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Microorganisms navigate through complex environments such as biofilms and mucosal tissues
and tracts. To understand the effect of a complex medium upon their locomotion, we investigate
numerically the effect of fluid viscoelasticity on the dynamics of an undulating swimming sheet.
First, we recover recent small-amplitude results for infinite sheets that suggest that viscoelasticity
impedes locomotion. We find the opposite result when simulating free swimmers with large tail
undulations, with both velocity and mechanical efficiency peaking for Deborah numbers near one.
We associate this with regions of highly stressed fluid aft of the undulating tail.

Mammalian spermatozoa encounter complex, non-
Newtonian fluid environments as they make their way
through the female reproductive tract. The success-
ful sperm must swim through cervical mucus, progress
through narrow, mucus-containing lumen in the oviduct,
as well as eventually penetrate the cumulus layer of the
oocyte complex [1, 2]. Viscous environments that con-
tain suspended microstructures are also encountered by
bacterial cells as they migrate through biofilms or mu-
cosal tissues [3]. Microorganism motility has motivated
research in biological fluid dynamics for more than half a
century, beginning with G.I. Taylor’s classical analysis of
swimming by an infinite sheet [4]. While much progress
has been made in understanding the fundamental physics
of bacterial and flagellar motion in a Newtonian fluid, the
fundamental physics of microorganism motility in a non-
Newtonian fluid, even with a prescribed beat form, is
only beginning to be uncovered [5–7].

Relating complex biological fluids to viscoelastic fluid
models can be difficult. A wide range of relaxation times
(1-10s), elastic moduli (0.1-10Pa), and viscosities (0.1-
10Pa s), have been reported for cervical mucus (see Lauga
[5]). In a very recent study of sperm motility in high
viscosity medium, Smith et al. [8] re-examines the data
of Wolf et al. [9] for cervical mucus and estimates a
yet lower relaxation time of 0.03s. When combined with
reported sperm beat frequencies of 10-50Hz this gives an
O(1) or higher estimate of the Deborah number.

For the idealized cases of small amplitude undulations
of an infinite sheet [5] and an infinite waving cylinder [7]
in fading-memory viscoelastic fluids, it has been shown
that swimming speeds are decreased by viscoelastic ef-
fects relative to a Stokesian Newtonian fluid. These sim-
ple swimmers, with no beginning or end, introduce re-
strictive symmetry to the coupling of fluid and body.
Motivated by sperm flagella which, due to decreased mi-
crotubule sliding near the base of the axoneme, swim

with accentuated amplitude at the distal (tail) end, we
study a freely swimming finite sheet immersed in a Stokes
Oldroyd-B fluid and having a preferred kinematic sinu-
soidal geometry. Our numerical approach is based on
the immersed boundary method [10], and is validated by
comparison with the small-amplitude analysis of Lauga
[5] for an infinite sheet. In fact, our calculations show
that his analytical results agree very well with the full
system even for large amplitude waves. However, for
swimming “free” sheets (i.e., with free head and tail)
we find that for accentuated tail motions the swimmer
moves more quickly and efficiently at O(1) Deborah num-
bers than does the corresponding swimmer in a Newto-
nian fluid. This is the regime where the relaxation time
of the fluid matchs the stroke frequency of the swim-
mer. This result is opposite that for infinite sheets, and
the difference lies, we believe, in the appearance of re-
gions of highly strained viscoelastic fluid sitting aft of the
free swimmer’s tail. This stress concentration appears to
restrict backwards slippage of the free swimmer during
parts of its stroke, thus increasing the average speed. We
also study the development of viscoelastic stresses in the
approach to steady swimming.

The model This is a coupled fluid-body system: the
body shape dynamics and motion induce fluid stresses.
These create the fluid velocity that moves the body and
may also interact with the shape dynamics. Consider a
flexible sheet of length L, immersed in a 2D fluid, along
which moves a wave of shape deformation with temporal
period τf . For an incompressible Stokesian flow, the fluid
stress tensor S and velocity u satisfy ∇ · S = 0 and
∇·u = 0. To describe the fluid, we employ the Oldroyd-
B (OB) viscoelastic model [11] for which S = SN + Sp,
with SN the usual Newtonian stress tensor and Sp the
extra stress generated by the transport and distension of
an immersed polymer field. In adimensional form after
scaling lengths by L and time by τf , the fluid is described
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by the Stokes-OB equations:

−∇p + ∆u = −β∇ · Sp + f & ∇ · u = 0, (1)

De S∇
p = −(Sp − I), (2)

with S∇ ≡ ∂Sp/∂t + u · ∇Sp −
(

∇u Sp + Sp ∇uT
)

the
upper convected time derivative. Here De = τp/τf is the
Deborah number, with τp the polymer relaxation time.
The parameter β measures the relative contribution of
the polymeric stress to momentum balance. The prod-
uct β · De is the ratio of polymer to solvent viscosity so
that given a particular working fluid, its value is fixed in-
dependent of experimental conditions. For either β fixed
or β · De fixed, the limit De → 0 yields a Newtonian
fluid, in the first case with unit dimensionless viscosity,
and in the second, with viscosity 1 + βDe.

The immersed sheet, Γ, is taken to be a (nearly) in-
extensible surface along which a traveling bending wave
is moving. The sheet position is given by X(s, t), with
s both the arclength and material coordinate. To pro-
duce a shape change, the sheet is taken to be a gen-
eralized Euler elastica whose elastic energy is given by
E = Ebend + Etens where

Ebend =
E

2

∫ 1

0

(κ(s) − κ̄(s, t))
2
ds (3)

Here κ̄ is a specified target curvature, the pursuit of
which drives the dynamics, and E is an adimensional
rigidity, which helps set the time-scale for that pursuit.
A tensile energy Etens is also included and its multiplier
is set sufficiently high that stretching and compression
between material points is severely limited, making the
sheet effectively inextensible. The sheet couples to the
fluid through two conditions. The first is that the elas-
tic and tensile energies generate a stress jump within the
fluid across Γ. That is, [S|Γ · n̂] = g where n̂ is the
upward normal to Γ, and g is a stress generated varia-
tionally from the energy as g = −δE/δX. The second
requirement is the no-slip and kinematic boundary con-
ditions, that specify that the velocity uΓ of the sheet is
equal to the fluid velocity on either side of the sheet, that
is, uΓ(s, t) = u+(X(s, t), t) = u−(X(s, t), t).

To solve this system numerically we follow the ap-
proach of Fauci et al. [12], who first used the immersed
boundary method to study sheets swimming in a New-
tonian fluid. We simulate both sheets that are spatially
periodic, so as to compare with previous analytical re-
sults, and “free swimmers”.
Results We first check our numerical results against the
small-amplitude analysis of Lauga ([5]; see also Fu et al.

[7] for a related analysis) who considered a periodic sheet
immersed in an Stokes-OB fluid. Lauga showed, as Tay-
lor did for a Newtonian fluid [4], that swimmer speed
scales with the square of wave amplitude. Further, Lauga
showed that the ratio R(De) of the “OB swimmer” speed
to that in the Newtonian fluid is always less than one, i.e.,
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FIG. 1: (a): The speed ratio R(De) = UOB/UNewt . The green

curve is that from long-time numerical simulation, and the blue

curve is the theoretical prediction of Lauga [5]. The inset shows

the temporal relaxation of this ratio from our simulations for three

different wave amplitudes. (b): A periodic sheet swimming to the

right in a viscoelastic fluid with De = 1 and amplitude A = 0.125,

simulated to long times. The contours are of tr(Sp).

the OB swimmer is always slower. To compare, we sim-
ulated a spatially periodic sheet with target curvature
κ̄(s, t) = −Ak2 sin(ks − ωt), where k was chosen so that
periodicity was satisfied. The initial polymeric stress was
taken as isotropic (Sp ≡ I). The dynamics was then sim-
ulated to long times when the dynamics became steady.

We recover Lauga’s asymptotic results in detail. For a
small-amplitude swimmer at various De, Fig. 1a shows
the computed speed ratio R(De) in comparison with
Lauga’s formula (for this test we set βDe = 1/2). We
also recover the approach of swimmer speed to its time-
asymptotic value. This is shown in the inset of Fig. 1a
for De = 1 as wave amplitude is varied. This shows the
relaxational dynamics is oscillatory, and that the devi-
ation of time-asymptotic speed from the limiting ratio
is linear in amplitude, as expected. Figure 1b shows the
late-time distribution of stress – here contours of tr(Sp) –
around the swimmer (tr(Sp) represents the mean-square
distension of the immersed polymer coils). We also find
that as the wave amplitude is increased out of the small-
amplitude regime, the ordering of Newtonian swimmer
speed to OB swimmer speed is maintained, with the New-
tonian swimmer the faster.

We find very different behavior for “free” swimmers ex-
ecuting large-amplitude deformations. Being freed from
the constraint of periodicity for the sheet, there is a
broader range of possible stroke dynamics. Here we
illustrate with simulations using κ̄(s, t) = −Ak2(s −
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FIG. 2: (a): The location of the x-component of the free swimmer
center of mass, with A = 0.05, as a function of time for various
values of De. The initial displacements are the same for all cases
as S0 = I. The final time is 20, or 4 · De for the largest value of
De. (b): The shapes and displacement of three swimmers – De = 0
(Newtonian), 1.0, and 5.0 – after 20 periods.

1) sin(ks − ωt), which produces a left-moving traveling
wave that is of increasing amplitude towards the tail.
Figure 2a shows for A = 0.05, the horizontal displace-
ment of the center of mass for free swimmers as De is
varied, and β held fixed at 1/2. While the net displace-
ment per stroke is always rightwards, note that the swim-
mer has a period of backward displacement, unlike the
infinite sheet. Since the initial polymeric stress distri-
bution was again isotropic, the initial fluidic response
to swimmer motion is Newtonian and the swimmers all
have the same initial velocity. However, as the polymeric
stresses develop, the OB swimmers accelerate, and the
Newtonian swimmer emerges as the slower at interme-
diate times. From there, the OB swimmers each relax
to steady swimming on an O(De) time-scale, and a new
ordering emerges as is apparent from the displacement
curves (we run the simulations to at least t = 4De). At
long times, the De = 1 swimmer emerges as the fastest,
being about 25% faster than the Newtonian swimmer.

The steady-state velocity ratio (relative to Newtonian)
is plotted in Fig. 4a, for both β held fixed at 1/2, and
for βDe = 1/2. In either case, the velocity shows a
peak around De = 1 and a monotonic decrease for larger
De. As De is a dimensionless time-scale for the decay
of viscoelastic stresses, it is interesting to note that the
maximum speed emerges when the Deborah number is
matched to the period of the swimming stroke. Swim-
mer speeds are expected to decay at large De (at least
for fixed β) since as De → ∞ the elastic stresses have
no decay time-scale. In that limit, the elastic stress de-
pends upon material strain relative to its initial configu-

ration. Hence, the stretching of material elements caused
by a body progressing forward will ultimately create suffi-
cient strain, and hence stress, to impede further progress.
Close examination of the displacement curves in Fig. 2a
(see inset) also shows that at higher De the fluctuating
component becomes smaller.

Figure 2b shows the swimmer positions and shapes for
De = 0 (Newtonian), 1, and 5, at the final time t = 20.
The De = 1 swimmer is the leader, with the De = 0
and 5 swimmers lagging and nearly tied despite the lat-
ter’s substantially slower speed (see Fig. 4a). However,
this positional tie is only due to the greater speed of
the OB swimmer at earlier times, which decreased as
the polymeric stresses approached their steady behavior.
Figure 2b also shows that we are not solving a strictly
kinematic swimming problem wherein the shape dynam-
ics is rigidly prescribed, but are instead determined by
the interaction of fluid stresses and the forces internal to
the swimmer. By the providential near-tie of the swim-
mers we are able to make a visual shape comparison
among them, and we see that the stroke profile for the
De = 5 swimmer is considerably flattened, particularly
at the tail, in comparison with the other two cases.
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FIG. 3: Snapshots of the free swimmer for De = 1 at late times.

The ellipses represent the (symmetric) polymeric stress tensor S.

The major axis is aligned with principal eigenvector of S, with

length scaled on the associated eigenvalue. The minor axis is as-

sociated with the second eigenvector/value pair of S. As such, it

represents the directions and degree of distension of the polymer

field. The red vectors are the fluid velocity on Γ.

Figure 3 examines the spatial structure of the vis-
coelastic stresses during the swimming dynamics. The
polymeric stress tensor Sp is symmetric and positive def-
inite, and so has two positive eigenvalues, λ1 and λ2, and
corresponding orthogonal unit eigenvectors p1 and p2.
For De = 1, in the fluid surrounding the swimmer, we
have plotted ellipses that visually represent the geomet-
ric structure of Sp. The axes of each ellipse are aligned
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with p1 and p2, and the axis lengths are scaled by λ1

and λ2. This visual diagnostic reveals how the polymer
coils are being distended by the fluid flow. For example,
tr(Sp) = λ1 + λ2 is an invariant of Sp and represents
mean-square distension of the immersed polymer coils.

Figure 3a is at time t = 19.73, well after the swimmer
has entered steady-state motion, and very near the time
of peak forward velocity, which is nearly the same as for
the Newtonian swimmer. A strong polymer stress con-
centration sits to the aft of the swimmer, associated with
the strong straining of the fluid by the motion of the tail.
At this time, the backward moving wave is reaching the
end of the swimmer, and the tail is moving somewhat up-
wards. Figure 3b is at t = 20, about one-quarter stroke
later (also interpretable as being one-quarter stroke ear-
lier, with the figure flipped vertically). At this time, the
rotation of the body about the tail has created a strong,
anisotropic stress distribution there. An important fact
is that while the swimmer is slipping backwards at this
time, it is not slipping backwards as much as the Newto-
nian swimmer.
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FIG. 4: As a function of De, the ratio R(De) of average free

swimmer speed to that of the Newtonian free swimmer. Inset: An

estimate of swimming efficiency, Eff= U2/P , versus De.

Efficiency is also an important aspect of swimming.
For steady-state swimming we find that time-averaged
input power, P = 〈

∫

Γ
ds g ·uΓ〉, is nearly independent of

De. This suggests that the point of maximal speed with
respect to De is also the point of maximal effiency. This
is borne out by Figure 4 whose inset plots the mechanical
efficiency estimate Eff= U2/P , where U is time-averaged
x-velocity of the center of mass.
Discussion The main result of our study is that vis-
coelastic fluid response can actually increase the speed
and efficiency of a simple undulatory swimmer. This
increase is associated with highly strained fluid, sitting
aft of the tail, which may be releasing hoop-like elas-
tic stresses. While our study considers free swimmers
and a full viscoelastic flow model, it remains idealized.
Our swimmer is a two-dimensional sheet, not a three-
dimensional swimmer like a spermatazoa. While non-
linear, the Oldroyd-B model is relatively simple, and is
most appropriate for modeling a simple “Boger” fluid
composed of a dilute suspension of high molecular weight
polymers in a high viscosity solvent. While it captures

elastic responses, it does not capture shear-thinning, nor
the effects of finite length of distended polymers. It is
unlikely that biological fluids such as mucus are so eas-
ily characterized. From the microscopic derivation of
Oldroyd-B [11], the parameter β · Wi is interpreted as
the ratio of polymer to solvent viscosity, which for many
synthetic Boger fluids is an order one quantity (see, e.g.
[13]), as we take it here.

There are aspects of experimental observation that we
reproduce. Studying sperm swimming in a synthetic vis-
coelastic fluid medium Smith et al. [8] also find a greater
displacement per beat (essentially our nondimensional
velocity) than in a less viscoelastic medium. That said,
this increase is more dramatic than in our study, and
with real spermatazoa displacing more per beat by a fac-
tor of 2-3. This brings up another important point: real
stroke forms (and frequencies) differ markedly depending
upon the response properties of the medium, with wave-
forms being more concentrated near the tail for viscoelas-
tic media (as we have tried to emulate here) [8, 14]. True
swimming wave-forms reflect a balance between inter-
nally generated forces and the fluidic response and have
been subject of study in Newtonian fluids [6, 15].
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