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Benford’s Law
A sequence {xn} is said to be Benford distributed if it satisfies

P(first digit d) = log10

(
1 +

1
d

)
Real world examples satisfying (approx.) Benford’s Law:

I Populations of US cities
I Areas of countries
I Physical constants
I File sizes in Linux file system

Benford’s Law in Mathematics
Leading Digits of {2n}: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,
4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576.
The table below shows the actual counts and Benford predictions
(109 log10

(
1 + 1

d

)
) for the leading digits of the first billion terms in {2n}.

First Digit Actual count Benford Prediction Error

1 301029995 301029995.66 −0.66

2 176091267 176091259.06 +7.94

3 124938729 124938736.61 −7.61

4 96910014 96910013.01 +0.99

5 79181253 79181246.05 +6.95

6 66946788 66946789.63 −1.63

7 57991941 57991946.98 −5.98

8 51152528 51152522.45 +5.55

9 45757485 45757490.56 −5.56

Behavior and Distribution of Benford Errors
Definition: The Benford error of a sequence {an} for digit d up to N is

Ed({an},N) = #{n ≤ N : an has first digit d} − N · log10 (1 + 1/d) .

Benford Errors for the Sequence {2n}
The graphs below are the plots of Ed({2n},N) for 1 ≤ N ≤ 10000, and d = 1,2, . . . ,9. Observe the
fractal and almost periodic features for digits 2,3,5,6,7,8,9.
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Distribution of Benford Errors for the Sequence {2n}
The graphs below are the histograms of Ed({2n},N) for 1 ≤ N ≤ 109, and d = 1,2, . . . ,9. Observe the
normal shape of the distribution for digits 2,3,5,6,7,8,9.
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Experimental Results
I As N →∞, the Benford error E1({2n},N) for digit 1 is uniformly distributed on
(−1,0).

I For all other digits d 6= 1, there exist infinitely many N such that |Ed({2n},N)| > 1.
I For all digits d 6= 1,4 as N →∞, the Benford error Ed({2n},N) is unbounded and

normally distributed.
I For all other sequences of the form {an}, and all d = 1, . . . ,9, there exist infinitely

many N such that |Ed({an},N)| > 1.

Theoretical Results
I For the sequence {2n} and digit 1, the Benford error is always between −1 and 0,

i.e., E1({2n},N) ∈ (−1,0). In particular, the number of terms with digit 1 up to N is
exactly bNP(1)c, the Benford prediction.

I The distribution of E1({2n},N) approaches the uniform distribution on (−1,0), as N
goes to infinity.

Conjectures
I For d 6= 1,4, Ed({2n},N) obeys normal distribution.
I Ed({2n},N) is almost periodic, with the almost periods being the denominators of

convergents of log10 2.
I There exist sequences of the form {an}, whose limiting distribution of Benford

Errors is neither normal nor uniform.

Future Directions
I Investigate the distribution of Benford Error for sequences such as

I {af (n)}, where f is a polynomial
I {n!}
I {2pn − 1}, where pn is the n-th prime

I For sequences of the form {an}, find an explicit connection between continued
fractions of {log10 a} and the distribution of the Benford Error.
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