Beatty Sequences, Exotic Number Systems, and Partitions of the Integers

Yubo (Mark) Cao, Weiru Chen, Xinxin Chen, Chenyu (Stephen) Fan, Jared Krandel Graduate Leader: Junxian Li
Faculty Adviser : A J Hildebrand and Ken Stolarsky
Introduction

Goals
- Learn integer partitions such as the partitions arising in Beatty's Theorem.
- Investigate "Beatty-type" partitions involving more than two parts.
- Learn relevant background material on Weyl's Theorem and related topics.
-Use Mathematica to explore related questions.

Beatty's Theorem

Theorem. Let α, β be two positive irrational numbers. Let A and B be two sequences such that $A=(\lfloor n \alpha\rfloor)_{n}=\{\lfloor\alpha\rfloor,\lfloor 2 \alpha\rfloor,\lfloor 3 \alpha\rfloor, \ldots\}, B=(\lfloor n \beta\rfloor)_{n}=\{\lfloor\beta\rfloor,\lfloor 2 \beta\rfloor,\lfloor 3 \beta\rfloor, \ldots\}$
Then A and B form a partition of the integers if and only if

$$
\frac{1}{\alpha}+\frac{1}{\beta}=1
$$

When $\alpha=\phi, \beta=\phi^{2}\left(\phi=\frac{\sqrt{5}+1}{2}\right.$ is the golden ratio), $\frac{1}{\phi}+\frac{1}{\phi^{2}}=1$, so we have a partition of the integers:
$A=(\lfloor n \phi\rfloor)_{n}=\{1,3,4,6,8,9,11,12,14,16,17,19,21, \ldots\}$ $B=\left(\left\lfloor n \phi^{2}\right\rfloor\right)_{n}=\{2,5,7,10,13,15,18,20,23,26,28, \ldots\}$.

Uspensky's Theorem

Theorem. If $k>2$, then there do not exist k positive real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ such
that the sequences $\left(\left\lfloor\alpha_{1} n\right\rfloor\right)_{n},\left(\left|\alpha_{2} n\right|\right)_{n}, \ldots,\left(\left|\alpha_{k} n\right|\right)_{n}$ partition the positive integers.

3-Partition and Almost Beatty Partition
Three Sets Partition Algorithm

$K(n)=3\lfloor\phi n\rfloor+n$				\Rightarrow	$K(n)$
$K(n)-2$		$K(n)+2$		\Rightarrow	$R(n)$
$K(n)-1$	$K(n)-3$	$K(n)+1$	$K(n)+3$	\Rightarrow	$S(n)$

$K(n)=\{4,8,12,16,21,25,29,33,38 \ldots\}$
$R(n)=\{6,13,20,27,34,41,47,54,61 \ldots\}$
$S(n)=\{1,2,3,5,7,9,10,11,14,15,17 \ldots\}$

Almost Beatty Partitions
Question: How close can the form of this 3-partition be to a "Beatty-type" partition? How close are these sequences to something of the form

$$
(\lfloor\alpha n\rfloor)_{n},(\lfloor\beta n\rfloor)_{n},(\lfloor\gamma n\rfloor)_{n}
$$

where

$$
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=1 ?
$$

Let $\alpha=\frac{(\phi+2)}{2}, \beta=(\phi+2), \gamma=(3 \phi+1)$, then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=1$, so according to Uspensky's theorem 〔 $\alpha n\rfloor,\lfloor\beta n\rfloor,\lfloor\gamma n\rfloor$ will not generate a partition of integers, but we have

$$
\begin{aligned}
& 0 \leq\lfloor\alpha n\rfloor-S(n) \leq 1, \\
& 0<\lfloor\beta n\rfloor-R(n)=1,
\end{aligned}
$$

$$
\begin{aligned}
& 0<\lfloor\beta n\rfloor-R(n)=1, \\
& 0 \leq\lfloor\gamma n\rfloor-K(n) \leq 2 .
\end{aligned}
$$

Question:How close can a 3-partition be to three Beatty Sequences?
We try to construct a "Beatty-type" 3 -partition where two of the columns are exact Beatty sequences and the third one differs from a Beatty sequence by at most 2. Here is an example where $E=\left(\left\lfloor n \phi^{3}\right\rfloor\right)_{n}, F=\left(\left\lfloor n \phi^{4}\right\rfloor\right)_{n}$
$E(n)=\{4,8,12,16,21,25,29,33,38 \ldots\}$
$F(n)=\{6,13,20,27,34,41,47,54,61 \ldots\}$
$G(n)=\{1,2,3,5,7,9,10,11,14,15,17 \ldots\}$

Conjecture: $G(n)$ differs from $(\lfloor n \phi\rfloor)_{n}$ by at most 2 , where
$(\lfloor n \phi\rfloor)_{n}=\{1,3,4,6,8,9,11,12,14,16 \ldots\}$.

More General Partitions
Partition of the Integers into n Parts

Above is a tree which depicts a construction of the $\infty \times n$ matrix which forms a disjoint partition of the pos. Above is a tree which depicicis a construction of the $\infty \times n$ matrix which forms a disjoint partition of the pos-
itive integers. We take the initia value 2^{n-1} and construct the finite tree above by successively adding and
subtracting descending powers of two from the numbers in some evel of the tree and adding the e esults to a subtracting descending powers of two from the numbers in some level of the tree and adding the results to
new level. This continues until we add and subtract 1 from some level of the tree to form the final level. Each level gives the beginning of an increasing sequenconce of positive integers. If we denote the first sequence as level gives the beginning of an increasing se
$d(k)$ and the second as $c(k)$, then we have

In general, the partition is formed by constructing infinitely many trees with the $d(k)$ sequence as the roots In general,
in this manner and adding the numbers in each level to their corresponding sequences. We define $d(k)$ as follows, in terms of the difference $\Delta_{k}=c(k)-c(k-1)$

$$
d(k)= \begin{cases}d(k-1)+2^{n-1} & \text { if } \Delta_{k}=2^{n-1}- \\ d(k-1)+2^{n}-1 & \text { if } \Delta_{k}=2^{n-1} .\end{cases}
$$

Theorem. The n-th part and the $(n-1)$-th part in the above n-partition are given in the table below,
where 4()$=$,

Future Directions

Question:

- Can we get a formula for the r-th column in this n partition?
- When $n=2$, this is a Beatty Partition with $A(n)=\lfloor\phi n\rfloor$ and $B(n)=\left\lfloor\phi^{2} n\right\rfloor$. When $n=3$, it is the -Partition we constructed, where $K=3\lfloor\phi n\rfloor+n$. What is the limit of this partition when $n \rightarrow \infty$? Conjecture:
When $n \rightarrow \infty$
When $n \rightarrow \infty$, it is the partition of integers where the n-th part consists of integers of the form $2^{2 n-1}(2 m-1)$
$(1 \leq n, m<\infty)$. The columns form a disjoint partition of the positive integers.

