to 
obtain additional properties from the method. We require our transfers to be generally of the form described above, subject 
to the additional flexibility that has been noted.

Now that we have broadened our search space of possible transfers, we need to narrow down the possibilities. We 
narrow the field of choices down to a single scheme by enforcing three properties:

1. A globally affine velocity field should be preserved across transfers from particles to the grid and back when moving 
particles and moving grids are ignored (for example when �t = 0).

2. The transfers should conserve linear and angular momentum, even when the complications of grid-based evolution, 
moving grids, and moving particles are taken into account.

3. A simulation with a single particle is stable but non-dissipative when moving grids and moving particles are taken to 
account but additional grid-based influences (forces, etc.) are ignored.

Property 1 is what it means to be an APIC scheme; it is a PIC-style transfer that preserves affine velocity fields. Note that 
this property should only be enforced under very strict circumstances (�t = 0), since affine velocity fields should be able to 
change due to advection. Property 2 ensures that the entire scheme will conserve linear and angular momentum provided 
that the grid-based scheme also conserves these quantities.

Property 3 is a non-obvious but crucial requirement. The other properties do not uniquely determine a transfer; they only 
narrow it down to a one-parameter family of transfers. These transfers tend to behave similarly except when one particle 
moves far enough from other particles that it is able to evolve in isolation. For one particular member of this family, a lone 
particle will evolve by not changing. For the rest of the members of this family, part of the particle’s state tends to explode 
or decay exponentially when the particle evolves in isolation. Exponential decay is not desirable, and exponential growth 
is intolerable. This leads us to choose the stability criterion to narrow the possibilities down to one set of transfers. We 
present these transfers in the context of the MPM method in which we use them in Sections 3.3 and 3.5. Also, we present 
a derivation of the transfers from the properties 1–3 in Section 5.8.

3. Method

Here we outline the governing equations for an MPM discretization of hyperelastic materials and we establish some 
notation used throughout the exposition. We emphasize that the focus of our paper is on the transfers between the grid 
and particle representations of momentum. The integration scheme applied on the grid, and indeed the constitutive physical 
behavior of the material itself is independent of this. We chose a hyperelastic formulation because it simplifies the imple-
mentation, exposition and analysis. Also, it is representative of many MPM applications. A different constitutive law could 
be substituted without change to the transfers. Similarly, while we focus on the midpoint rule for grid momentum updates 
because of its favorable conservation properties, it could be replaced with another integration scheme without impacting 
our discussion of transfers. If the alternate constitutive law and grid-based integration scheme conserve linear or angular 
momentum, the overall numerical scheme will as well.

3.1. Equations

Let x = φ(X, t) be the mapping from material coordinates X to world coordinates x. Let V and v be the Lagrangian and 
Eulerian velocities. F is the deformation gradient, and J is its determinant. That is,

V(X, t) = ∂x

∂t
(X, t) (4)

v(x, t) = V(φ−1(x, t), t) (5)

F(X, t) = ∂x

∂X
(X, t) (6)

J = det(F) (7)

With these definitions, the evolution equations are

ρ
Dv

Dt
= ∇ · σ , (8)

where the Cauchy stress σ is related to the first Piola–Kirchhoff stress P and hyperelastic energy density � through

σ = 1

J
PFT (9)

P = ∂�

∂F
(10)
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The state of stress in hyperelastic materials is simply related to F as �(F) and P(F) where the total internal potential energy 
� is

�(t) =
∫
�0

�(F(X, t))dX. (11)

Since we will not have access to a reference configuration, we must evolve our deformation gradient according to

∂F

∂t
(X, t) = ∂v

∂x
(φ(X, t), t)F(X, t). (12)

We seek to conserve total momentum p(t) and total angular momentum l(t), which are given by

p(t) =
∫
�

ρ(x, t)v(x, t)dx (13)

l(t) =
∫
�

x × ρ(x, t)v(x, t)dx (14)

For completeness, kinetic energy is

T (t) =
∫
�

ρ(x, t)‖v(x, t)‖2 dx, (15)

and total energy is E = T + �.

3.2. Interpolation weights

As with PIC, we use weights to transfer information between the two representations. While the choice of weights is 
flexible, we require them to satisfy some important properties. Let N(x) be an interpolation kernel, which must be chosen 
to satisfy

∑
i

N(xn
p − xn

i ) = 1 (16)

∑
i

xn
i N(x − xn

i ) = x (17)

for any x. The kernel N(x) is used to define interpolation weights and weight gradients as

wn
ip = N(xn

p − xn
i ) (18)

∇wn
ip = ∇N(xn

p − xn
i ). (19)

The properties above lead to properties for wn
ip and ∇wn

ip .

∑
i

wn
ip = 1 (20)

∑
i

wn
ipxn

i = xn
p (21)

∑
i

wn
ip(xn

i − xn
p) = 0 (22)

∑
i

xn
i (∇wn

ip)T = I (23)

With these weights defined, we can start describing the method. We note that we use either quadratic or cubic B-splines 
as in Steffen et al[24] as they satisfy the above criteria and are continuously differentiable.
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3.3. Transfer to grid

Each particle xn
p stores mass mp , velocity vn

p , and the additional matrix Bn
p . As we are using MPM, we also store a 

deformation gradient Fn
p on particles. Note that particle masses mp do not have a time superscript because they are constant 

(and thus never updated from the grid) to account for conservation of mass. We first use our weights to interpolate mass 
and momentum to the grid.

mn
i =

∑
p

mp wn
ip (24)

Dn
p =

∑
i

wn
ip(xn

i − xn
p)(xn

i − xn
p)T (25)

mn
i vn

i =
∑

p

wn
ipmp(vn

p + Bn
p(Dn

p)−1(xn
i − xn

p)) (26)

The velocity vn
i is obtained by division. Note that unlike with mp , we specify a time superscript on grid mass mn

i , since 
it will change each time step. The additional matrix Dn

p used in the transfer is similar to an inertia tensor (but for an 
affine rather than rigid motion). Similarly, Bn

p contains angular momentum information and the local affine velocity field 
is conceptually vn

p + Bn
p(Dn

p)−1(xn
i − xn

p) with matrix Cn
p = Bn

p(Dn
p)−1. We will elaborate on these properties later when we 

prove conservation.

3.4. Grid evolution

At this point, we have transferred state from particle to grid, and we are ready to apply forces and perform our grid-based 
evolution. We must update grid velocity ṽn+1

i , position x̃n+1
i , and deformation gradient Fn+1

p . The update of grid positions 
to x̃n+1

i is purely conceptual. Our implementation uses fixed Cartesian grids.
An important aspect of allowing for exact conservation of linear and angular momentum during particle/grid transfers 

is that conservation of the entire method can be achieved by combining with one of the many conservative integrators 
used for updating the grid state [28–33]. We introduce a parameter λ, which allows us to consider an entire family of 
methods that conserve linear and angular momentum. This family contains two notable members: symplectic Euler (λ = 0) 
and midpoint rule (λ = 1

2 ). The schemes λ = 0 and λ = 1 are both explicit; the rest are implicit. We use midpoint rule for 
all of our examples. Note that schemes such as forward Euler, backward Euler, and trapezoid rule do not conserve angular 
momentum and thus are not suitable for our purposes. Our family of grid-based updates is

Fn+1
p =

(
I +

∑
i

(x̃n+1
i − xn

i )(∇wn
ip)T

)
Fn

p (27)

Fn+λ
p = (1 − λ)Fn

p + λFn+1
p (28)

ṽn+1
i = vn

i + �t

mn
i

fn+λ
i (29)

x̃n+1
i = xn

i + �t(λvn
i + (1 − λ)ṽn+1

i ) (30)

The velocity update rule uses forces fn+λ
i , which we define from a potential energy function �n+λ , which we compute from 

an energy density �p(Fp). Our rules for computing potential energy �n+λ , force fn+λ
i , and product by force derivatives are

�n+λ
p = �p

(
Fn+λ

p

)
(31)

�n+λ =
∑

p

V p�n+λ
p (32)

Pn+λ
p = Pp

(
Fn+λ

p

)
(33)

fn+λ
i =

∑
p

V pPn+λ
p (Fn

p)T ∇wn
ip (34)

Ap = ∂Pp

∂Fp
:
(∑

i

�vi(∇wn
ip)T Fn

p

)
(35)

∑
j

(
∂fi

∂x j

)
�v j =

∑
p

V pAp(Fn
p)T ∇wn

ip (36)

Here, Pp is the first Piola–Kirchhoff stress tensor. Defining forces through an energy ensures angular momentum conserva-
tion; the particular constitutive model does not matter.
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3.5. Transfer to particles

With grid evolution completed, we have updated grid locations x̃n+1
i and velocities ṽn+1

i . What remains is to transfer 
this information back to particles. We do this using the transfers

vn+1
p =

∑
i

wn
ip ṽn+1

i (37)

Bn+1
p = 1

2

∑
i

wn
ip

(
ṽn+1

i (xn
i − xn

p + x̃n+1
i − xn+1

p )T + (xn
i − xn

p − x̃n+1
i + xn+1

p )(ṽn+1
i )T

)
(38)

xn+1
p =

∑
i

wn
ip x̃n+1

i (39)

Fn+1
p =

(
I +

∑
i

(x̃n+1
i − xn

i )(∇wn
ip)T

)
Fn

p (40)

This completes the specification of our angular-momentum-conserving family of APIC schemes.

4. Implementation details

4.1. Implicit midpoint as minimization problem

The grid update is in general implicit, including the midpoint rule (λ = 1
2 ). Since this is the member that we implemented 

and recommend using, we restrict our attention here to this case. We also demonstrate symplectic Euler and backward Euler 
as grid update schemes for comparison in some of our numerical experiments. Symplectic Euler is explicit and does not 
require the optimization treatment that follows. Backward Euler is not a member of the family described in this paper; we 
compare against it for reference.

We solve the resulting nonlinear systems of equations following an optimization-stabilized Newton–Raphson solver 
framework [34,35]. The implicit midpoint scheme for MPM grid nodes is

x̃n+1
i = xn

i + �t

(
vn

i + ṽn+1
i

2

)
,

ṽn+1
i = vn

i + �t
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i

fi

(
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i + x̃n+1
i

2

)
.

Eliminating x̃n+1
i gives

mn
i

ṽn+1
i − vn

i

�t
= fi

⎛
⎜⎜⎝

xn
i + xn

i + �t

(
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i +ṽn+1
i

2

)
2

⎞
⎟⎟⎠ = fi

(
xn

i + �t

4
(vn

i + ṽn+1
i )

)
.

Changing to the variable �vi = ṽn+1
i − vn

i ,

mn
i �vi = �tfi

(
xn

i + �t

2
vn

i + �t

4
�vi

)
. (41)

The corresponding minimization objective function is

E(�vi) =
∑

i

mn
i

8
‖�vi‖2 + �

(
xn

i + �t

2
vn

i + �t

4
�vi

)
.

This is similar to the corresponding objective for backward Euler, which is

Ebe(�vi) =
∑

i

mn
i

2
‖�vi‖2 + �

(
xn

i + �tvn
i + �t2�vi

)
.
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The minimum of E occurs when

gi = ∂ E

∂�vi

= ∂

∂�vi

⎛
⎝∑

j

m j

8

∥∥�v j
∥∥2 + �

(
xn

j + �t

2
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4
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= mn
i

4
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4
fi
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2
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i + �t

4
�vi

)
,

Note that g(�vi) = 0 is just (41), so minimizing E is equivalent to solving (41). Multiplying the derivative of g by some 
vector δui will be necessary.

∑
j

∂gi

∂�v j
δu j =

∑
j

∂

∂�v j

(
mn

i

4
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4
fi
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2
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4
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δu j
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i

4
δui − �t2

16

∑
j

∂fi

∂x j

(
xn

i + �t

2
vn

i + �t

4
�vi

)
δu j

This in turn requires a matrix–vector multiply by the force derivative, which is done using (35) and (36).

4.2. Momentum conservation on incomplete convergence

The conservation properties of our method (see Section 5.2) depend on solving (41) to convergence. If this is not done, 
conservation will be only approximate. We note, however, that this is not a fundamental problem. One way to track down 
the source of the problem is to label every vector a velocity-like or force-like. Assume initial velocity is zero and all forces 
are momentum-conserving. Then, we can note some rules about how these types of vector should behave:

1. A force-like vector will sum to zero.
2. A velocity-like vector will sum to zero when scaled by mass.
3. Scaling a velocity-like vector by mass produces a force-like vector.
4. Scaling a force-like vector by inverse mass produces a velocity-like vector.
5. Scaling a vector by a constant preserves its type.
6. Adding vectors is only permitted if they have the same type; the type is preserved.
7. In the matrix–vector multiply δfi = ∑

j
∂fi
∂x j

δu j , δu j must be velocity-like, and δfi will be force-like.

8. Dot product is only allowed if one vector is force-like and the other is velocity-like. (This is done, for example, when 
computing kinetic energy.)

As long as these rules are followed, the velocity will be velocity-like, which implies conservation of linear momentum (the 
last rule is not strictly required, but we can enforce it anyway). Propagating these labels through the algorithm (Newton’s 
method, line searches, conjugate gradient, etc.) is straightforward and breaks down only inside the conjugate gradient solver. 
The source of the problem is that p, r, and s must be of the same type (see Algorithm 1), so that s ← Ap means the operator 
A must take and produce the same type of vector. The system we are solving takes the general form

A1δv = δf A1 = M + ζ
∂f

∂x
,

where M is a diagonal mass matrix, ζ is a scalar, δv is a velocity-like vector, δf is a force-like vector. The operator A1 takes 
velocity-like vectors and produces force-like vectors, which is a problem. We can avoid that problem by rewriting

A2δv = M−1δf A1 = I + M−1ζ
∂f

∂x
.

Now, A2 takes velocity-like vectors and returns velocity-like vectors. Unfortunately, this A2 is not symmetric.
The conjugate gradient operates on vectors in only a few ways: matrix–vector multiply, vector operations, and inner 

product. Note that the inner product used does not need to be the standard inner product: A is only required to be sym-
metric with respect to the inner product chosen. That is, 〈Au, v〉 = 〈u, Av〉 for any u and v. Note that A2 is symmetric with 
respect to the mass inner product 〈u, v〉 = uT Mv. Using this modified system and a mass inner product for conjugate gradi-
ent is a perfectly acceptable means of solving the linear system. Furthermore, all vectors in the conjugate gradient algorithm 
are now velocity-like, which allows us to label all of our vectors. This in turn guarantees conservation of momentum, even 
if our solver is not fully converged.
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Algorithm 1 Conjugate gradient.
1: procedure Conjugate–Gradient(A, x, b)
2: r ← b − Ax
3: p ← r
4: γ ← 〈r, r〉
5: while not converged do
6: s ← Ap

7: α ← γ

〈p, s〉
8: x ← x + αp
9: r ← r − αs � r and s have the same type

10: κ ← 〈r, r〉
11: β ← κ

γ

12: p ← r + βp � r and p have the same type
13: γ ← κ
14: end while
15: end procedure

4.3. CFL condition

We choose our time step size �t so that no particle will travel more than the grid spacing �x in one time step. We 
approximate this by assuming that these particles travel with the initial grid velocity vn

i . While this does not take into 
account the potentially dramatic affect of forces, we note that our method is implicit and can tolerate such errors.
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Interpolation stencil support is bounded by ‖xn
i − xn

p‖ ≤ κ�x. If we also assume D p = kI, then ‖(Dn
p)−1(xn

i − xn
p)‖ ≤ κ

k �x.
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∑
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‖vn
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In the case of both quadratic and cubic interpolation, κ
k �x = 6

√
d

�x , where d is the dimension. A reasonable CFL condition is 
then

�t ≤ ν�x

maxp
(‖vn

p‖ + κ
k �x‖Bn

p‖F
) .

We use ν = 1 for our examples.
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5. Notes and analysis

Here we discuss a number of aspects and useful properties of the schemes we have proposed.

5.1. RPIC transfer properties

The RPIC transfers outlined in Sections 2.1.1 from particle momenta to grid momenta are

ωn
p = K−1

p ln
p (42)

mn
i vn

i =
∑

p

wn
ipmp(vn

p + ωn
p × (xn

i − xn
p)). (43)

The transfers from updated grid velocities ṽn+1
i to new particle velocities vn+1

p and angular momenta ln+1
p as outlined in 

Section 2.1.2 are

vn+1
p =

∑
i

wn
ip ṽn+1

i (44)

ln+1
p =

∑
i

(xn
i − xn

p) × mp wn
ip ṽn+1

i . (45)

These transfers conserve total linear and angular momenta. To define the total linear and angular momenta of the particles, 
we can think of them as a collection of rigid bodies, each made up of individual point masses mip = mp wn

ip located at the 
grid nodes xn

i . Then the total momenta of the collection of rigid bodies is the sum of the contributions from each respective 
point mass. That is, the total linear momentum pP of the particles is

pP =
∑

p

∑
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mip
(
vn
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p)

) =
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p

mpvn
p. (46)

That is, ωn
p contributes no net linear momentum. The total angular momentum (about the origin) is

LP =
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(
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The equivalence of the momentum definitions follows from
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The equivalence of the angular momentum definitions follows from
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Recall we use x∗ to denote the matrix that expresses x × y = x∗y. Note that both pP and LP can be defined entirely in terms 
of particle state. These quantities are defined in a more obvious manner on the grid as

pG =
∑

i

mn
i vn

i and LG =
∑

i

xn
i × mn

i vn
i . (60)

In the following, we will show that after the transfer from particle to grid, pP = pG and LP = LG and after the transfer from 
grid to particle p̃P = p̃G and L̃P = L̃G

5.1.1. Particle to grid: conservation of linear momentum
The total linear momenta are equal after the transfer, which can be seen simply from

pP =
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(61)

5.1.2. Particle to grid: conservation of angular momentum
The transfer also conserves total angular momentum since
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∑
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5.1.3. Grid to particle: conservation of linear momentum
The transfers in Equation (44) conserve linear momentum since
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∑
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where we use the particle state expression for p̃P .

5.1.4. Grid to particle: conservation of angular momentum
The transfers in Equation (44) also conserve angular momentum. We can show this using Equation (44) to express the 

new total particle angular momentum as
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5.2. APIC conservation of linear momentum

The APIC scheme is naturally divided into three steps; we show that each step independently conserves linear momen-
tum. The first step is the transfer of information from particle to grid. We see that the initial particle momentum pP ,n is 
equal to the grid momentum after the transfer pG,n .
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Once mass and momentum are on the grid, grid positions and velocities are updated. We note that initial grid momentum 
matches the final grid momentum p̃G,n+1.

p̃G,n+1 =
∑

i

mn
i ṽn+1
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The final step is transferring information back to particles. This step is also conservative since
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Finally, the entire scheme conserves momentum since pP ,n+1 = pP ,n .

5.3. APIC conservation of angular momentum

We use the permutation tensor in this section. To make these portions easier to read, we take the convention that A : ε
denotes Aαβεαβγ . The manipulation u × v = (vuT )T : ε is used to transition from a cross product into the permutation 
tensor.

5.3.1. Transfer to grid
Our approach to demonstrating angular momentum conservation follows the same three steps. In this case, we show 

that LP ,n = LG,n = L̃G,n+1 = LP ,n+1, though the individual steps are more involved. We begin with the transfer from particles 
to the grid.
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Note that this expression for LP ,n can be taken to be the definition of total angular momentum on particles, with lB

p being 
the angular momentum contribution of particle p due to Bp .

5.3.2. Grid update
The next step is the grid update. Let Gp = ∑
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For the grid update portion, we will use the following manipulations to replace cross products with permutation tensors.∑
i

xn
i × Ap∇wn

ip =
∑

i

(
Ap∇wn

ip(xn
i )

T
)T : ε

=
(

Ap

∑
i

∇wn
ip(xn

i )
T

)T

: ε

= (
ApI

)T : ε
= AT

p : ε∑
i

x̃n+1
i × Ap∇wn

ip =
∑

i

(
Ap∇wn

ip(x̃n+1
i )T

)T : ε

=
(

Ap

∑
i

∇wn
ip(x̃n+1

i )T

)T

: ε

=
(

ApGT
p

)T : ε



C. Jiang et al. / Journal of Computational Physics 338 (2017) 137–164 151
With this, we note the identity∑
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from which it follows that∑
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With this identity, it is finally possible to show that angular momentum is conserved across the grid update.
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5.3.3. Transfer to particles
Using

lB
p = mp(Bn+1

p )T : ε

= mp

(
1

2

∑
i

wn
ip

(
ṽn+1

i (xn
i − xn

p + x̃n+1
i − xn+1

p )T + (xn
i − xn

p − x̃n+1
i + xn+1

p )(ṽn+1
i )T

))T

: ε

= mp

2

∑
i

wn
ip

(
(xn

i − xn
p + x̃n+1

i − xn+1
p ) × ṽn+1

i + ṽn+1
i × (xn

i − xn
p − x̃n+1

i + xn+1
p )

)

= mp

2

∑
i

wn
ip

(
(x̃n+1

i − xn+1
p ) × ṽn+1

i + ṽn+1
i × (−x̃n+1

i + xn+1
p )

)

= mp

∑
i

wn
ip(x̃n+1

i − xn+1
p ) × ṽn+1

i

= mp

∑
i

wn
ip x̃n+1

i × ṽn+1
i − mp

∑
i

wn
ipxn+1

p × ṽn+1
i

= mp

∑
i

wn
ip x̃n+1

i × ṽn+1
i − xn+1

p × mpvn+1
p

we have
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LP ,n+1 =
∑

p

xn+1
p × mpvn+1

p +
∑

p

mp(Bn+1
p )T : ε

=
∑

p

xn+1
p × mpvn+1

p +
∑

p

(
mp

∑
i

wn
ip x̃n+1

i × ṽn+1
i − xn+1

p × mpvn+1
p

)

=
∑

p

mp

∑
i

wn
ip x̃n+1

i × ṽn+1
i

=
∑

i

x̃n+1
i × ṽn+1

i

∑
p

wn
ipmp

=
∑

i

x̃n+1
i × mn

i ṽn+1
i

= L̃G,n+1

This completes the proof of angular momentum conservation.

5.4. Stability

It is possible to construct a transfer that conserves angular momentum and retains affine fields but is unstable. This 
instability was observed to occur when variations in the transfer are considered. The instability conveniently manifests 
when a particle is isolated, so the problem is easy to avoid. We require that an isolated particle experiencing no forces 
should translate uniformly with no change in vn

p or Bn
p . We now show that our scheme has this property.

Consider that there is only one particle, which experiences no forces (fn+λ
i = 0). Then, the update rules for vn

i , ṽn+1
i , and 

x̃n+1
i reduce to

vn
i = vn

p + Bn
p(Dn

p)−1(xn
i − xn

p) (68)

ṽn+1
i = vn

i (69)

x̃n+1
i = xn

i + �tvn
i (70)

With these, the final particle velocity is

vn+1
p =

∑
i

wn
ip ṽn+1

i (71)

=
∑

i

wn
ip(vn

p + Bn
p(Dn

p)−1(xn
i − xn

p)) (72)

= vn
p

∑
i

wn
ip + Bn

p(Dn
p)−1

∑
i

wn
ip(xn

i − xn
p) (73)

= vn
p (74)

The final position is

xn+1
p =

∑
i

wn
ip x̃n+1

i (75)

=
∑

i

wn
ip(xn

i + �tvn
i ) (76)

=
∑

i

wn
ipxn

i + �t
∑

i

wn
ipvn

i (77)

= xn
p + �t

∑
i

wn
ip ṽn+1

i (78)

= xn
p + �tvn+1

p (79)

= xn
p + �tvn

p (80)

Finally, Bn+1
p is now
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Bn+1
p = 1

2

∑
i

wn
ip

(
ṽn+1

i (xn
i − xn

p + x̃n+1
i − xn+1

p )T + (xn
i − xn

p − x̃n+1
i + xn+1

p )(ṽn+1
i )T

)
(81)

= 1

2

∑
i

wn
ip

(
vn

i (2xn
i − 2xn

p + �tvn
i − �tvn

p)T + (�tvn
p − �tvn

i )(vn
i )

T
)

(82)

= 1

2

∑
i

wn
ip

(
vn

i (2xn
i − 2xn

p − �tvn
p)T + �tvn

p(vn
i )

T
)

(83)

=
∑

i

wn
ipvn

i (xn
i − xn

p)T − �t

(∑
i

wn
ipvn

i

)
(vn

p)T + �tvn
p

(∑
i

wn
ipvn

i

)T

(84)

=
∑

i

wn
ipvn

i (xn
i − xn

p)T − �tvn
p(vn

p)T + �tvn
p(vn

p)T (85)

=
∑

i

wn
ipvn

i (xn
i − xn

p)T (86)

=
∑

i

wn
ip(vn

p + Bn
p(Dn

p)−1(xn
i − xn

p))(xn
i − xn

p)T (87)

= Bn
p(Dn

p)−1
∑

i

wn
ip(xn

i − xn
p)(xn

i − xn
p)T + vn

p

∑
i

wn
ip(xn

i − xn
p)T (88)

= Bn
p(Dn

p)−1Dn
p (89)

= Bn
p (90)

This guarantees stability in the case of one particle. In practice, the scheme is observed to be stable with any number of 
particles when using a quadratic or cubic basis. It is not, however, stable for a multilinear basis, as noted in Section 5.9.

5.5. Affine round trip

One of the original motivations behind the original APIC scheme is that, in some reasonable sense, it should preserve 
affine velocity fields. Particles represent an affine velocity field when vn

p = v + Cxp and Bn
p = CDn

p for some vector v and 
matrix C. We require that such a velocity field be preserved in the limit when an arbitrarily small time step is taken, so 
that we may assume �t = 0. The assumption �t = 0 immediately implies ṽn+1

i = vn
i and x̃n+1

i = xn
i , from which xn+1

p = xn
p , 

wn+1
ip = wn

ip , and Dn+1
p = Dn

p follow. The transfer to the grid simplifies to

mn
i =

∑
p

mp wn
ip (91)

mn
i vn

i =
∑

p

wn
ipmp(vn

p + Bn
p(Dn

p)−1(xn
i − xn

p)) (92)

=
∑

p

wn
ipmp(v + Cxp + CDn

p(Dn
p)−1(xn

i − xn
p)) (93)

=
∑

p

wn
ipmp(v + Cxn

i ) (94)

= mn
i (v + Cxn

i ) (95)

vn
i = v + Cxn

i (96)

so that the grid velocity field is produced by the same affine velocity field.

vn+1
p =

∑
i

wn
ip ṽn+1

i (97)

=
∑

i

wn
ipvn

i (98)

=
∑

i

wn
ip(v + Cxn

i ) (99)

= v
∑

wn
ip + C

∑
wn

ipxn
i (100)
i i
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= v + Cxn
p (101)

= v + Cxn+1
p (102)

Bn+1
p = 1

2

∑
i

wn
ip

(
ṽn+1

i (xn
i − xn

p + x̃n+1
i − xn+1

p )T + (xn
i − xn

p − x̃n+1
i + xn+1

p )(ṽn+1
i )T

)
(103)

=
∑

i

wn
ipvn

i (xn
i − xn

p)T (104)

=
∑

i

wn
ip(v + Cxn

i )(xn
i − xn

p)T (105)

= v
∑

i

wn
ip(xn

i − xn
p)T + C

∑
i

wn
ip(xn

i − xn
p)(xn

i − xn
p)T + Cxn

p

∑
i

wn
ip(xn

i − xn
p)T (106)

= CDn
p (107)

= CDn+1
p (108)

The new particle state corresponds to the same affine velocity field, so the field has been preserved across the transfers.

5.6. Unifying PIC, RPIC and APIC

For each of PIC, RPIC and APIC the transfer from particle to grid can be written as mip = mp N(xp − xi), mi = ∑
p mip , 

(mv)ip = mip(vp + Cp(xi − xp)) and (mv)i = ∑
p(mv)ip , where the Cp is zero, skew or a full matrix to distinguish PIC, RPIC 

and APIC respectively. However, when designing the transfer back from grid to particle, the details are less obviously related. 
There is, in fact, a description that unifies RPIC, APIC and PIC. It starts with the alternative notation

vip =
Nr∑
j=1

s jpb jpi

to describe the velocity field local to the particle. Here, the b jpi ∈R
3, b jp ∈ R

3Ng with Ng equal to the number of grid nodes 
and

b jp =

⎛
⎜⎜⎜⎝

b jp1
b jp2

...

b jpNG

⎞
⎟⎟⎟⎠ .

The b jp form a reduced basis for the grid velocity field vip local to particle p. That is, the b jp ∈ R
3Ng are individual modes 

defined over the grid and the s jp describe the local particle state, e.g. they are equivalent to vp and CP for APIC. The choice 
of the basis vectors b jp ∈R

3Ng is what distinguishes PIC from RPIC from APIC etc. For example, PIC uses Nr = 3 and

b jp =

⎛
⎜⎜⎜⎝

e j
e j
...

e j

⎞
⎟⎟⎟⎠ and vp =

⎛
⎝ s1p

s2p

s3p

⎞
⎠

for j = 1, 2, 3 = Nr with e j ∈ R
3 the jth standard basis vector for R3. RPIC uses Nr = 6 with the same b jp as PIC for 

j = 1, 2, 3 and

b jp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑3
k=1 ε j−3k1r1pk∑3
k=1 ε j−3k2r1pk∑3
k=1 ε j−3k3r1pk∑3
k=1 ε j−3k1r2pk

...∑3
k=1 ε j−3k1rNg pk∑3
k=1 ε j−3k2rNg pk∑3 ε r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
k=1 j−3k3 Ng pk
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for j = 4, 5, 6 = Nr where εi jk is the permutation tensor (such that the kth component of a × b is 
∑

i, j εi jkaib j ) and ripk is 
the kth component of rip = xi − xp . With this convention,

vp =
⎛
⎝ s1p

s2p

s3p

⎞
⎠ and ωp =

⎛
⎝ s4p

s5p

s6p

⎞
⎠ .

Lastly, APIC uses the same b jp as RPIC for j = 1, 2, . . . , 6 and

b jp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑3
k=1 |ε j−6k1|r1pk∑3
k=1 |ε j−6k2|r1pk∑3
k=1 |ε j−6k3|r1pk∑3
k=1 |ε j−6k1|r2pk

...∑3
k=1 |ε j−6k1|rNg pk∑3
k=1 |ε j−6k2|rNg pk∑3
k=1 |ε j−6k3|rNg pk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for j = 7, 8, 9 (which represent symmetric matrices with zero diagonal) and

b jp =

⎛
⎜⎜⎜⎜⎝

e j−9eT
j−9r1p

e j−9eT
j−9r2p

...

e j−9eT
j−9rNG p

⎞
⎟⎟⎟⎟⎠

for j = 10, 11, 12 = Nr which represent the diagonal matrices. With this convection,

vp =
⎛
⎝ s1p

s2p

s3p

⎞
⎠ and Cp =

⎛
⎝ s10p s7p − s4p s8p − s5p

s4p + s7p s11p s9p − s6p

s5p + s8p s6p + s9p s12p

⎞
⎠ .

5.6.1. Transfer from particle to grid
With this notation, the transfer from particle to grid is mip = mp N(xp − xi), mi = ∑

p mip , (mv)ip = mip
∑Nr

j=1 s jpb jpi and 
(mv)i = ∑

p(mv)ip . That is, the grid momenta are just the sum of the momenta modes local to each particle. Notably, this 
describes the PIC, RPIC and APIC transfers in one description. If we define the total linear momentum of the particle state 
to be the sum of the total linear momenta from each local particle state, and the total angular momentum of particle state 
to be the sum of the total angular momenta from each local particle state (computed about the particle) plus the angular 
momenta of the particles, then the transfer conserves linear and angular momentum by reasoning analogous to that in 
Section 5.1.

5.6.2. Transfer from grid to particle
Using this notation, the transfer from grid to particle is done by determining s̃ jp from the updated grid velocities ṽi . 

We can do this in a way that conserves linear, angular momenta, as well as generalized moments directly by solving the 
system

bT
jp

⎛
⎜⎜⎜⎝

m1p ṽ1

m2p ṽ2
...

mNg p ṽNg

⎞
⎟⎟⎟⎠ = bT

jpMbip s̃ip

for s̃ip . Notably, this describes the PIC and RPIC transfers when the Nr = 3 and Nr = 6 respectively. Furthermore, it gener-
alizes the result to the affine case. Remarkably, it can be shown that the matrix bT

jpMbip is both diagonal and constant in 
time for quadratic and cubic B-splines, i.e. does not depend on the configuration of the particles relative to the grid. This 
not only means that these solves can be done efficiently, but it also shows that for APIC, s̃ip are the PIC modes i = 1, 2, 3
and the RPIC modes for i = 4, 5, 6 and that the remaining APIC modes are determined independently since the components 
are decoupled in the solve. Lastly, the transfer conserves linear and angular momentum by the same argument as for RPIC 
since the right hand side terms
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Fig. 2. The matrix structure of bT
jp Mbip in the multilinear case. See section 5.6.3 for more detailed information on all entries.It is symmetric as with 

quadratic/cubic B-spline interpolations, but it is not diagonal. The inversion of this matrix has the same sparsity structure.

bT
jp

⎛
⎜⎜⎜⎝

m1p ṽ1

m2p ṽ2
...

mNg p ṽNg

⎞
⎟⎟⎟⎠ = bT

jpMbip s̃ip

are the linear momentum components for j = 1, 2, 3 and the angular momentum components (computed about the particle) 
for j = 4, 5, 6.

5.6.3. Coefficient computations
To construct the transfer, we need to compute the basis coefficients s̃ip . This requires building the matrix bT

jpMbip and 
inverting it. Notably, building this matrix and its inverse requires very little computation. In the case of cubic and quadratic 
B-spline interpolation, the matrix is actually constant and diagonal. For cubic B-splines, bT

jpMbip is diagonal with entries

mp × {1,1,1,
2

3
�x2,

2

3
�x2,

2

3
�x2,

2

3
�x2,

2

3
�x2,

2

3
�x2,

1

3
�x2,

1

3
�x2,

1

3
�x2}

For quadratic B-splines, bT
jpMbip is diagonal with entries

mp × {1,1,1,
1

2
�x2,

1

2
�x2,

1

2
�x2,

1

2
�x2,

1

2
�x2,

1

2
�x2,

1

4
�x2,

1

4
�x2,

1

4
�x2}.

For the cubic and quadratic cases, this transfer is equivalent to those derived in previous sections, albeit without the intu-
ition needed to prove a number of the useful properties.

For multilinear interpolation function, it is a symmetric matrix (but not diagonal).

bT
jpMbip = mp

⎛
⎜⎜⎝

I 0 0 0
0 A0 A1 0
0 A1 A0 0
0 0 0 −�xZ − Z2

⎞
⎟⎟⎠

where

A0 = −diag

⎛
⎜⎜⎝

z2
p2 + z2

p3 + �x(zp2 + zp3)

z2
p1 + z2

p3 + �x(zp1 + zp3)

z2
p1 + z2

p2 + �x(zp1 + zp2)

⎞
⎟⎟⎠ A1 = −diag

⎛
⎜⎝

(�x + zp2 + zp3)(zp2 − zp3)

(�x + zp1 + zp3)(zp3 − zp1)

(�x + zp1 + zp2)(zp1 − zp2)

⎞
⎟⎠ ,

Op is the bottom left corner location of the cell that particle p affects, zp = Op − xp and Z = diag(z). Fig. 2 shows the 
structure of this matrix. Its inverse has the same structure.

5.7. Degrades to backward Euler case

The transfers are the same as in [22], except for the update rule for Bn+1
p , which we show below simplifies into the 

transfer from [22] with λ = 0. Using λ recovers the backward Euler grid update rule x̃n+1 = xn + �tṽn+1. Then,
i i i
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x̃n+1
i = xn

i + �tṽn+1
i∑

i

wn
ip x̃n+1

i =
∑

i

wn
ip(xn

i + �tṽn+1
i )

xn+1
p = xn

p + �tvn+1
p

Bn+1
p = 1

2

∑
i

wn
ip

(
ṽn+1

i (xn
i − xn

p + x̃n+1
i − xn+1

p )T + (xn
i − xn

p − x̃n+1
i + xn+1

p )(ṽn+1
i )T

)

= 1

2

∑
i

wn
ip

(
ṽn+1

i (2xn
i − 2xn

p + �tṽn+1
i − �tvn+1

p )T + �t(vn+1
p − ṽn+1

i )(ṽn+1
i )T

)

=
∑

i

wn
ip ṽn+1

i (xn
i − xn

p)T + �t

2

∑
i

wn
ip

(
−ṽn+1

i (vn+1
p )T + vn+1

p (ṽn+1
i )T

)

=
∑

i

wn
ip ṽn+1

i (xn
i − xn

p)T + �t

2

(
−vn+1

p (vn+1
p )T + vn+1

p (vn+1
p )T

)

=
∑

i

wn
ip ṽn+1

i (xn
i − xn

p)T

This was the original APIC transfer.
Another departure from [22] is the update rule for xn+1

p . We note, however, that these are also equivalent in the λ = 0
case.

xn+1
p =

∑
i

wn
ip x̃n+1

i

=
∑

i

wn
ip(xn

i + �tλvn
i + �t(1 − λ)ṽn+1

i )

= xn
p + �tλ

∑
i

wn
ipvn

i + �t(1 − λ)
∑

i

wn
ip ṽn+1

i

= xn
p + �tλ

∑
i

wn
ipvn

i + �t(1 − λ)vn+1
p

Note that the second term is not vn
p . This term vanishes in the special case λ = 0, so that the transfer in [22] could be done 

using the particle velocity. We see that the proposed method represents a generalization of the original APIC scheme.

5.8. Note on transfer construction

The most important difference between the method described above and the original APIC method from [22] is (38). 
This transfer was constructed by first assuming that the transfer should take the form

Bn+1
p =

∑
i

wn
ip

(
ṽn+1

i (axn
i + bxn

p + cx̃n+1
i + dxn+1

p )T + (exn
i + f xn

p + gx̃n+1
i + hxn+1

p )(ṽn+1
i )T

)
.

Terms involving vn
i could also be considered; such terms would add a FLIP-like character to the transfer. Terms similar to 

(ṽn+1
i )T xn

i I are also technically possible; we do not include them since we did not find them to contribute meaningfully to 
the transfer. We restrict ourselves here to the form above, which leaves us to choose the eight coefficients. We require (1) 
angular momentum conservation (See Section 5.3), (2) affine round trip (See Section 5.5), and (3) one particle stability (See 
Section 5.4). These three constraints uniquely determine all eight coefficients in the general case. In the special case λ = 0, 
the eight terms are not linearly independent; this allows additional freedom to eliminate terms, resulting in the simpler 
transfer from [22].

5.9. Stability concerns for multilinear interpolation

With linear interpolation weights, Dn
p is not invertible. The particle to grid transfer from

mn
i vn

i =
∑

p

wn
ipmp(vn

p + Bn
p(Dn

p)−1(xn
i − xn

p))

can in the multilinear interpolation case be re-written as
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Fig. 3. Angular momentum and total energy evolution over time for a rotating elastic disk with initial angular momentum (Section 6.1). APIC has a slightly 
higher initial angular momentum due to the additional Bp matrix that holds some extra contribution that is lacking for PIC or FLIP.

Fig. 4. Angular momentum and total energy evolution over time for an elastic cylinder rebounding between two walls (Section 6.2).

mn
i vn

i =
∑

p

(wn
ipmpvn

p + mpBn
p∇wn

ip)

using wn
ip(Dn

p)−1(xn
i − xn

p) = ∇wn
ip . To see why this can cause problems, consider the case with one particle. Let vn

p = 0 and 
Bn

p = I. Then

mn
i vn

i = mp∇wn
ip

vn
i = ∇wn

ip

wn
ip

Consider a grid cell at [0, �x] ×[0, �x] with grid degrees of freedom at x(i, j) = (i�x, j�x). If the particle p is at (ε�x, 12 �x), 
then wn

(1,1)p = ε
2 and ∇wn

(1,1)p = 〈 1
2�x , ε

�x 〉. But then, vn
(1,1) = 〈 1

ε�x , 2
�x 〉, which is unbounded. This in turn results in a 

kinetic energy contribution of 1
2 mn

(1,1)‖vn
(1,1)‖2 = 1

4�x mp(ε−1 + 4ε). Since ε can be arbitrarily small, the energy of the grid 
node can be arbitrarily large. This unbounded growth in energy causes instability and makes a multilinear interpolation 
kernel unsuitable for this APIC formulation.

In order to use APIC using multilinear interpolation function without being unstable, we can lag the affine matrix with 
the transfers being

mn
i vn

i =
∑

wn
ipmp(vn

p + Cn
p(xn

i − xn
p)),
p
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Fig. 5. Angular momentum and total energy evolution over time for a skew impact of two elastic cylinders (Section 6.3).

Cn+1
p =

∑
i

wn
ip ṽi((Dn

p)−1(xn
i − xn

p))T .

For multilinear interpolation, it further simplifies to Cn+1
p = ∑

i ṽi(∇wn
ip)T . Note that this formulation does not suffer from 

the same energy increasing problem as long as C is bounded. The difference is effectively that the B formulation inverts Dn
p

at the end of the time step rather than doing so at the beginning of the next time step. In the quadratic and cubic cases, 
the C formulation and the B formulation are equivalent, since Dn

p is a constant scalar multiple of the identity and thus 
Dn

p = Dn+1
p . For multilinear interpolation, we always use the lagged version for stability.

6. Numerical simulations

6.1. Rotating elastic cylinder

We begin our tests by running a simple rotation test. We use a [0, 1] × [0, 1] domain with 32 × 32 resolution. We 
initialize a circle with radius 0.3 centered at (0.5, 0.5), seeded with four particles per cell. The circle begins rotating with 
angular velocity 0.4 about its center. We use an initial density ρ = 2 and a Neo-Hookean constitutive model with E = 1000
and ν = 0.3. See Fig. 3. Note that the initial energy and angular momentum is not the same for the different schemes. The 
energy and angular momentum for APIC is slightly higher (by around 1%) since the initial state for this scheme includes 
Bn

p , which is nonzero for a spinning object. This additional state contributes to energy and angular momentum, making it 
slightly higher. Energy is printed for FLIP as measured on particles and on the grid; the grid version is consistently slightly 
less since energy is filtered during the transfer to the grid.

6.2. Rebound of an elastic cylinder

We run the same example as in section 4.1 of [7].
The grid spacing is h = 0.5. Slip boundary conditions are applied at x = 0 and x = 15. The cylinder is initially centered at 

(2.5, 2.5) and has radius 1.5. MPM particles are sampled with alignment to the grid with spacing 0.25 (so 4 particles per 
cell for a full cell). Material density is 4. The constitutive model is Neo-Hookean with Young’s Modulus 85.5 and Poisson’s 
ratio 0.425. The initial velocity of the cylinder is (0.5, 0). See Fig. 4.

6.3. Skew impact of two elastic cylinders

We run the same example as in section 4.2 of [7].
The grid spacing is h = 1. The first cylinder is initially centered at (3, 3) with velocity (0.75, 0). The second cylinder 

is initially centered at (16, 5) with velocity (−0.75, 0). Each cylinder has radius 2. MPM particles are sampled with align-
ment to the grid with spacing 0.5 (so 4 particles per cell for a full cell). Material density is 5. The constitutive model is 
Neo-Hookean with Young’s Modulus 31.685 and Poisson’s ratio 0.44022 (Fig. 5).

6.4. Elastic cylinder collision

We extend the previous example to two colliding hollow cylinders.
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Fig. 6. Angular momentum and total energy evolution over time for two colliding hollow cylinders (Section 6.4).

Fig. 7. Skew impact of two colliding spheres with initial translational velocities in 3D (Section 6.5). The figure shows frame 70/145/253 with framerate 
24 Hz.

The grid spacing is h = 0.01. The first ring is initially centered at (0.1, 0.24) with velocity (50, 0). The second ring 
is initially centered at (0.4, 0.24) with velocity (−50, 0). Each ring has outer radius 0.04 and inner radius 0.03. MPM 
particles are sampled with alignment to the grid with spacing 1/300. Material density is 1010. The constitutive model is 
Neo-Hookean with Young’s Modulus 7.3e7 and Poisson’s ratio 0.4 (Fig. 6).

6.5. Elastic sphere collision (3D)

We extend the skew impact of spheres to 3D. The grid spacing is h = 30/256. The first sphere is initially centered at 
(10, 13, 15) with velocity (0.75, 0, 0). The second sphere is initially centered at (20, 15, 15) with velocity (−0.75, 0, 0). Each 
sphere has radius 2. MPM particles are sampled with 4 particles per cell for a total particle count of 333, 213. Material 
density is 5. The constitutive model is Neo-Hookean with Young’s Modulus 31.685 and Poisson’s ratio 0.44022. Fig. 7 shows 
the visualized objects at time 2.92, 6.04 and 10.54.

We further extend the previous test by initializing each sphere with an angular velocity of (0, 0, 1) (i.e., the spheres 
initially rotate counterclockwise) and scaling the Young’s modulus by 8. Fig. 8 shows the visualized objects at time 0.08, 
2.83, 5.25 and 7.67.

6.6. Torus dropping

We drop 25 tori (with 8592 particles each) into a box with width 0.4 × 0.4 and height 0.3. Each torus has inner radius 
0.03 and outer radius 0.06 and is sampled at height 1.0 with random initial rotation around the ground normal. The 
material density is 5. Young’s modulus is 150 and Poisson’s ratio is 0.3. Fig. 9 shows the particles and the reconstructed 
surfaces at time 8.50.
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Fig. 8. Skew impact of two colliding spheres with initial translational velocities and angular velocities in 3D (Section 6.5). The figure shows frame 
1/34/63/92 with framerate 12 Hz.

Fig. 9. The proposed method is tested on a complicated scenario with 25 tori dropped into a container (Section 6.6). The simulation runs with framerate 
24 Hz.

6.7. Ringing

The noise caused by FLIP transfers can be kept at tolerable levels in most cases, and our other numerical tests bear 
this out. Indeed, the usefulness of FLIP transfers depends on this. While investigating this noise, we observed that the FLIP 
transfer null modes can be intentionally excited in various ways, such as by carefully vibrating an object. We have also 
come across circumstances where FLIP happens to perform unusually badly. We document here one such test under which 
we observed this. The test, as shown in Fig. 1, was originally reported in [22].

The simulation used the domain is [0 m, 1 m] ×[0 m, 1 m], with a 22 ×22 node-grid, resulting in �x = 1
21 m. Fixed objects 

inserted as objects. The ground is at y = 0.35 m. The left wall is at x = 0.1 m. Gravity is 2 m s−2 downward.
The �t is chosen in two steps. The desired time step is compute as dt∗ = max(�tmin, min(�tmax, ν �x

max(vmax,vτ )
)), 

where we have used �tmin = 10−6 s, �tmax = 0.005 s, ν = 0.1, and vτ = 0.01 ms−1. The max speed is computed as 
vmax = maxi ‖vn

i ‖. The second step is to ensure that we are able to output data at regular intervals of 1
24 s. Let �t f be 

the time until the next such time boundary. If �t f < 1.001�t∗ , then we take �t = �t f to avoid crossing the boundary. 
Otherwise, if �t f < 2�t∗ , we take �t = �t f

2 to avoid sliver time steps. Otherwise, the time boundary is far away and we 
use �t = �t∗ .

The projectile is initialized in the domain [0.15 m, 0.25 m] × [0.45 m, 0.55 m] with velocity 〈3 m s−1, 0〉. The target on 
the right is initially stationary in the domain [0.6 m, 0.8 m] × [0.35 m, 0.65 m]. The regular triangulations are visible in the 
figure. The top and bottom row of particles in the target are enforced as stationary using a zero-length spring penalty force 
computed as f = −c(xn+1

p − x0
p), where we have used c = 105 kg s−2. x0

p is the initial position of the particle. The area 
associated with each particle is one-third of the area of all of its adjacent triangles. The mass of each particle is set so that 
its density is 4 kg m−2. The constitutive model is fixed corotated [36] with stiffness E = 10 kg s−2 and Poisson’s ratio ν = 0.3
for both objects. The deformation gradient is computed from the current and initial particle locations using the Lagrangian 
mesh as in a fully Lagrangian scheme as in Jiang et al [22]. We note that this is equivalent to using the convected particle 
domain interpolation (CPDI) method [27] as noted in [26].

The time integration differs from the one in this manuscript in that backward Euler is used rather than midpoint rule for 
the grid update and the deformation gradient is computed from a Lagrangian mesh (CPDI) rather than tracked as is typically 
done with MPM. Cubic B-splines are used for the interpolation kernel. The time points shown in Fig. 1 are t = 2

24 s, t = 5
24 s, 

and t = 40
24 s. The target has almost stopped moving by the last frame in each case, so the final resting configuration for the 

target in each case closely resembles the last frame. The projectile continues to move for a while longer. In particular, the 
very dynamic-looking target in the last frame for the FLIP sim is in fact what the final resting configuration looks like for 
this sim. The expected result is, of course, for the target to look like the original, but sagging slightly under gravity. Both 
PIC and APIC eventually come to rest in this configuration (Fig. 10).
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Fig. 10. Total energy and kinetic energy evolution over time for the test in Section 6.7 (Fig. 1).

Fig. 11. Comparison of transfer error across transfers from grid to particle and back to grid with �t = 0. Both PIC and APIC transfer errors converge with 
first order accuracy, but APIC errors are an order of magnitude lower.

6.8. Round trip transfer error

In this test we measure the errors caused by just transfers for both PIC and APIC. To do this, we initialize a periodic 
[0, 2π ] × [0, 2π ] domain with particles using Poisson disk particle seeding [37] with minimum particle separation of �x

3 . 
We initialize the grid velocity field to 〈1.1 sin x, 0.9 cos y〉. We then do a transfer from grid to particles followed by a transfer 
from particles back to grid using PIC or APIC transfers with �t = 0. This allows us to quantify the transfer errors in isolation 
from other error sources. With ideal transfers, the resulting grid velocity field would match the initial one. This round-trip 
transfer error represents the limiting behavior of a time step as �t → 0, since all other sources of error will vanish in this 
limit. We compute the error between the grid velocities before and after transfers in the L2 norm. The results are shown in 
Fig. 11.

7. Discussion

The scheme described in this paper was constructed to demonstrate the angular momentum conservation properties of 
the proposed APIC transfers. The remaining elements of the discretization were chosen to be simple and defensible while 
supporting this goal. The transfers are relatively insensitive to other aspects of the discretization. We note that by using 
a PIC strategy, some short-wave length information that cannot be resolved by the grid will be dissipated, and this is a 
limitation of the approach. Note that in Fig. 1 high frequency deformation is seen in the FLIP example, wheres both APIC 
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and PIC damp this out. Thus while APIC does greatly reduce the dissipation of the original PIC, it does still suffer to some 
extent.

7.1. Update rule for Fn+1
p

In (40), we used the simple first order update rule for Fn+1
p . We have experimented with taking an extra Taylor series 

term.

Fn+1
p = NFn

p (109)

N = I + H + 1

2
H2 (110)

H =
∑

i

(x̃n+1
i − xn

i )(∇wn
ip)T . (111)

Adding the extra term complicates the force and its derivatives somewhat, so we have not used it here.
We have found uses for this update rule in other contexts. In particular, this rule improves stability for larger time steps 

by ensuring that det(Fn+1
p ) ≥ 0, which is important for many constitutive models. This property is also useful when using 

line searches to solve the nonlinear systems that arise with implicit time integration schemes, since line searches may 
explore configurations that result in det(Fn+1

p ) < 0. This update does not ensure invertibility, though this is a degenerate 
value and does not occur frequently in practice.

The invariant det(Fn+1
p ) ≥ 0 is obtained by ensuring that det(N) ≥ 0. Let H = PĤP−1 be the eigenvalue decomposition 

of H. Then, N = PN̂P−1 is the eigenvalue decomposition of N. Since det(N) = det(P) det(N̂) det(P−1) = det(N̂), det(N) is just 
the product of diagonal entries of N̂, which are of the form 1 + λ + λ2

2 . Here, λ may occur as real numbers or complex 
conjugate pairs. Real entries contribute a factor of 1 + λ + λ2

2 = (1 + λ
2 )2 + λ2

4 ≥ 0 to the product. Complex conjugate pairs 

contribute a factor of (1 + λ + λ2

2 )(1 + λ + λ
2

2 ) =
∣∣∣1 + λ + λ2

2

∣∣∣2 ≥ 0. Since all contributions are nonnegative, the determinant 
is also nonnegative.

The full matrix exponential goes a step further and ensures det(Fn+1
p ) > 0, a property that no fixed number of Taylor 

terms can guarantee. The full matrix exponential is very difficult to differentiate, however, so we have never used it in an 
implicit scheme.
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