Randomness in Number Theory Distribution of Leading Digits of Arithmetic Sequences

Zhaodong Cai, Matthew Faust, Yuan Zhang Project Leader: Junxian Li
Faculty Mentor: A.J. Hildebrand

Benford's Law in Mathematics
Leading Digits of $\left\{2^{n}\right\}: 2,4,8,16,32,64,128,256,512,1024,2048$, $4096,8192,16384,32768,65536,131072,262144,524288,1048576$. The table below shows the actual counts and Benford predictions $\left(10^{9} \log _{10}\left(1+\frac{1}{d}\right)\right)$ for the leading digits of the first billion terms in $\left\{2^{n}\right\}$.

First Digit Actual count Benford Prediction Error

First Digit	Actual count	Benford Prediction	Error
1	301029995	301029995.66	-0.66
2	176091267	176091259.06	+7.94
3	124938729	124938736.61	-7.61
4	96910014	96910013.01	+0.99
5	79181253	79181246.05	+6.95
6	66946788	66946789.63	-1.63
7	57991941	57991946.98	-5.98
8	51152528	51152522.45	+5.55
9	45757485	45757490.56	-5.56

Behavior and Distribution of Benford Errors

Definition: The Benford error of a sequence $\left\{a_{n}\right\}$ for digit d up to N is
$E_{d}\left(\left\{a_{n}\right\}, N\right)=\#\left\{n \leq N: a_{n}\right.$ has first digit $\left.d\right\}-N \cdot \log _{10}(1+1 / d)$
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Experimental Results

- As $N \rightarrow \infty$, the Benford error $E_{1}\left(\left\{2^{n}\right\}, N\right)$ for digit 1 is uniformly distributed on $(-1,0)$.
For all other digits $d \neq 1$, there exist infinitely many N such that $\left|E_{d}\left(\left\{2^{n}\right\}, N\right)\right|>1$. - For all digits $d \neq 1,4$ as $N \rightarrow \infty$, the Benford error $E_{d}\left(\left\{2^{n}\right\}, N\right)$ is unbounded and For all other sequences of the form $\left\{a^{n}\right\}$, and all $d=1, \ldots, 9$, there exist infinitely many N such that $\left|E_{d}\left(\left\{a^{n}\right\}, N\right)\right|>1$.

Theoretical Results

- For the sequence $\left\{2^{n}\right\}$ and digit 1 , the Benford error is always between -1 and 0 , For the sequence $\left\{2^{n}\right\}$ and digit 1 , the Benford error is always between -1 and 0 ,
i.e., $E_{1}\left(\left\{2^{n}\right\}, N\right) \in(-1,0)$. In particular, the number of terms with digit 1 up to N is i.e., $\left.E_{1}\left(2^{n}\right\}, N\right) \in(-1,0)$. In particular,
exactly $\lfloor N P(1)\rfloor$, the Benford prediction.

The distribution of $E_{1}\left(\left\{2^{n}\right\}, N\right)$ approaches the uniform distribution on $(-1,0)$, as N goes to infinity.

Conjectures

- For $d \neq 1,4, E_{d}\left(\left\{2^{n}\right\}, N\right)$ obeys normal distribution.
- $E_{d}\left(\left\{2^{n}\right\}, N\right)$ is almost periodic, with the almost periods being the denominators of convergents of $\log _{10} 2$.
There exist sequences of the form $\left\{a^{n}\right\}$, whose limiting distribution of Benfor Errors is neither normal nor uniform

Future Directions

- Investigate the distribution of Benford Error for sequences such as
\{a(1) , where f is a polynomia
$\because\left\{\begin{array}{l}n!\}^{n} \\ \left\{2^{n}\right. \\ -1\}\end{array}\right\}$, where p_{n} is the n-th prime
For sequences of the form $\left\{a^{n}\right\}$, find an explicit connection between continued fractions of $\left\{\log _{10} a\right\}$ and the distribution of the Benford Error.

References

- J. Beck, Probabilistic Diophantine Approximation, Springer (2014)
- F. Benford, The Law of Anomalous Numbers, Proc. Amer. Philos. Soc., 78(4) (1938), pp. 551-572
P. Diaconis, The Distribution of Leading Digits and Uniform Distribution Mod 1 Annals of Probability, Vol. 5, №. 1 (1977), pp. 72-81
T.P. Hill, The Significant-digit Phenomenon, Amer. Math. Monthly, Vol 102, No. 4 (1995), pp. 322-327.
L. Kuipers, L. Niederreiter, Uniform Distribution of Sequences, Dover Publications (2006).

