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Abstract

We present a novel algorithm for collision processing on triangulated meshes. Our method robustly maintains a
collision free state on complex geometries while resorting to collision resolution at time intervals often comparable
to the frame rate. Our approach is motivated by the behavior of a thin layer of fluid inserted in the empty space
between nearly-colliding parts of the simulated surface, acting as a cushioning mechanism. Point-triangle or
edge-edge pairs on a collision course are naturally resolved by the incompressible response of this fluid buffer.
This response is formulated into a globally coupled nonlinear system which we solve using Newton iteration and
symmetric, positive definite solvers. The globally coupled treatment of collisions allows us to resolve up to two
orders of magnitude more collisions than traditional greedy algorithms (e.g. Gauss-Seidel collision response) and
take substantially larger time steps without compromising the visual quality of the simulation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling
I.3.7 [Computer Graphics]: Animation

1. Introduction

The simulation of clothing and other cloth materials is ubiq-
uitous in the feature animation and visual effects industry.
The most confounding cloth behaviors for digital costuming
are external and self contact. Real and computer generated
actors typically wear layer upon layer of clothing resulting
in the frequent and difficult nature of this problem. We in-
troduce a novel technique for reducing the simulation cost
of elaborate layered cloth in complex collision scenarios.

Cloth is efficiently represented with a Lagrangian mesh
(e.g. masses and springs on a triangulated mesh). Such ap-
proaches were pioneered in graphics by [TPBF87,TF88] and
are used today almost without exception. The Lagrangian
mesh model naturally allows for accurate computation of
internal elastic response to deformation. However, collision
and contact are not resolved as easily, since these phenomena
may cause interactions between topologically distant regions
in the Lagrangian mesh. In contrast to this, stationary grid
Eulerian methods, typically used for computational fluid dy-
namics, have difficulty computing an elastic response but
naturally resolve contact, collision and topological change.
For example in a free surface incompressible flow simula-
tion, fluid regions naturally collide and interact by simply
enforcing the incompressibility of the fluid. In fact, some
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Lagrangian elastic solid/Eulerian incompressible fluid cou-
pling algorithms like Peskin’s immersed boundary method
do not require any special collision handling at all [Pes02].
The incompressibility and structure of the fluid is enough to
guarantee that collisions never happen. That is, if the veloc-
ity defined throughout the fluid and solid is always diver-
gence free, there is no way any two particles (or other mesh
facets) can collide because doing so would require a locally
divergent velocity field. Of course, when simulating clothing
for visual effects, it is not practical to consider the surround-
ing air as a fluid and we do not recommend this here. How-
ever, we do draw inspiration from the natural preclusion of
collision phenomena in incompressible velocity fields.

Our approach to the cloth collision/contact problem is mo-
tivated by the aforementioned observations. We detect point-
triangle and edge-edge pairs in a mesh that are on collision
trajectory over a time step, and formulate a global system of
equations for their collective response to this imminent col-
lision. This globally coupled system models the response of
an incompressible fluid trapped between the colliding sur-
faces which acts as a cushioning mechanism to prevent in-
terpenetration of its lateral surfaces. In lieu of an Eulerian
discretization, we use the tetrahedra defined by the vertices
of a point-triangle or an edge-edge pair to define the incom-
pressible response of this fluid buffer. We solve this nonlin-
ear system using an iterative Newton method. In the course
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Figure 1: Edge-edge and point-face pairs determined to be
on a collision course are used to define a number of (pos-
sibly overlapping) tetrahedra used in our response scheme.
The leftmost image depicts the 2D analogue of this, depict-
ing imminently colliding point-segment pairs in red.

of these iterations we recompute the set of colliding point-
triangle and edge-edge pairs as to release any such primitives
from the incompressibility constraint if they are no longer in
a collision course. In an analogous fashion, points that have
been brought into a collision trajectory as a result of pre-
vious corrections will be included in the incompressibility
constraint for subsequent iterations of the Newton method.

Looking past the fluids paradigm which provided the orig-
inal inspiration, our method is supported by the following
facts which are further discussed in later sections:

• In the limit of a small time step, our treatment is equiva-
lent to an inelastic collision impulse normal to the colli-
sion surface.

• Collision response is formulated as a nonlinear constraint,
which guarantees the resolution of all collisions when
satisfied. Using an iterative Newton method allows for
continuous improvement of the computed solution, taking
into consideration the configuration created by previous
corrections.

• The linear systems arising from our formulation are sym-
metric and positive definite enabling the use of efficient
solvers

• Our method does not require any vector normalization,
which could lead to robustness issues in degenerate con-
figurations. In fact, forming the linear systems needed by
our method requires absolutely no division.

Finally, our method integrates naturally into existing col-
lision processing pipelines. In particular, we demonstrate
how our method can be combined with the time integra-
tion scheme of [BFA02] as a self-contained replacement of
a specific module in their algorithm (i.e. geometric colli-
sion resolution using inelastic impulses). Additionally, our
algorithm is independent and does not affect their treatment
of other behaviors (i.e. collisions with rigid bodies, fric-
tion,elasticity).

2. Previous Work

Early examples of cloth constitutive modeling in-
clude [Wei86, TPBF87, TF88, TC92, CYMTT92, OITN92,
BHW94]. A good summary of cloth modeling is pro-
vided in [HB00]. Our method works with any temporal
integration scheme including semi-implicit methods like
that introduced in [BMF03] and implicit methods like
those of [BW98, MDDB01, PF02, BA04, VMT05, OAW06].
Though not considered here, much investigation has
gone into cloth constitutive behavior, including bending
models by [CK02, BMF03, GHDS03, BWH∗06, TWS06,
VMT06, GHF∗07]. Adaptive resolution approaches have
also been investigated by e.g. [GKS02]. For collision
detection, we use straightforward algorithms and extensions
based on well known work but refer the interested reader
to [GKJ∗05, SGG∗06] and the references therein. We also
note the work on improving efficiency in low curvature
regions [VMT94, VCMT95]. Though not in the context
of cloth, [ISF07] investigated the enforcement of incom-
pressibility on a tetrahedron mesh. Pressures were defined
at nodes rather than tetrahedra to avoid locking. We found
the tetrahedral meshes used in our method tended to be
much less prone to locking than the volumetric meshes
used in solid mechanics (due to a closer ratio of number of
tetrahedra to number of nodes in our meshes).

3. Simulation methodology

Our time integration and collision handling loop is derived
from the model proposed in [BFA02]. Time integration is
interleaved with collision handling, which is invoked at in-
tervals whose lengths are adjusted in accordance with the re-
cent rate of success of previous collision handling attempts.
Time evolution proceeds in the following loop:

1. Integrate positions xn and velocities vn for a time step ∆tn

to obtain candidate positions xn+1
∗ and velocities vn+1

∗ .

2. Compute the effective velocity vn+ 1
2∗ = (xn+1

∗ −xn)/∆tn.

3. Proccess vn+ 1
2∗ for repulsions/collisions to obtain vn+ 1

2 .

a. Adjust v for elastic/inelastic repulsions and friction
b. Adjust v for inelastic response to geometric collisions

4. Compute the new positions xn+1 = xn +∆tvn+ 1
2 .

5. • If xn+1 is self-intersecting: Restore the collision free
state (xn,vn) and retry from step 1 using a smaller time
step ∆tn. If ∆tn has reached a user-specified minimum
value, group colliding pairs into rigid impact zones
eliminating all collisions and return to step 1.

• If xn+1 is intersection-free: Use vn+ 1
2 to update vn+1

and continue, optionally using a larger step ∆tn+1 at
the next iteration.

The actions taken in step 3 determine how the final velocities
vn+1 will be updated in step 5. If collisions were detected
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Figure 2: Thirty cloth napkins are piled in a hammock (Left). Layered cloth trapped between rotating kinematic spheres (Mid-
dle). Kinematic sphere shooting through five layered drapes (Right).

and processed, vn+1 is set to the value of vn+1/2 for all par-
ticles processed for repulsion or collision. Unaffected parti-
cles retain their value in vn+1

∗ . If no collisions were found in
step 3 (although repulsions may still have been applied) we
instead compute the velocity change ∆v = vn+1/2− vn+1/2

∗
and update the final velocity as vn+1 = vn+1

∗ + ∆v. Finally,
collisions of the cloth surface with kinematic collision ob-
jects are typically handled in step 1 via penalty forces or a
projection scheme [BFA02].

In the context of this time integration scheme, our algo-
rithm deals precisely with step (3.b) above, replacing the
Gauss-Seidel impulse scheme of [BFA02] with our globally
coupled scheme which mimics an incompressible fluid re-
sponse in the contact region. As a result, the treatment of
elasticity (Step 1), collisions with kinematic bodies (Step
1), or friction (Step 3.a) remains unaffected. We followed
the implementation choices of [BFA02] for all components
of the time integration scheme other than our replacement
for step (3.b). Finally, we observed that with our new glob-
ally coupled collision scheme the benefit of the rigid impact
zone failsafe in step (5) was of no practical use; for all ex-
amples in this paper our algorithm never needed to resort
to rigid impact zones. In more extreme settings than illus-
trated in this paper (e.g. performing collision processing just
once after several frames) our algorithm would resort to this
failsafe only in scenarios where the unmodified algorithm
of [BFA02] was condemned to severe artifacts after the rigid
impact zone step.

4. Collision response properties

Our algorithm targets step (3.b) in the time integration
scheme of Section 3, treating the integrator used in step 1
as a black box. Since this step only affects the half-timestep
velocity vn+1/2

∗ , its objective can be formalized as the de-
termination of a velocity update ∆v such that vn+1/2 =
vn+1/2
∗ +∆v and the final positions

xn+1 = xn +∆tvn+ 1
2∗ +∆t∆v (1)

are intersection free. Additionally, ∆v needs to adhere to the
following physical restrictions:

• Conservation of momentum. The velocity update ∆v is
equivalent to the application of an impulse j = M(∆v) to
the particles affected by collision processing (where M is
the mass matrix). This impulse needs to be conservative
both globally (i.e. conservation of linear momentum im-
plies ∑ ji = 0) and locally. In the context of our approach,
we define a response to be locally conservative if the to-
tal momentum in each contact zone is conserved. Thus
we require any exchange of momentum to be mediated by
collision events, as opposed to a transfer of momentum
between spatially remote parts of the cloth that are not
connected by a chain of collision pairs.

• Inelasticity. Even in cases where the computed impulse
j conserves momentum, it could nevertheless increase the
kinetic energy in our system. In fact, a number of authors
have argued that the collision response should ideally be
inelastic [BFA02], thus minimizing the kinetic energy of
the system after collision handling. Note that an elastic
response may be used as part of a repulsion stage (Step 3.a
in Section 3), which is a completely independent process
than the inelastic response described in Step (3.b).

• Consistency with normal collision response. Similar to
the approach of [BFA02] and others, our method pro-
cesses collisions at the end of a time interval, rather than
resolving collision events in a continuous, sequential fash-
ion. However, when the interval between collision at-
tempts is sufficiently small, the geometry of the cloth at
either the beginning or the end of this time interval pro-
vides a good approximation of the geometry of the cloth
at the exact time of collision. In this limit case, we re-
quire the collision impulses (and associated velocity ad-
justments ∆v) to be normal to the collision surface. This is
necessary to ensure that, at the limit of small collision in-
tervals, our method converges to the ideal response com-
puted at the exact time of collision.

5. Volume preserving impulse response model

We illustrate a natural and convenient mechanism to deter-
mine impulses that satisfy the requirements outlined in Sec-
tion 4 and allow us to produce a collision-free state xn+1.
We begin by identifying the pairs of cloth primitives (i.e.
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point-triangle or edge-edge pairs) that are determined to be
on a collision course in the duration of a time step ∆tn, as-
suming initial positions xn and constant (effective) velocities
vn+1/2
∗ . We note that this should be an exact collision test,

rather than a conservative approximation using, for exam-
ple, bounding boxes of each potentially colliding primitive.
This is a well-documented problem; we use the approach
of [BFA02] which determines colliding pairs by solving a
cubic equation.

Once the pairs of colliding primitives have been deter-
mined, every point-triangle or edge-edge pair is used to in-
troduce a collision tetrahedron defined by the four vertices
of the colliding pair. We orient this tetrahedron so that it has
a positive signed volume in the collision-free xn configura-
tion. We note that these tetrahedra may be overlapping in
the general case, and span the space between the colliding
surfaces. We formulate our collision constraint as to emu-
late the response of an incompressible fluid inserted in the
gap between the surfaces. As a result of such a response,
the volumes of the collision tetrahedra (which span the same
gap as the hypothetical fluid) would remain constant, i.e.
V(xn+1) = Vgoal , where V = (V1,V2, . . . ,VM) denotes the
volumes of all M collision tetrahedra, and Vgoal = V(xn).
Using (1), we get

V(xn +∆tvn+ 1
2∗ +∆t∆v) = Vgoal

⇒ V(xn+1
∗ +∆tM−1j) = Vgoal (2)

where xn+1
∗ denotes the candidate positions at the end of

the timestep, resulting from an effective velocity vn+1/2
∗ . We

note that the nonlinear system (2) contains as many equa-
tions as collision tetrahedra, yet the unknown impulse j has
the dimensionality of the particles incident on collision ele-
ments. As mentioned in Section 4 the impulse j needs to be
momentum conserving and inelastic.

A natural way to satisfy these constraints is to consider a
pressure p at each collision tetrahedron working to restore
the tetrahedron to its original volume. Subsequently, the im-
pulse vector j is computed as the result of the action of this
pressure during the collision event. The resulting impulses
can be computed using the finite volume method as:

j = Fp, ~Fi j =−1
3

A( j)
i n̂( j)

i (3)

where n̂( j)
i is the outward pointing face normal opposite node

i in tetrahedron j, and A( j)
i is the area of the same face. We

should emphasize that all values ~Fi j can be robustly com-
puted without the need for division or normalization, as the
area weighted normal A( j)

i n̂( j)
i is simply one half times the

cross product of 2 edge vectors of the respective tetrahedron
face. Therefore, collision tetrahedra that have near-zero vol-
ume or arbitrarily short edges do not pose a problem in our
formulation.

It is important to observe that the impulses defined in
equation (3) satisfy the requirements set forth in Section 4.
The finite volume formulation guarantees that the four im-
pulses applied to the vertices of the collision tetrahedron
conserve momentum (e.g. they sum to zero, preserving lin-
ear momentum), thus local conservation of momentum as
defined in Section 4 is automatic. In addition, in the limit of
a small time step ∆tn the collision tetrahedra are expected to
be asymptotically flat. In this case, equation (3) indicates that
the computed impulses would be aligned with the normals to
the faces of the collision tetrahedron; all such faces will be
approximately coplanar and aligned with the collision sur-
face. The last requirement to be satisfied is that of inelastic-
ity. In fact, this requirement will be used to determine the
exact values of the elemental pressures p. We express the in-
compressibility condition in terms of the elemental pressures
as follows:

Vgoal = V(xn+1
∗ +∆tM−1Fp)

≈ V(xn+1
∗ )+∆t

∂V
∂x

M−1Fp

or
∂V
∂x

∣∣∣∣
xn+1
∗

M−1 F|xn+1
∗

(p∆t)≈ Vgoal−V(xn+1
∗ ) (4)

where we explicitly stated the dependence of ∂V/∂x and
F on the candidate position xn+1

∗ at the end of the time
step. The most important property of equation (4), how-
ever is that the matrix ∂V/∂x can be shown to be the trans-
pose of F, leading to the symmetric, positive semi-definite
system FT M−1F(p∆t) = Vgoal −V(xn+1

∗ ), which can be
solved efficiently with a Krylov subspace method. Finally,
one can show that the pressure jump p that minimizes the
post-collision kinetic energy

K =
1
2
(vn+ 1

2∗ +M−1Fp)T M(vn+ 1
2∗ +M−1Fp)

satisfies the equation

FT M−1Fp =−FT vn+ 1
2∗ =

1
∆t

∂V
∂x

(xn−xn+1
∗ )

which is the same equation as (4) to first order, as revealed
by a Taylor expansion of the right-hand side of equation (4).
Thus, solving the nonlinear incompressibility constraint us-
ing pressure-based impulses yields a conservative, inelastic
collision response, with global coupling of the collision con-
straint. This is of course commensurate with the idealization
of volume preservation (as the pressure in an incompressible
fluid can be shown to minimize kinetic energy).

Our algorithm is summarized in Table 1. The outer loop,
repeated N times, exactly recomputes the pairs on a collision
course using the most updated estimate of vn+1/2

∗ by solv-
ing the cubic equation described in [BFA02]. As a result,
previously colliding pairs that are no longer on a collision
course are released from the incompressibility constraint,
while pairs that are now colliding as a result of previous cor-
rections are included in the system. The inner loop performs
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for i=1 to N
Compute_Collision_Pairs()
for j=1 to M

Compute F(xn+1
∗ ) and V(xn+1

∗ )
Solve (4) to obtain p and ∆v = M−1Fp
Update vn+ 1

2∗ ← vn+ 1
2∗ + γ∆v

Update xn+1
∗ ← xn +∆tvn+ 1

2∗

Table 1: Pseudocode for our collision response scheme

M Newton iterations, keeping the set of active collision pairs
fixed, but updating the values of F(xn+1

∗ ) and V(xn+1
∗ ) us-

ing the most updated estimate of the post-collision positions
xn+1
∗ . The equation (4) is solved using a MinRes symmet-

ric definite solver. The computed velocity correction ∆v is
scaled by a relaxation coefficient γ and added to the value
of vn+1/2
∗ . A value of γ = 1 is equivalent to the standard

Newton method, while a small positive value would lead
to a behavior similar to that of steepest descent. Due to the
highly nonlinear nature of the constraint (owing to its depen-
dence on both xn+1

∗ and the set of currently active pairs) we
found that a value of γ = 0.3 leads to faster convergence in
this damped Newton scheme rather than the standard New-
ton method (γ = 1) for cases involving challenging collision
configurations. For our examples we used the values N = 3
and M = 5 for the outer and inner loop.

6. Examples

We tested the speed and robustness of our global collision
response algorithm in the context of a number of benchmark
problems involving many complex collisions of cloth with it-
self and with harsh environments. The problems all include
multiple layers of cloth and undergoing large deformation.
Our objective was to demonstrate plausible and efficient sim-
ulation of highly complex collision scenarios. In that vein,
we attempted to push the limits of our algorithm by process-
ing collisions infrequently, often merely once per simulation
frame.

The first example we considered was of an array of five
curtains interacting with a sphere and plane (Figure 3). This
example is similar to the original benchmark problem of
[BFA02] only with more layers of cloth complicating col-
lision response. We also used this example as a basis for
a quantitative comparison between our approach, and the
method of [BFA02]. We used the following setup:

• The cloth was simulated at 60fps, for a total of 280 frames.
• For both methods, we needed to specify the base time

step used for the semi-implicit Newmark integrator. This
is commonly specified as a multiple of the time step de-
termined from the CFL condition. This multiplier is called
the CFL number, and a value of 1 or less guarantees sta-
bility of the integrator. In practice higher numbers may
be acceptable, and allow for better performance albeit at
the risk of reduced stability. For the simulations using the

Figure 3: Five layers of cloth interact with a spherical col-
lision object, using our globally coupled impulse scheme

method of [BFA02] we experimented with CFL numbers
of 1 and 4. For our method, a CFL number of 4 was suc-
cesfully used throughout the simulation.

• A second parameter influencing the simulation is the
time interval between successive collision processing in-
stances. We specified this parameter in terms of the max-
imum number of Newmark integration loops that are per-
formed before performing collision processing. We note
that the exact number of integration loops per collision
step is adjusted in response to a previous successful or
failed collision handling attempt, as detailed in Section
3. For our method, we used a maximum of 16 integra-
tion loops per collision attempt, while for the method
of [BFA02] we experimented with both 16 and 64 max-
imum loops.

• Although both methods could be combined with a fail-
safe that performs grouping into rigid impact zones, as
described in Section 3, we chose not to exercise this op-
tion. This failsafe is invoked when repeated failures in col-
lision resolution bring the number of integration loops be-
low the user-specified minimum number of loops (which
was one loop, for our tests). Our method never needed to
resort to this failsafe. The unmodified method of [BFA02]
often did resort to rigid impact zones, however at a cost
of severe artifacts often leading to unavoidable failure at
subsequent frames. Since our comparison was on a frame-
by-frame basis, when the method of [BFA02] would not
manage to resolve collisions even with a single integra-
tion loop per collision step we would consider this failed
frame for their approach.

• All 280 frames were originally simulated with our new
collision scheme. Subsequently, we would use each of
these (collision-free) simulated frames as an initial con-
figuration and use the method of [BFA02] to advance this
configuration for one frame at a time. This guaranteed that
both methods were supplied with the exact same configu-
ration at the beginning of each frame.
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Figure 4: Comparison of our incompressible collision re-
sponse method (ICR) to the following variants of the Gauss-
Seidel collision processing scheme of [BFA02]: GSx.y uses
x integration loops between collision steps, and a CFL num-
ber of y. The top figures illustrate the average time interval
between successful collision resolutions (note that our ap-
proach frequently operates at the frame rate of 60Hz). In the
bottom, we provide a comparison of frame run times for the 4
algorithms described. Zero or missing values denote failure
of the respective scheme to resolve collisions, even after re-
ducing the collision attempt interval to one integration loop.

Our findings are illustrated in Figure 4. Notably, our
new method managed to resolve collisions for the majority
of frames without dropping below the maximum allowable
number of integration loops per collision step (which led to
collision resolution typically being performed at the frame
rate of 60fps). The original algorithm of [BFA02] was not
able to match this performance, and in many frames did not
succeed in resolving collisions at all, even after performing
just one integration loop per collision step, or when using a
smaller CFL number of 1. We also demonstrated the scala-
bility of our global response algorithm by dropping 30 tow-
els onto a hammock-like cloth suspension (Figure 2–Left).
Our method was able to simultaneously resolve collision for

tens of thousands of collision pairs resulting in very efficient
run time. Finally, we investigated the ability of our method to
resolve a collision free state even in the context of pinching
and self colliding kinematic environment geometry. We first
draped three sheets between two rotating spheres (Figure 2–
Middle). The spheres come together and overlap trapping the
three layers of sheets inside. We allow conflicting kinematic
constraints in this case by also simulating and colliding the
kinematic simulation components as cloth.

7. Limitations and conclusion

Our method is motivated by the response of an incom-
pressible fluid inserted between the colliding surfaces. Yet,
we do not explicitly model this fluid buffer using a stan-
dard discretization, such as an Eulerian grid. Instead, we
approximate this fluid using the tetrahedra defined by col-
liding point-triangle or edge-edge pairs. This in an imper-
fect approximation and as a result our response will deviate
from the fluid behavior we intend to emulate. Additionally,
there are certain behaviors of a fluid cushion placed between
neighboring surfaces that are undesirable of a cloth simula-
tion. For example, enforcing incompressibility of this fluid
layer would cause sticking of two near-colliding surfaces
that are on a separation trajectory. We prevent this behav-
ior by continuously updating the set of active collision pairs,
enforcing the incompressibility constraint only on those col-
lision pairs that are positively determined to be on a collision
course, and release them once their trajectories are corrected
to be non-colliding. Of course, this entails the cost of re-
peated evaluation of the active collision pairs. In addition,
our incompressibility condition (excluding the fluids motiva-
tion) may appear to be a less natural choice for cloth, where
the prevention of interpenetration would appear to be a less
restrictive constraint achieving the same goal. We showed
that, for small time steps, the inelastic response computed
from our scheme converges to the inelastic response derived
from a criterion based on non-interpenetration. However, for
larger time steps the two responses may differ. In fact, cer-
tain other methods employ comparable simplifications that
only converge to the actual phenomenon under refinement.
For example, [BFA02] only compute their impulses to zero
out the relative velocity along the closest connecting seg-
ment of the two primitives in the original (xn) configuration.
With large time steps there is no guarantee that this direc-
tion coincides with the normal to the collision surface at the
exact moment of collision. In practice, such modeling errors
are hardly the main factor leading to failure of a scheme.

We have presented a method that facilitates collision res-
olution in complex, layered cloth simulations. We derive the
constraint leading to non-interpenetration from the idealized
incompressible response of a fluid layer inserted in the gap
between colliding surfaces. Our globally coupled formula-
tion of the collision response affords significantly larger in-
tervals between collision processing while maintaining vi-
sual plausibility of the simulation.
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