Local and Global Randomness in the Leading Digits of Arithmetic Sequences

Zhaodong Cai, Matthew Faust, Shunping Xie, Junxian Li (Project Leader), A.J. Hildebrand (Faculty Mentor)

Benford's Law

A sequence $\left\{x_{n}\right\}$ is said to be Benford distributed if the probability of having first digit d is

$$
P(\text { first digit } d)=\log _{10}\left(1+\frac{1}{d}\right)
$$

Real world examples satisfying (approx.) Benford's Law:

- Populations of US cities
- Areas of countries
- Physical constants
- File sizes in Linux file system - File sizes in Linux file system
- Numbers in US tax returns

Benford's Law in Mathematics: Fibonacci Numbers Actual counts and Benford predictions $\left(10^{9} \log _{10} \frac{d+1}{d}\right)$ for the leading digits of the first billion Fibonacci numbers.

First Digit Actual count Benford Prediction Difference

1	301029995	301029995.66	-0.66
2	176091265	176091259.06	+5.94
3	124938730	124938736.61	-6.61
4	96910014	96910013.01	+0.99
5	79181254	79181246.05	+7.95
6	66946785	66946789.63	-4.63
7	57991942	57991946.98	-4.98
8	51152529	51152522.45	+6.55
9	45757486	45757490.56	-4.56

Leading Digits of Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711$, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, $701408733,1134903170,1836311903,2971215073,4807526976,7778742049,12586269025$ 20365011074, 32951280099, 53316291173, 86267571272, 139583862445, 225851433717,

Problem: How random are such first digit sequences?

Numerical data based on $100,000,000$ terms suggest that the leading digits of $n!, 2^{n}, F_{n}$, and Mersenne numbers are Benford distributed, but pairs of digits are not independent. By contrast, pairs of leading digits of $2^{n^{2}}$ are independent and Benford distributed

Local Benfordness: Waiting Times between digit 1's

Theoretical ReSults
Definition (Locally Benford)
A sequence is called locally Benford of order d if the leading
digits of $\left(a_{n+1}, \ldots, a_{n+k}\right)$ have the same asymptotic distribution as
k independent Benford distributions, for all $k \leq d$, but not for
$k>d$.
Theorem (Local Benfordness Theorem)
Let $a_{n}=a^{n^{d}(1+o(1)), ~ w h e r e ~} \log _{10} a \notin \mathbb{Q}$ and d is a positive
integer. Then a_{n} is locally Benford of order d.
Example:

- $F_{n}, 2^{n}$ and Mersenne numbers are locally Benford of order 1 ,
i.e., , the distributions of leading digits for these sequences
satisfy Benford's Law, but the distributions of pairs of leading
digits are not independent.
o $2^{n^{2}}$ is locally Benford of order 2, i.e., the distribution of leading
digits satisfies Benford's Law and pairs of leading digits are
independent, but triples of leading digits are not independent.

Waiting Times

Theorem (First-digit Waiting Times)
(i) If $a_{n}=a^{n}(1+o(1))$ where $\log _{10} a \notin \mathbb{Q}$, the sequence has (i) $a_{n}=a, ~(i) ~ b o u n d e d ~ w a i t i n g ~ t i m e s ~ b e t w e e n ~ d i g i t s . ~$
(ii) If $\frac{a_{n+1}}{n}=n^{k}(1+o(1))$ for some $k>0$, the sequence has unbounded waiting times between digits.

Example

- $2^{n}, F_{n}$ have bounded waiting time between 1's
- n ! has unbounded waiting times between 1 's

References

- F. Benford, The Law of Anomalous Numbers, Proc. Amer. Philos. Soc., 78(4) (1938), pp. 551-572.
- P. Diaconis, The Distribution of Leading Digits and Uniform Distribution Mod 1, Annals of Probability, Vol. 5, No. 1 (1977) pp. 72-81.
- T.P. Hill, The Significant-digit Phenomenon, Amer. Math Monthly, Vol 102, No. 4 (1995), pp. 322-327.
- L. Kuipers, L. Niederreiter, Uniform Distribution of Sequences, Dover Publications (2006).

