Matthew Cho, Xiaomin Li, Yun Xie, Junxian Li (Graduate Student), A.J. Hildebrand (Faculty Advisor) **ILLINOIS** Illinois Geometry Lab

Beatty Sequences

Definition Let γ be an irrational number. The Beatty sequence B_{γ} is defined as

$$B_{\gamma} = \{ |n\gamma|, n = 1, 2..., \},$$

where |x| is the floor function.

Example: Partition of Integers Let ϕ be the golden ratio.

/	3										
n	1	2	3	4	5	6	7	8			
$n\phi$	1.62	3.24	4.85	6.47	8.09	9.70	11.33	12.94			
$\lfloor n\phi \rfloor$	1	3	4	6	8	9	11	12			
$n\phi^2$	2.61	5.24	7.85	10.47	13.09	15.71	18.33	20.94			
$\lfloor n\phi^2 \rfloor$	2	5	7	10	13	15	18	20			
Boatty sequences of R and R											

Deally sequences of B_{ϕ} and B_{Φ^2} .

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Beatty Partition with B_{ϕ} and B_{ϕ^2} .

Samuel Beatty

- Published Beatty's Theorem as a problem in the American Mathematical Monthly in 1926.
- First person receiving a Ph.D degree in mathematics from a Canadian university.
- One of the founders and the first president of the Canadian Mathematical Congress.

Samuel Beatty (1881-1970)

John W. Strutt (3rd Baron Rayleigh)

- Stated Beatty's Theorem even earlier in his book "The Theory of Sound" in 1894.
- Received the Nobel Prize in Physics in 1904 for discovering Argon.

John William Strutt (1842-1919)

Almost Beatty Partitions

University of Illinois Undergraduate Research Symposium, April 19, 2018

Partitions of the Integers with Beatty Sequences Theorem (Beatty's Theorem) Theorem (Uspensky's Theorem) Let α and β be two positive irrational numbers. B_{α} and B_{β} Beatty's Theorem does not hold for three (or more) form a partition of the integers if and only if sequences. That is, if α , β and γ are arbitrary positive numbers, then B_{α} , B_{β} and B_{γ} do **not** partition the positive $\frac{1}{2} + \frac{1}{2} = 1.$ integers. How close can a 3-part partition be to three Beatty Sequences? Theorem (3-part Almost Beatty Construction 2) Theorem (3-part Almost Beatty Construction 1) Given $\alpha > 2$, let Let α and β be two irrational numbers such that B_{α} and B_{β} are disjoint. Let γ be the irrational number such that Let γ $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 1.$ Denote $B_{\gamma}^* = \mathbb{N} \setminus (B_{\alpha} \cup B_{\beta}).$ Denote Let $B_{\gamma}(n)$ be the *n*-th term of B_{γ} . Then Let B $\max_{n} \left(B_{\gamma}^{*}(n) - B_{\gamma}(n) \right) = \max\left(\left| \frac{1}{\alpha - 1} \right|, \left| \frac{1}{\beta - 1} \right| \right) + 2.$ 6 3 5 8 9 16 15 16 17 17 13 14 18 19 15 19 11 12 14 18 12 13 25 25 27 27 26 28 29 24 28 29 24 22 22 23 26 21 23 30 38 35 35 32 37 32 36 38 33 36 34 37 34 33 40 39 48 41 45 50 43

Numerical Data on Distribution of Errors: $B_{\gamma}^*(n) - B_{\gamma}(n)$

 $\alpha = \phi^2$, (red) $\beta = \phi^3$, (blue) $B^*_{\gamma}(n) - B_{\gamma}(n) \in \{1, 2\}.$

$$a > 2$$
, let
 $B_{\alpha}^{*} = B_{\alpha} - 1.$

be the irrational number such the such the

$$\frac{1}{\alpha} + \frac{1}{\alpha} + \frac{1}{\gamma} = 1$$

$$B_{\gamma}^{*} = \mathbb{N} \setminus (B_{\alpha} \cup B_{\alpha}^{*}).$$
(n) be the *n*-th term of B_{γ} . Then

$$B_{\gamma}^{*}(n) - B_{\gamma}(n) \in \{0, 1\}$$

- 516-521.

Greedy Construction Let α , β , γ be positive irrational numbers such that $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 1.$ Construct sequences $B^*_{\alpha}, B^*_{\beta}, B^*_{\gamma}$ iteratively as follows: • For each n = 1, 2, 3, ... place n into the sequence for which the $|B^*_{\alpha}(n) - B_{\alpha}(n)|, |B^*_{\beta}(n) - B_{\beta}(n)|, |B^*_{\gamma}(n) - B_{\gamma}(n)|$ • By construction, the resulting sequences $B^*_{\alpha}, B^*_{\beta}, B^*_{\gamma}$ form a partition of the positive integers. Conjecture The partition generated by the Greedy Construction satisfies $|B_{\alpha}^{*}(n) - B_{\alpha}(n)|, |B_{\beta}^{*}(n) - B_{\beta}(n)|, |B_{\gamma}^{*}(n) - B_{\gamma}(n)| \le 2$

Future Work

Observation by Determine the possible errors and their frequencies in terms of

Classify the cases when the errors are 0.

Investigate the possible relations between different types of

• Extend current constructions to partitions with more than three

References

John William Strutt, 3rd Baron Rayleigh (1894). The Theory of Sound. 1 (Second ed.). Macmillan. p. 123. • Beatty, Samuel (1926). Problem 3173. American Mathematical Monthly. 33 (3): 159. doi:10.2307/2300153 • Uspensky, J. V. (1927). On a problem arising out of the theory of a certain game. Amer. Math. Monthly 34 (1927), pp.