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Beatty Sequences
Definition
Let γ be an irrational number. The Beatty sequence Bγ is
defined as

Bγ = {bnγc, n = 1, 2 . . . , },
where bxc is the floor function.

Example: Partition of Integers
Let φ be the golden ratio.

n 1 2 3 4 5 6 7 8
nφ 1.62 3.24 4.85 6.47 8.09 9.70 11.33 12.94
bnφc 1 3 4 6 8 9 11 12
nφ2 2.61 5.24 7.85 10.47 13.09 15.71 18.33 20.94
bnφ2c 2 5 7 10 13 15 18 20

Beatty sequences of Bφ and BΦ2.

Beatty Partition with Bφ and Bφ2.
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Partitions of the Integers with Beatty Sequences
Theorem (Beatty’s Theorem)
Let α and β be two positive irrational numbers. Bα and Bβ

form a partition of the integers if and only if
1

α
+

1

β
= 1.

Theorem (Uspensky’s Theorem)
Beatty’s Theorem does not hold for three (or more)
sequences. That is, if α, β and γ are arbitrary positive
numbers, then Bα, Bβ and Bγ do not partition the positive
integers.

How close can a 3-part partition be to three Beatty Sequences?
Theorem (3-part Almost Beatty Construction 1)
Let α and β be two irrational numbers such that Bα and Bβ

are disjoint. Let γ be the irrational number such that
1

α
+

1

β
+

1

γ
= 1.

Denote
B∗γ = N\(Bα ∪Bβ).

Let Bγ(n) be the n-th term of Bγ. Then

max
n

(B∗γ(n)−Bγ(n)) = max

(⌊
1

α− 1

⌋
,

⌊
1

β − 1

⌋)
+ 2.

α = φ2, (red) β = φ3, (blue) B∗γ(n)−Bγ(n) ∈ {1, 2}.

Theorem (3-part Almost Beatty Construction 2)
Given α > 2, let

B∗α = Bα − 1.

Let γ be the irrational number such that
1

α
+

1

α
+

1

γ
= 1.

Denote

B∗γ = N\(Bα ∪B∗α).
Let Bγ(n) be the n-th term of Bγ. Then

B∗γ(n)−Bγ(n) ∈ {0, 1}

α = φ2, (red) B∗γ(n)−Bγ(n) ∈ {0, 1}.

Numerical Data on Distribution of Errors: B∗γ(n)−Bγ(n)

α = π3, β = 3α
α−2, B∗γ(n)−Bγ(n) ∈ {0, 1, 2} α = π3, B∗γ(n)−Bγ(n) ∈ {0, 1},

Greedy Construction
Let α, β, γ be positive irrational numbers such that

1

α
+

1

β
+

1

γ
= 1.

Construct sequences B∗α, B∗β, B
∗
γ iteratively as follows:

For each n = 1, 2, 3, . . . place n into the sequence for which the
error

B∗α(n)−Bα(n)|, |B∗β(n)−Bβ(n)|, |B∗γ(n)−Bγ(n)|
is smallest.
By construction, the resulting sequences B∗α, B∗β, B

∗
γ form a

partition of the positive integers.

Conjecture
The partition generated by the Greedy Construction satisfies

|B∗α(n)−Bα(n)|, |B∗β(n)−Bβ(n)|, |B∗γ(n)−Bγ(n)| ≤ 2

for all positive integers n.

Numerical Example: Distribution of Errors

α ≈ 2.27, β ≈ 12.53, γ ≈ 2.09

Future Work
Determine the possible errors and their frequencies in terms of
α and β.
Classify the cases when the errors are 0.
Investigate the possible relations between different types of
constructions.
Extend current constructions to partitions with more than three
parts.
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