

Introduction

Goals

- Learn integer partitions such as the partitions arising in Beatty's Theorem.
- Investigate "Beatty-type" partitions involving more than two parts.
- Learn relevant background material on Weyl's Theorem and related topics.
- Use Mathematica to explore related questions.

Beatty's Theorem

Theorem. Let α , β be two positive irrational numbers. Let A and B be two sequences such that $A = (\lfloor n\alpha \rfloor)_n = \{\lfloor \alpha \rfloor, \lfloor 2\alpha \rfloor, \lfloor 3\alpha \rfloor, \ldots\}, B = (\lfloor n\beta \rfloor)_n = \{\lfloor \beta \rfloor, \lfloor 2\beta \lfloor, \lfloor 3\beta \rfloor, \ldots\}.$ Then A and B form a partition of the integers if and only if

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1.$$

When $\alpha = \phi, \beta = \phi^2$ ($\phi = \frac{\sqrt{5}+1}{2}$ is the golden ratio), $\frac{1}{\phi} + \frac{1}{\phi^2} = 1$, so we have a partition of the integers:

> $A = (\lfloor n\phi \rfloor)_n = \{1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, \ldots\},\$ $B = (\lfloor n\phi^2 \rfloor)_n = \{2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, \ldots\}.$

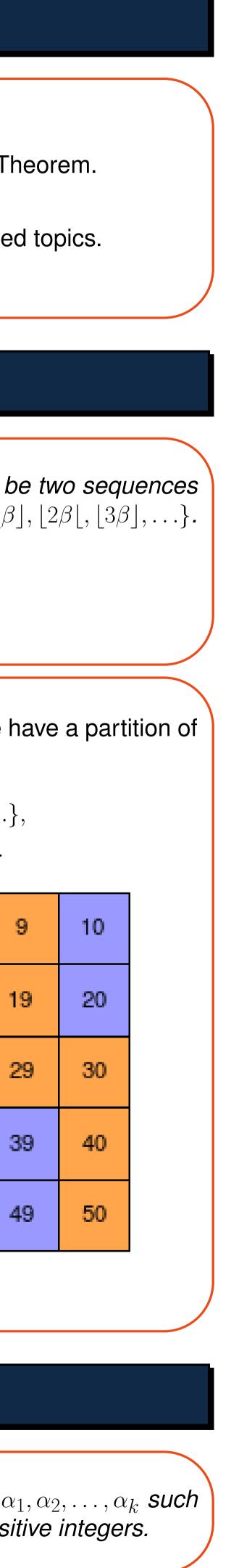
1	2	3	4	5	6	7	8	
11	12	13	14	15	16	17	18	
21	22	23	24	25	26	27	28	
31	32	33	34	35	36	37	38	
41	42	43	44	45	46	47	48	

Uspensky's Theorem

Theorem. If k > 2, then there do not exist k positive real numbers $\alpha_1, \alpha_2, \ldots, \alpha_k$ such that the sequences $(\lfloor \alpha_1 n \rfloor)_n, (\lfloor \alpha_2 n \rfloor)_n, \ldots, (\lfloor \alpha_k n \rfloor)_n$ partition the positive integers.

Beatty Sequences, Exotic Number Systems, and Partitions of the Integers

Yubo (Mark) Cao, Weiru Chen, Xinxin Chen, Chenyu (Stephen) Fan, Jared Krandel **Graduate Leader: Junxian Li** Faculty Adviser : A J Hildebrand and Ken Stolarsky



Thre

3-Partition and Almost Beatty Partition	More General Partitions				
ree Sets Partition Algorithm	Partition of the Integers into n Parts				
$\begin{bmatrix} K(n) = 3\lfloor \phi n \rfloor + n \end{bmatrix} \Rightarrow K(n)$	2 ^{<i>n</i>-1}				
$\boxed{K(n) - 2} \qquad \qquad K(n) + 2 \qquad \Rightarrow \qquad R(n)$	$2^{n-1} - 2^{n-2} \boxed{2^{n-1} + 2^{n-2}} \Rightarrow \pm 2^{n-2}$				
$K(n) - 1$ $K(n) - 3$ $K(n) + 1$ $K(n) + 3$ \Rightarrow $S(n)$	$ \hline \cdots \hline \cdots \hline \cdots \Rightarrow \pm 2^{n-3} $				
$K(n) = \{4, 8, 12, 16, 21, 25, 29, 33, 38 \dots\}$ $R(n) = \{6, 13, 20, 27, 34, 41, 47, 54, 61 \dots\}$ $S(n) = \{1, 2, 3, 5, 7, 9, 10, 11, 14, 15, 17 \dots\}$	Above is a tree which depicts a construction of the $\infty \times n$ matrix which forms a disjoint itive integers. We take the initial value 2^{n-1} and construct the finite tree above by successful descending powers of two from the numbers in some level of the tree and a new level. This continues until we add and subtract 1 from some level of the tree to form level gives the beginning of an increasing sequence of positive integers. If we denote $d(k)$ and the second as $c(k)$, then we have				
nost Beatty Partitions	$d(1) = 2^{n-1}, c(1) = 2^{n-1} - 2^{n-2}, c(2) = 2^{n-1} + 2^{n-2}.$				
uestion: How close can the form of this 3-partition be to a "Beatty-type" partition? ow close are these sequences to something of the form	In general, the partition is formed by constructing infinitely many trees with the $d(k)$ s in this manner and adding the numbers in each level to their corresponding sequence follows, in terms of the difference $\Delta_k = c(k) - c(k-1)$:				
$(\lfloor \alpha n \rfloor)_n, (\lfloor \beta n \rfloor)_n, (\lfloor \gamma n \rfloor)_n$	$d(k) = \begin{cases} d(k-1) + 2^{n-1} & \text{if } \Delta_k = 2^{n-1} - 1, \\ d(k-1) + 2^n - 1 & \text{if } \Delta_k = 2^{n-1}. \end{cases}$				
here $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 1 ?$	$d(n) = \int d(k-1) + 2^n - 1$ if $\Delta_k = 2^{n-1}$. Theorem. The <i>n</i> -th part and the $(n-1)$ -th part in the above <i>n</i> -partition are given				
$\alpha = \frac{(\phi+2)}{2}$, $\beta = (\phi+2)$, $\gamma = (3\phi+1)$, then $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 1$, so according to Uspensky's prem $\lfloor \alpha n \rfloor$, $\lfloor \beta n \rfloor$, $\lfloor \gamma n \rfloor$ will not generate a partition of integers, but we have	where $A(j) = \lfloor \phi j \rfloor$. This generalizes the Beatty Partition and the 3-Partition shown of				
$0 \le \lfloor \alpha n \rfloor - S(n) \le 1,$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
$0 < \lfloor \beta n \rfloor - R(n) = 1, \\ 0 \le \lfloor \gamma n \rfloor - K(n) \le 2.$	$1 \ 1 \ \dots \ 2^{n-2} $ 2^{n-1}				
$0 \leq \lfloor \gamma n \rfloor = K(n) \leq 2.$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
uestion:How close can a 3-partition be to three Beatty Sequences?	$\begin{vmatrix} j \\ \dots \\ \end{vmatrix} \dots \begin{vmatrix} A(j) + (2^{n-1} - 2)j - (2^{n-2} - 1) \end{vmatrix} (2^{n-1} - 1)A(j) + j$				
try to construct a "Beatty-type" 3-partition where two of the columns are exact Beatty					
uences and the third one differs from a Beatty sequence by at most 2. Here is an mple where $E = (\lfloor n\phi^3 \rfloor)_n$, $F = (\lfloor n\phi^4 \rfloor)_n$.	Future Directions				
$E(n) = \{4, 8, 12, 16, 21, 25, 29, 33, 38 \dots \}$ $F(n) = \{6, 13, 20, 27, 34, 41, 47, 54, 61 \dots \}$ $G(n) = \{1, 2, 3, 5, 7, 9, 10, 11, 14, 15, 17 \dots \}$	Question: • Can we get a formula for the <i>r</i> -th column in this <i>n</i> partition?				
onjecture: $G(n)$ differs from $(\lfloor n\phi \rfloor)_n$ by at most 2, where	 When n = 2, this is a Beatty Partition with A(n) = ⌊φn⌋ and B(n) = ⌊φ²n⌋. W 3-Partition we constructed, where K = 3⌊φn⌋ + n. What is the limit of this partition Conjecture: 				
$(\lfloor n\phi \rfloor)_n = \{1, 3, 4, 6, 8, 9, 11, 12, 14, 16\dots\}.$	When $n \to \infty$, it is the partition of integers where the <i>n</i> -th part consists of integers of to $(1 \le n, m < \infty)$. The columns form a disjoint partition of the positive integers.				

Almo

Que How

whe

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 1 ?$$

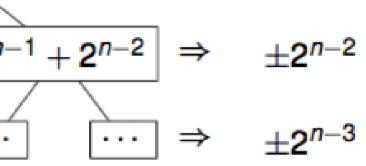
Let α theore

Que

We try seque exam

Con

Support for this project was provided by the Illinois Geometry Lab and the Department of Mathematics at the University of Illinois at Urbana-Champaign.



joint partition of the possuccessively adding and nd adding the results to a form the final level. Each ote the first sequence as

sequence as the roots nces. We define d(k) as

en in the table below, vn on the left.

When n = 3, it is the ition when $n \to \infty$? of the form $2^{n-1}(2m-1)$