Project Leader: Junxian Li Faculty Mentor: A.J. Hildebrand **Benford's Law** A sequence $\{x_n\}$ is said to be **Benford distributed** if it satisfies $P(\text{first digit } d) = \log_{10} \left(1 + \frac{1}{d} \right)$ Real world examples satisfying (approx.) Benford's Law: Populations of US cities Areas of countries Physical constants File sizes in Linux file system 0.301 First-digit frenquencies under Benford distribution 0.176 0.125 0.0969 0.0792

The table below shows the actual counts and Benford predictions

First Digit	Actual count	Benford Prediction	Erro
1	301029995	301029995.66	-0.6
2	176091267	176091259.06	+7.9
3	124938729	124938736.61	-7.6
4	96910014	96910013.01	+0.9
5	79181253	79181246.05	+6.9
6	66946788	66946789.63	-1.6
7	57991941	57991946.98	-5.9
8	51152528	51152522.45	+5.5
9	45757485	45757490.56	-5.5

Support for this project was provided by the Illinois Geometry Lab and the Department of Mathematics at the University of Illinois at Urbana-Champaign.

LLINOIS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Experimental Results

▶ As $N \to \infty$, the Benford error $E_1(\{2^n\}, N)$ for digit 1 is uniformly distributed on

For all other digits $d \neq 1$, there exist infinitely many N such that $|E_d(\{2^n\}, N)| > 1$. For all digits $d \neq 1, 4$ as $N \rightarrow \infty$, the Benford error $E_d(\{2^n\}, N)$ is unbounded and

For all other sequences of the form $\{a^n\}$, and all $d = 1, \ldots, 9$, there exist infinitely

Theoretical Results

For the sequence $\{2^n\}$ and digit 1, the Benford error is always between -1 and 0, i.e., $E_1(\{2^n\}, N) \in (-1, 0)$. In particular, the number of terms with digit 1 up to N is

► The distribution of $E_1(\{2^n\}, N)$ approaches the uniform distribution on (-1, 0), as N

Conjectures

 \blacktriangleright $E_d(\{2^n\}, N)$ is almost periodic, with the almost periods being the denominators of

• There exist sequences of the form $\{a^n\}$, whose limiting distribution of Benford

Future Directions

Investigate the distribution of Benford Error for sequences such as

For sequences of the form $\{a^n\}$, find an explicit connection between continued fractions of $\{\log_{10} a\}$ and the distribution of the Benford Error.

References

► J. Beck, Probabilistic Diophantine Approximation, Springer (2014) ▶ F. Benford, The Law of Anomalous Numbers, Proc. Amer. Philos. Soc., 78(4)

P. Diaconis, The Distribution of Leading Digits and Uniform Distribution Mod 1, ► T.P. Hill, The Significant-digit Phenomenon, Amer. Math. Monthly, Vol 102, No.4

L. Kuipers, L. Niederreiter, Uniform Distribution of Sequences, Dover Publications