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ABSTRACT

Motivated by Lagrangian simulation of elastic deformation, we propose a new tetrahedral mesh generation algorithm
that produces both high quality elements and a mesh that is well conditioned for subsequent large deformations. We
use a signed distance function defined on a Cartesian grid in order to represent the object geometry. After tiling space
with a uniform lattice based on crystallography, we use the signed distance function or other user defined criteria to
guide a red green mesh subdivision algorithm that results in a candidate mesh with the appropriate level of detail.
Then, we carefully select the final topology so that the connectivity is suitable for large deformation and the mesh
approximates the desired shape. Finally, we compress the mesh to tightly fit the object boundary using either masses
and springs, the finite element method or an optimization approach to relax the positions of the nodes. The resulting
mesh is well suited for simulation since it is highly structured, has robust topological connectivity in the face of large
deformations, and is readily refined if deemed necessary during subsequent simulation.

Keywords: tetrahedral mesh generation, level set methods, BCC lattice, red green refinement hierar-
chy, large deformations, muscle simulation

1. INTRODUCTION

We are particularly interested in simulating highly de-
formable bodies such as the muscle and fatty tissues
commonly encountered in biomechanics [1, 2], haptics
[3], and virtual surgery [4, 5]. The quality of the tetra-
hedral mesh has a profound influence on both the ac-
curacy and efficiency of these simulations, see e.g. [5].
Therefore, we propose a mesh generation algorithm
designed specifically for such high deformation simu-
lations.

Mesh generation is not only a broad field, but is in
some sense many fields, each concerned with the cre-
ation of meshes that conform to quality measures spe-
cific to the application at hand. The requirements for

fluid flow and heat transfer where the mesh is not de-

formed, and for small deformation solids where the

mesh is barely deformed, can be quite different from

those for simulating soft biological tissue that may un-

dergo large deformations. Simple examples show that
the specific requirements or measures of quality of a
mesh vary depending on the problem being solved, see
e.g. [6].

For example, an optimal mesh for an Eulerian fluid
flow simulation should include anisotropically com-
pressed elements in boundary layers, e.g. [7, 8, 9]. In
these calculations, the solution gradient in the direc-
tion of the fluid flow is typically not as large as in
the orthogonal directions. Obviously, it is desirable
to have the density of the elements be larger in direc-
tions where the gradient is large and lower in directions
where the gradient is small, i.e. elongated elements.
In contrast, however, highly stretched cells tend to be
ill-conditioned when a mesh deforms significantly as is
typical for soft bodies. Either the mesh is softer in the
thin direction and the cell has a tendency to invert, or



the mesh is stiffer in the thin direction and the simu-
lation becomes very costly since the explicit time step
restriction worsens with higher stiffness and smaller el-
ement cross-section. Thus, although our method has
been designed to provide a high degree of adaptivity
both to resolve the geometry and to guarantee qual-
ity simulation results, we neither consider nor desire
anisotropically stretched elements. Also, since highly
deformable bodies tend to be devoid of sharp features
such as edges and corners, we do not consider bound-
ary feature preservation.

Our main concern is to generate a mesh that will be ro-
bust when subsequently subject to large deformations.
For example, although we obviously want an adaptive
mesh with smaller elements in areas where more de-
tail is desired, it is even more important to have a
mesh that can be adapted during the simulation since
these regions will change. Motivated by crystallogra-
phy, we use a body-centered cubic (BCC) mesh (see
e.g. [10]) that is highly structured and produces sim-
ilar (in the precise geometric sense) tetrahedra under
regular refinement. This allows us to adaptively re-
fine both while generating the mesh and during the
subsequent simulation.

We start with a uniform tiling of space and use a
signed distance function representation of the geom-
etry to guide the creation of the adaptive mesh, the
deletion of elements that are not needed to represent
the object of interest, and the compression of the mesh
necessary to match the object boundaries [11]. This
compression stage can be carried out using either a
mass spring system, a finite element method or an op-
timization based approach. One advantage of using a
physically based compression algorithm is that it gives
an indication of how the mesh is likely to respond to
the deformations it will experience during simulation.
This is in contrast to many traditional methods that
may produce an initial mesh with good quality mea-
sures, but also with possible hidden deficiencies that
can be revealed during simulation leading to poor ac-
curacy or element collapse. Moreover, our novel topo-
logical considerations (discussed below) are specifically
designed to address these potential defects present in
other mesh generation schemes.

2. RELATED WORK

While Delaunay techniques have been quite success-
ful in two spatial dimensions, they have not been as
successful in three spatial dimensions (see e.g. [12] for
a discussion of implementation details). They admit
flat sliver tetrahedra of negligible volume. Shewchuk
provides a nice overview of these methods, including
a discussion of why some of the theoretical results are
not reassuring in practice [13]. Moreover, he discusses
how the worst slivers can often be removed. Cheng

et al. [14] also discuss sliver removal, but state that
their theorem gives an estimate that is “miserably
tiny”. Edelsbrunner and Guoy [15] showed that [14]
can be used to remove most of the slivers, but is not
as promising near boundaries. Another problem with
Delaunay methods is that the Delaunay tetrahedral-
ization of a set of points is convex whereas the domains
of many finite element calculations are not. Thus,
techniques such as the conforming Delaunay approach
which inserts additional vertices into the mesh to force
it to conform to the boundary of the domain must be
developed. The constrained Delaunay tetrahedraliza-
tion is another method used to enforce boundary re-
covery [16]. These approaches can be complicated and
can even produce an intractably large mesh which is
not polynomial in the complexity of the input domain.

Advancing front methods start with a boundary dis-
cretization and march a “front” inward forming new
elements attached to the existing ones [17]. Advanc-
ing front techniques conform well to the boundary.
This renders them a useful technique when the spe-
cific polygonal boundary representation of the geom-
etry must be matched precisely, for example, when
meshing a machine part. When the input geometry
is not a polygonal boundary, a triangulation of this
boundary must first be performed. The quality of this
surface triangulation has a large impact on the three
dimensional algorithm’s behavior. Poorly shaped sur-
face triangles will engender ill-shaped tetrahedra [18].
A central decision in an advancing front algorithm is
the placement of an interior point that marches the
front further into the interior of the object. Local ele-
ment control is possible because new nodes are created
at the same time that new elements are created. The
node and element creation is done as needed based
on local procedures. Authors have experimented with
various metrics and criteria to evaluate the placement
of the new node, see e.g. [19, 20, 21]. All advanc-
ing front techniques have difficulty when fronts merge,
however, which unfortunately can occur very near the
important boundary in regions of high curvature [8, 9].

Radovitzky and Ortiz [22] started with a face-centered
cubic (FCC) lattice defined on an octree and used an
advancing front approach to march inward, construct-
ing a mesh with the predetermined nodes of the FCC
lattice. They chose FCC over BCC because it gives
slightly better tetrahedra for their error bounds. How-
ever, after any significant deformation the two meshes
will usually have similar character. Moreover, since
we keep our BCC connectivity intact (as opposed to
[22]), we retain the ability to further refine our BCC
mesh during the calculation to obtain locally higher
resolution for improved accuracy and robustness. On
the other hand, their approach is better at resolving
boundary features and is thus likely superior for prob-
lems with little to no deformation.



Fuchs [23] begins with a BCC tiling of space which is
adaptively refined to obtain the desired nodal density.
Vertices outside the object are simply projected to the
boundary and then smoothing is applied to optimize
the position of the vertices. They emphasize that the
BCC connectivity is never used and instead apply De-
launay tesselation. That is, they only use the adaptive
BCC lattice to obtain an initial guess for their vertex
positions.

Shimada and Gossard [24] packed spheres (or ellip-
soids for anisotropic mesh generation [25]) into the
domain with mutual attraction and repulsion forces,
and generated tetrahedra using the sphere centers as
sample points via either a Delaunay or advancing front
method. However, ad hoc addition and deletion of
spheres is required in a search for a steady state, and
both local minima and “popping” can be problematic.
This led Li et al. [26] to propose the removal of the dy-
namics from the packing process, instead marching in
from the boundary removing spherical “bites” of vol-
ume one at a time. This biting was motivated by the
advancing front technique, but used here for sphere
packing rather than mesh generation. The final mesh
is computed with a Delaunay algorithm on the sphere
centers. Later, they extended the biting idea to ellip-
soids to generate anisotropic meshes [27].

Our compression phase moves the nodes on the bound-
ary of our candidate mesh to the implicit surface,
providing boundary conformity. In some sense, this
wrapping of our boundary around the level set is re-
lated to snakes [28] or GDMs [29] which have been
used to triangulate isosurfaces, see e.g. [30]. Neuge-
bauer and Klein started with a marching cubes mesh
and moved vertices to the centroid of their neighbors
before projecting them onto the zero level set in the
neighboring triangles’ average normal direction [31].
Grosskopf and Neugebauer improved this method us-
ing internodal springs instead of projection to the cen-
troid, incremental projection to the zero isocontour,
adaptive subdivision, edge collapse and edge swapping
[32]. Kobbelt et al. used related ideas to wrap a mesh
with subdivision connectivity around an arbitrary one,
but had difficulty projecting nodes in one step, empha-
sizing the need for slower evolution [33]. To improve
robustness, Wood et al. replaced the spring forces with
a modified Laplacian smoothing restricted to the tan-
gential direction [34]. Ohtake and Belyaev advocated
moving the triangle centroids to the zero isocontour in-
stead of the nodes, and matching the triangle normals
with the implicit surface normals [35].

Although we derive motivation from this work, we note
that our problem is significantly more difficult since
these authors move their mesh in a direction normal
to the surface, which is orthogonal to their measure
of mesh quality (shapes of triangles tangent to the

surface). When we move our mesh normal to the sur-
face, it directly conflicts with the quality of the surface
tetrahedra. In [36], de Figueiredo et al. evolved a vol-
umetric mass spring system in order to align it with
(but not compress it to) the zero isocontour, but the
measure of mesh quality was still perpendicular to the
evolution direction since the goal was to triangulate
the zero isocontour. Later, however, Velho et al. did

push in a direction conflicting with mesh quality. They
deformed a uniform-resolution Freudenthal lattice to
obtain tetrahedralizations using a mass spring model,
but were restricted to simple geometries, mostly due
to the inability to incorporate adaptivity [37].

In two spatial dimensions, Gloth and Vilsmeier also
moved the mesh in a direction that opposed the el-
ement quality [38]. They started with a uniform
Cartesian grid bisected into triangles, threw out el-
ements that intersected or were outside the domain,
and moved nodes to the boundary in the direction of
the gradient of the level set function using traditional
smoothing, edge swapping, insertion and deletion tech-
niques on the mesh as it deformed.

3. THE BCC LATTICE

We turn our attention to the physical world for in-
spiration and start our meshing process with a body-
centered cubic (BCC) tetrahedral lattice. This mesh
has numerous desirable properties and is an actual
crystal structure ubiquitous in nature, appearing in
vastly different materials such as soft lithium and hard
iron crystals, see e.g. [10]. Other spatial tilings are
possible. Üngör [39] provides a number of these in-
cluding tilings using acute tetrahedra.

The BCC lattice consists of nodes at every point of
a Cartesian grid along with the cell centers. These
node locations may be viewed as belonging to two in-
terlaced grids. Additional edge connections are made
between a node and its eight nearest neighbors in the
other grid. See figure 1 where these connections are de-
picted in red and the two interlaced grids are depicted
in blue and in green. The BCC lattice is the Delau-
nay complex of the interlaced grid nodes, and thus
possesses all properties of a Delaunay tetrahedraliza-
tion. Moreover, all the nodes are isomorphic to each
other (and in particular have uniform valence), every
tetrahedron is congruent to the others, and the mesh
is isotropic (so the mesh itself will not erroneously in-
duce any anisotropic bias into a subsequent calcula-
tion). The BCC lattice is structured, which may be
exploited in preconditioned iterative solvers, multigrid
algorithms, etc. and may allow reduced computational
and memory requirements.

A significant advantage of the BCC mesh is that it is
easily refined initially or during the calculation. Each



regular BCC tetrahedron can be refined into eight
tetrahedra, shown in red in figure 2, with a one to eight
(or 1:8) refinement. When the shortest of the three
possible choices for the edge internal to the tetrahe-
dron is taken, the newly formed tetrahedra are exactly

the BCC tetrahedra that result from a mesh with cells
one half the size. Thus, these eight new tetrahedra
are geometrically similar to the tetrahedra of the par-
ent mesh and element quality is guaranteed under this
regular 1:8 refinement.

4. A RED GREEN HIERARCHY

Many applications do not require and cannot afford
(due to computation time and memory restrictions) a
uniformly high resolution mesh. For example, many
phenomena such as contact and fracture show highly
concentrated stress patterns, often near high surface
curvature, outside of which larger tetrahedra are ac-
ceptable. In addition, many applications such as vir-
tual surgery can tolerate lower accuracy in the unseen
interior of a body. Thus, we require the ability to
generate adaptive meshes.

As the BCC lattice is built from cubes, one natural
approach to adaptivity is to build its analog based
on an octree. We implemented this by adding body
centers to the octree leaves, after ensuring the octree
was graded with no adjacent cells differing by more
than one level. The resulting BCC lattices at different
scales were then patched together with special case
tetrahedra. For more on octrees in mesh generation,
see e.g. [40, 41, 22] (none of which use our multilevel
BCC mesh).

However, we found that red green refinement is more
economical, simpler to implement, and more flexible,
see e.g. [42, 43, 44]. The initial BCC lattice tetra-
hedra are labelled red, as are any of their eight chil-
dren obtained with 1:8 subdivision. Performing a red
refinement on a tetrahedron creates T-junctions at
the newly-created edge midpoints where neighboring

Figure 1: A portion of the BCC lattice. The
blue and the green connections depict the two
interlaced grids, and the eight red connections
at each node lace these two grids together.

Figure 2: The standard red refinement (left)
produces eight children that reside on a BCC
lattice that is one half the size. Three green
refinements are allowed (depicted in green).

tetrahedra are not refined to the same level. To elim-
inate these, the red tetrahedra with T-junctions are
irregularly refined into fewer than eight children by in-
troducing some of the midpoints. These children are
labeled green, and are of lower quality than the red
tetrahedra that are part of the BCC mesh. Moreover,
since they are not BCC tetrahedra, we never refine
them. When higher resolution is desired in a region
occupied by a green tetrahedron, the entire family of
green tetrahedra is removed from its red parent, and
the red parent is refined regularly to obtain eight red
children that can undergo subsequent refinement.

A red tetrahedron that needs a green refinement can
have between one and five midpoints on its edges (in
the case of six we do red refinement). We reduce the
possibilities for green refinement to those shown in fig-
ure 2, adding extra edge midpoints if necessary. This
restriction (where all triangles are either bisected or
quadrisected) smooths the gradation further and guar-
antees higher quality green tetrahedra. While there
can, of course, be a cascading effect as the extra mid-
points may induce more red or green refinements, it is
a small price to pay for the superior mesh quality and
seems to be a minor issue in practice.

Any criteria may be used to drive refinement, and we
experimented with the geometric rules described in the
next section. A significant advantage of the red green
framework is the possibility for refinement during sim-
ulation based on a posteriori error estimates, with su-
perior quality guarantees based on the BCC lattice in-
stead of an arbitrary initial mesh. Note that the lower
quality green tetrahedra can be replaced by finer red
tetrahedra which admit further refinement. However,
one difficulty we foresee is in discarding portions of
green families near the boundary (see section 6), since
part of the red parent is missing. To further refine
this tetrahedron, the green family has to be replaced
with its red parent which can be regularly refined, then
some of the red children need to be discarded and the
others must be compressed to the boundary (see sec-
tions 7–8). A simpler but lower quality alternative is
to arbitrarily relabel those green boundary tetrahedra
that are missing siblings as red, allowing them to be
directly refined. We plan to address this issue in future
work.



5. LEVEL SET GEOMETRY

We represent the geometry with a signed distance
function defined on either a uniform grid [45] or an
octree grid [46, 47]. In the octree case, we constrain
values of fine grid nodes at gradation boundaries to
match the coarse grid interpolated values, see e.g.
[48]. When the signed distance function has a resolu-
tion much higher than that of our desired tetrahedral
mesh, we apply motion by mean curvature to smooth
the high frequency features and then reinitialize to a
signed distance function, see e.g. [45].

Medical data such as the National Library of
Medicine’s Visible Human data set often comes in the
form of volume data [49]. Thus, it is natural to devise a
mesh generation technique that generates a volumetric
mesh from this data. The data is first converted into a
level set using straightforward and efficient algorithms
such as a fast marching method [50, 51]. Level sets
arise naturally in other applications as well. They are
used as a design primitive in CAGD packages. They
are also used as a technique to generate a surface from
scattered point data [52].

At any point in space, we calculate the distance from
the implicitly defined surface as φ, which is negative
inside and positive outside the surface. To obtain
a finer mesh near the boundary, one simply refines
tetrahedra that include portions of the interface where
φ = 0. If a tetrahedron has nodes with positive values
of φ and nodes with negative values of φ, it obviously
contains the interface and can be refined. Otherwise,
the tetrahedron is guaranteed not to intersect the in-
terface if the minimum value of |φ| at a node is larger
than the longest edge length (tighter estimates are
available, of course). The remaining cases are checked
by sampling φ appropriately (at the level set grid size
4x), allowing refinement if any sample is close enough
to the interface (|φ| < 4x). Figure 3 shows a sphere
adaptively refined near its boundary. Note how the
interior mesh can still be rather coarse.

Figure 3: Tetrahedral mesh of a sphere (18K el-
ements). The cutaway view illustrates that the
interior mesh can be fairly coarse even if high
resolution is desired on the exterior boundary.

Figure 4: Tetrahedral mesh of a torus (8.5K
elements). Using the principal curvatures in-
creases the level of resolution in the inner ring.

The outward unit normal is defined as N = ∇φ and
the mean curvature is defined as κ = ∇ · N . One
may wish to adaptively refine in regions of high cur-
vature, but the mean curvature is a poor measure of
this since it is the average of the principal curvatures,
(k1 + k2)/2, and can be small at saddle points where
positive and negative curvatures cancel. Instead we
use |k1|+ |k2|. The principal curvatures are computed
by forming the Hessian, H, and projecting out the
components in the normal direction via the projec-
tion matrix P = I − NNT . Then the eigenvalues of
PHP/|∇φ| are computed, the zero eigenvalue is dis-
carded as corresponding to the eigenvector N , and the
remaining two eigenvalues are k1 and k2. See e.g. [53].
To detect whether a tetrahedron contains regions of
high curvature, we sample at a fine level and check
the curvature at each sample point. Figure 4 shows a
torus where the inner ring is refined to higher resolu-
tion even though the principal curvatures there differ
in sign.

6. TOPOLOGICAL CONSIDERATIONS

To obtain the final topology of the mesh, we first cover
an appropriately sized bounding box of the object with
a coarse BCC mesh. Then we use a conservative dis-
card process to remove tetrahedra that are guaranteed
to lie completely outside of the zero isocontour: tetra-
hedra with four positive φ values all larger than the
maximum edge length are removed.

In the next step, the remaining tetrahedra are refined
according to any user defined criteria, such as indi-
cator variables or geometric properties. We have ex-
perimented with using both the magnitude of φ and
various measures of curvature as discussed in the pre-
vious section. Using simply the magnitude of φ pro-
duces large tetrahedra deep inside the object and a
uniform level of refinement around the surface, which
can be useful since objects interact with each other
via surface tetrahedra. A more sophisticated method
uses the surface principal curvatures, better resolving
complex geometry and allowing for more robust and
efficient simulation when subject to large deformation.



We refine any tetrahedron near the interface if its max-
imum edge length is too large compared to a radius of
curvature measure, 1/(|k1| + |k2|), indicating an in-
ability to resolve the local geometry. We refine to a
user-specified number of levels, resolving T-junctions
in the red green framework as needed.

From the adaptively refined lattice we select a subset
of tetrahedra that closely matches the object. How-
ever, there are specific topological requirements nec-
essary to ensure a valid mesh that behaves well under
deformation: the boundary must be a manifold; no
tetrahedron may have all four nodes on the bound-
ary; and no interior edge may connect two boundary
nodes. Boundary forces can readily crush tetrahedra
with all nodes on the boundary, or that are trapped
between the boundary and an interior edge with both
endpoints on the boundary. To satisfy the conditions,
we select all the tetrahedra incident on a set of “en-
veloped” nodes sufficiently interior to the zero isocon-
tour. This guarantees that every tetrahedron is inci-
dent on at least one interior node, and also tends to
avoid the bad interior segments for reasonably convex
regions, i.e. regions where the geometry is adequately
resolved by the nodal samples. We specifically choose
the set of nodes where φ < 0 that have all their inci-
dent edges at least 25% inside the zero isocontour as
determined by linear interpolation of φ along the edge.

Additional processing is used to guarantee appropri-
ate topology even in regions where the mesh may be
under-resolved. Any remaining interior edges and all
edges incident on non-manifold nodes are bisected,
and the red green procedure is used to remove all T-
junctions. If any refinement is necessary, we recal-
culate the set of enveloped nodes and their incident
tetrahedra as above. As an option, we may add any
boundary node with surface degree three to the set of
enveloped nodes (if these nodes were to remain, the
final surface mesh would typically contain angles over
120◦). We also add any non-manifold node that re-
mains and the deeper of the two boundary nodes con-
nected by a bad interior edge. We check that these
additions do not create more problems, continuing to
add boundary nodes to the set of enveloped nodes un-
til we have achieved all requirements. This quickly
and effectively results in a mesh that approximates the
object fairly closely (from the viewpoint of an initial
guess for the compression phase of the algorithm) and
that has connectivity well suited for large deformation
simulations.

7. PHYSICS BASED COMPRESSION

We outfit our candidate mesh with a deformable model
based on either masses and springs or the finite ele-
ment method, and subsequently compress the bound-
ary nodes to conform to the zero isocontour of the

signed distance function. The compression is driven
using either a force or velocity boundary condition on
the surface nodes. Applying forces is more robust as it
allows the interior mesh to push back, resisting exces-
sive compression while it seeks an optimal state. How-
ever, if the internal resistance of the mesh becomes
larger than the boundary forces, the boundary will
not be matched exactly. Thus, instead of adjusting
forces, we switch from force to velocity boundary con-
ditions after an initial stage that carries out most of
the needed compression. At each boundary vertex, we
choose the direction of the force or constrained veloc-
ity component as the average of the incident triangles’
normals. No force (or velocity constraint) is applied
in other directions so the mesh is free to adjust itself
tangentially. The magnitude of the force or velocity
constraint is proportional to the signed distance from
the level set boundary.

To integrate the equations of motion forward in time,
we use a central difference scheme that treats the non-
linear elastic forces explicitly and the damping forces
implicitly. This circumvents stringent time step re-
strictions based on the damping forces. Moreover,
since all our damping forces are linear and symmet-
ric negative semi-definite, we can use a conjugate gra-
dient solver for the implicit step. We use a velocity
modification procedure to artificially limit the maxi-
mum strain of a tetrahedral altitude to 50%, and to
artificially limit the strain rate of a tetrahedral alti-
tude to 10% per time step [54]. Since altitudes do not
connect two mesh nodes together, all of these oper-
ations are carried out by constructing a virtual node
at the intersection point between an altitude and the
plane containing the base triangle. The velocity of
this point is calculated using the barycentric coordi-
nates and velocities of the triangle, and the mass is
the sum of the triangle’s nodal masses. The resulting
impulses on this virtual node are then redistributed to
the triangle nodes, conserving momentum.

7.1 Mass Spring Models

The use of springs to aid in mesh generation dates back
at least to Gnoffo, who used them to move nodes for
two dimensional fluid dynamics calculations [55, 56].
Löhner et al. solved the compressible Euler equations
using variable spring stiffnesses to distribute the er-
ror evenly over the solution domain [57]. Later, [58]
used variational principles analogous to the energy of
a system of springs to achieve the same goal. Other
authors also measured the error of a CFD calcula-
tion along edges of a mesh and then used a spring
network to equidistribute these errors over the edges
[59, 60, 61]. Bossen and Heckbert point out that inter-
nodal forces that both attract and repel (like springs
with nonzero rest lengths) are superior to Laplacian
smoothing where the nodes only attract each other



[62]. Thus, we use nonzero rest lengths in our springs,
i.e. simulating the mesh as if it were a real material.
All edges are assigned linear springs obeying Hooke’s
law, and the nodal masses are calculated by summing
one quarter of the mass of each incident tetrahedron.

Edge springs are not sufficient to prevent element col-
lapse. As a tetrahedron gets flatter, the edge springs
provide even less resistance to collapse. Various meth-
ods to prevent this have been introduced, e.g. [63]
proposed a pseudo-pressure term, [64] used an elas-
tic (only, i.e. no damping) force emanating from the
barycenter of the tetrahedron. [65] showed that these
barycentric springs do not prevent collapse as effec-
tively as altitude springs. In our model, every tetra-
hedron has four altitude springs each attaching a tetra-
hedron node to a fictitious node on the plane of its op-
posite face. Then, the elastic and damping forces are
calculated just as for a normal spring. These forces are
distributed among the three nodes on the opposite face
according to the barycentric weights of the fictitious
node. This model has damping forces that are linear
and symmetric negative semi-definite in the nodal ve-
locities allowing the damping terms to be integrated
using a fast conjugate gradient solver for implicit in-
tegration.

When simulating a deformable object with a mass
spring network, the material behavior should be inde-
pendent of mesh refinement. The frequency of a spring
scales as

√

k/mlo (note our “spring constant” is k/lo),

so the sound speed scales as lo
√

k/mlo =
√

klo/m.
Requiring the sound speed to be a material property
implies that k must scale as m/lo. Thus, we set the
spring stiffness for an edge spring using the harmonic
average of the masses of the two nodes at the ends
of the spring and its restlength. Similarly, for altitude
springs we use the harmonic average of the nodal mass
and the triangle mass.

7.2 Finite Element Method

While any number of constitutive models could be
used, an interesting strategy is to use the real con-
stitutive model of the material when generating its
mesh. In this sense, one might hope to predict how
well the mesh will react to subsequent deformation
during simulation, and possibly work to ensure simu-
lation robustness while constructing the mesh.

We use the nonlinear Green strain tensor, G =
1/2[(∂x/∂u)T (∂x/∂u) − I], where x(u) represents a
point’s position in world coordinates as a function of
its coordinates in object space. Isotropic, linearly-
elastic materials have a stress strain relationship of the
form Se = λtr(G)I+2µG where λ and µ are the Lamé
coefficients. Damping stress is modeled similarly with
Sd = αtr(ν)I + 2βν, where ν = ∂G/∂t is the strain
rate. The total stress tensor is then S = Se + Sd.

We use linear basis functions in each tetrahedron so
that the displacement of material is a linear function of
the tetrahedron’s four nodes. From the nodal locations
and velocities we obtain this linear mapping and its
derivative and use them to compute the strain and
the strain rate, which in turn are used to compute
the stress tensor. Finally, because the stress tensor
encodes the force distribution inside the material, we
can use it to calculate the force on the nodes.

In their finite element simulation, [66] added a force
in the same direction as our altitude springs. Since
that force was the same on all nodes and based on the
volume deviation from the rest state, it does not ad-
versely penalize overly compressed directions and can
even exacerbate the collapse. Instead, we artificially
damp the strain and strain rate of the altitudes of the
tetrahedra as discussed above.

8. OPTIMIZATION BASED
COMPRESSION

As an alternative to physical simulation, one can di-
rectly optimize mesh quality metrics such as aspect
ratios. This does not provide the same feedback on
potential problems for subsequent simulation, but can
give better quality measures since they are directly
pursued with each movement of a node. Coupled
with our robust connectivity (see section 6), this pro-
duces excellent results. Freitag and Ollivier-Gooch
[67] demonstrated that optimizing node positions in
a smoothing sweep, i.e. placing one node at a time at
a location that maximizes the quality of incident ele-
ments, is superior to Laplacian smoothing in three spa-
tial dimensions. We combine this optimization sweep-
ing with boundary constraints by first moving bound-
ary nodes in the incident triangles’ average normal di-
rection by an amount proportional to the local signed
distance value. Then the optimization is constrained
to only move boundary nodes in the tangential direc-
tion.

It is important to move boundary nodes gradually over
several sweeps just as with physical simulation, since
otherwise the optimization gets stuck in local extrema.
We also found it helpful to order the nodes in the sweep
with the boundary nodes first, their interior neighbors
next, and so on into the interior. Then we sweep in
the reverse order and repeat. This efficiently transfers
information from the boundary compression to the rest
of the mesh. Typically, we do five sweeps of moving
the boundary nodes 1/3 of the signed distance in the
mesh normal direction, then finish off with five to ten
sweeps moving boundary nodes the full signed distance
to ensure a tight boundary fit. To speed up the sweeps,
we do not bother moving nodes that are incident on
tetrahedra of sufficiently high quality relative to the
worst tetrahedron currently in the mesh. In the initial



sweeps we end up only optimizing roughly 10% of the
nodes, and in the final sweeps we optimize 30%-50%
of the nodes.

While more efficient gradient methods may be used
for the nodal optimization, we found a simple pattern
search (see e.g. [68]) to be attractive for its robust-
ness, simplicity of implementation, and flexibility in
easily accommodating any quality metric. For inte-
rior nodes we used seven well spread-out directions in
the pattern search. We implemented the normal direc-
tion constraint on boundary nodes simply by choosing
five equally spaced pattern directions orthogonal to
the average mesh normal at the node. The initial step
size of the pattern search was .05 times the minimum
distance to the opposite triangle in any tetrahedron
incident on the node (to avoid wasting time on steps
that crush elements). After four “strikes” (searches at
a given step size that yielded no improvement in qual-
ity, causing the step size to be halved) we move to the
next node. For interior nodes we use as a quality met-
ric the minimum of a

L
+ 1

4
cos(θM) over the incident

tetrahedra, where a is the minimum altitude length,
L is the maximum edge length, and θM is the maxi-
mum angle between face normals. For surface nodes
we add to this a measure of the quality of the incident
boundary triangles, the minimum of at

Lt
+ 1

ψM

where at
is the minimum triangle altitude, Lt is the maximum
triangle edge, and ψM is the maximum triangle angle.
We found that including the extra terms beyond the
tetrahedron aspect ratios helped guide the optimiza-
tion out of local minima and actually resulted in better
aspect ratios.

9. RESULTS

We demonstrate several examples of tetrahedral
meshes that were generated with our algorithm. The
results for all three compression techniques are compa-
rable, with the FEM simulations taking slightly longer

Figure 5: Tetrahedral mesh (left) and cutaway
view (right) of a cranium (80K elements).

Figure 6: Tetrahedral mesh (left) and cutaway
view (right) of a model Buddha (800K ele-
ments).

(ranging from a few minutes to a few hours on the
largest meshes) than the mass spring methods, but
producing a slightly higher quality mesh. For exam-
ple, the maximum aspect ratio of a tetrahedron in the
cranium generated with finite elements is 6.5, whereas
the same mesh has a maximum aspect ratio of 6.6
when the final compression is done using a mass spring
model. Mass spring networks have a long tradition in
mesh generation, but a finite element approach offers
greater flexibility and robustness that we anticipate
will allow better three-dimensional mesh generation in
the future. Currently the fastest method is the opti-
mization based compression, roughly faster by a factor
of ten.

We track a number of quality measures including the
maximum aspect ratio (defined as the tetrahedron’s
maximum edge length divided by its minimum alti-
tude), minimum dihedral angle, and maximum dihe-
dral angle during the compression phase. The max-
imum aspect ratios of our candidate mesh start at
about 3.5 regardless of the degree of adaptivity, em-
phasizing the desirability of our combined red green
adaptive BCC approach. This number comes from the
green tetrahedra (the red tetrahedra have aspect ra-
tios of

√
2). In the more complicated models, the worst

aspect ratio in the mesh tends to increase to around
6–8 for the physics based compression methods and to
around 5–6 for the optimization based compression.

For the cranium model, the physics based compression
methods gave a maximum aspect ratio of 6.5 and aver-



Figure 7: Tetrahedral mesh of a model dragon
(500K elements).

age aspect ratio of 2.1, with dihedral angles bounded
between 17◦ and 147◦. The dragon mesh has a max-
imum aspect ratio of 7.6 and an average aspect ratio
of 2.2, with dihedral angles bounded between 13◦ and
154◦. The buddha model was more challenging, giving
a worst aspect ratio of 8.1 and average of 2.3, and dihe-
dral angles between 13◦ and 156◦. Using optimization
on the same examples yielded better results, listed in
table 1, where we have also listed a measure of adap-
tivity, the ratio of the longest edge in the mesh to the
shortest. The aspect ratios all drop below 6, i.e. less
than twice the initial values.

Of course, these results are dependent on the types
and strengths of springs, the constitutive model used
in the FEM, and the quality measures used in the opti-
mization based technique. It is easier to achieve good
quality with the optimization technique since one sim-
ply optimizes based on the desired measure, as op-
posed to the physics based techniques where one has
to choose parameters that indirectly lead to a quality
mesh. However, we stress that the measure of mesh
quality is the measure of the worst element at any
point of dynamic simulation. It does little good to
have a perfect mesh that collapses immediately when
the simulation begins. For meshes that undergo little
to no deformation (fluid flow, heat flow, small strain,
etc.) this quality measure is either identical to or
very close to that of the initial mesh. However, for
large deformation problems this is not the case, and
the physics based compression techniques hold promise
in the sense that the resulting mesh may be better
conditioned for simulation. We believe an interesting
possibility for the future would be to consider hybrid
approaches that use the physics based compression al-
gorithms to guide an optimization procedure to avoid
local minima.

Example Cranium Dragon Buddha
max aspect ratio 4.5 5.3 5.9
avg aspect ratio 2.3 2.3 2.3
min dihedral 18◦ 16◦ 16◦

max dihedral 145◦ 150◦ 150◦

max/min edge 94 94 100

Table 1: Quality measures for the optimization
example meshes. The aspect ratio is defined
as the longest edge over the shortest altitude.
The max/min edge length ratio indicates the
degree of adaptivity.

10. EXAMPLE: MUSCLE SIMULATION

Musculoskeletal simulation is an active research area
in biomechanics. We demonstrate the robustness of
our meshing algorithm by simulating volumetric, de-
formable skeletal muscle. Our meshing algorithm al-
lows us to create high resolution muscle, tendon and
bone geometries from the Visible Human data set [49].
The data for these biological materials are originally in
the form of a segmented series of consecutive images
that can be used to create a level set description of
each tissue geometry. This level set can then be used
with either the dynamic or optimization based algo-
rithm. Figure 8 shows an adaptive resolution biceps
with tendon that was created using dynamic meshing
with a finite element constitutive model.

Figure 8: Adaptive resolution mesh of the right
biceps with proximal and distal tendons.

We simulate both isotonic and isometric contrac-
tion of the right biceps and triceps with a state-of-
the-art biomechanical model for hyperelastic mate-
rial response, neurological activation level and fiber
anatomy. Muscle is a fibrous structure composed of fa-
sicles embedded in a matrix of isotropic material [69],
and we use a nonlinear transversely-isotropic quasi-
incompressible constitutive model [70, 71] to repre-
sent this structure during simulation. The hyperelas-
tic strain energy associated with this model is a sum
of three terms: the first term represents the incom-
pressibility of biological tissues and penalizes volume



change; the second term represents the isotropic em-
bedding matrix; and the third term is the transversely-
isotropic component that models muscle fiber contrac-
tion and is based on the standard muscle force/length
curve [72]. This model can be used in both muscle
and tendon, however, tendon tends to be as much as
an order of magnitude stiffer and muscle has an addi-
tional contractile force added to the fiber component
that depends on the muscle activation level.

In addition to activation level, muscle (and tendon)
models need information about the local fiber direc-
tion. Muscle fiber arrangements vary in complexity
from being relatively parallel and uniform to exhibit-
ing several distinct regions of fiber directions. We use
a B-spline solid as in [73, 74] to represent more intri-
cate muscle fiber architectures and to assign a fiber di-
rection to individual tetrahedra in the mesh. During
both isometric and isotonic contraction, muscles are
given a varying activation level throughout the simu-
lation. The activation levels are computed from key-
frames of the skeletal animation, using an established
biomechanics analysis known as muscle force distribu-
tion [75] to compute activations of redundant sets of
muscles.

Figure 9: Simulation of isometric contraction. A
posterior (from behind) view of the upper arm
shows contraction of the triceps muscle and the
partially occluded biceps muscle from passive
(left) to full activation (right).

Figures 9 and 10 show sample frames of our musculo-
skeletal simulations. Figure 9 depicts relaxed and ac-
tive muscle during isometric contraction. In this simu-

Figure 10: Muscle contraction with skeletal mo-
tion.

lation the activation level in the two muscles increases
from 0 (fully relaxed) to 1 (fully activated) and back
to 0 over the span of two seconds. The bulging in the
bellies of the muscles results from larger stiffness in the
tendons. Figure 10 shows several frames of musculo-
skeletal motion. The motion of the kinematic skeleton
was key-framed (although our framework allows for
motion data from other sources like motion capture).
At each key-frame in the animation, an inverse dynam-
ics analysis was computed for the biceps and triceps
activation levels required to maintain the static pose.
These activation levels were then interpolated in time
and used for the dynamic muscle simulation.

Figure 11 shows the relative change in maximum as-
pect ratio observed during an isometric contraction of
the biceps for meshes created using the optimization
algorithm and using the dynamics algorithm. Similar
results were observed for the triceps and during iso-
tonic contraction. These results suggest that initial
mesh quality may be misleading and not sufficient to
guarantee performance of a mesh throughout simula-
tion. In all of our comparisons, the optimization based
meshes were of higher quality initially, but tended to
undergo as much as a 70% change in maximum aspect
ratio during muscle contraction, whereas the dynam-
ics based meshes tended to degrade by only 25%. Of
course, if the initial optimization mesh is of signifi-
cantly higher quality then the overall maximum as-
pect ratio will still be lower. We are not yet claiming
that a particular method is better, but simply point-
ing out that the initial mesh quality is not always a
reliable predictor of performance during subsequent
simulation.

11. CONCLUSIONS

We presented an algorithm for producing a high qual-
ity tetrahedral mesh directly from a level set. The
focus of this algorithm is the generation of a tetrahe-
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Figure 11: Plot of changes in maximum as-
pect ratios during simulation of isometric con-
traction for dynamics and optimization based
meshes.

dral mesh designed specifically for high deformation.
Key points of our algorithm that make it particularly
well suited for high deformation are: the use of a red
green strategy in conjunction with a BCC lattice mak-
ing the usually temperamental red green approach ro-
bust and suitable for subsequent simulation (and en-
hancing multiresolution capabilities); the identifica-
tion and avoidance of connectivity that is problem-
atic for large deformations in constructing the mesh;
and the use of simulation and constitutive models to
generate the mesh, thus identifying potential weak-
nesses before simulation even begins (in fact this is
what originally led us to the problematic connectiv-
ity). Finally, we simulated a few muscles from the
NIH Visible Human data set to demonstrate the effi-
cacy of these meshes. In particular, we illustrated that
although initial mesh quality measures are important,
they do not guarantee high quality during subsequent
simulation, and can in fact be misleading.
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Regular Mesh Extraction from Volumes.” Vis., pp. 275–
282. 2000

[35] Ohtake Y., Belyaev A.G. “Dual/Primal Mesh Optimiza-
tion for Polygonized Implicit Surfaces.” Proc. of the 7th
ACM Symp. on Solid Model. and Appl., pp. 171–178.
ACM Press, 2002

[36] de Figueiredo L.H., Gomes J., Terzopoulos D., Velho L.
“Physically-Based Methods for Polygonization of Implicit
Surfaces.” Proc. of the Conf. on Graph. Interface, pp.
250–257. 1992

[37] Velho L., Gomes J., Terzopoulos D. “Implicit Manifolds,
Triangulations and Dynamics.” J. of Neural, Parallel
and Scientific Comput., vol. 15, no. 1–2, 103–120, 1997

[38] Gloth O., Vilsmeier R. “Level Sets as Input for Hybrid
Mesh Generation.” 9th Int. Meshing Roundtable, pp.
137–146. 2000
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