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What is a quantum metric?

(In our sense)

Let M C L(H) be a von Neumann algebra. A quantum metric on
M is a weak-* algebra filtration of L(#) given by
d: L(H) — [0, 0], such that the O-term is M’.
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(In our sense)

Let M C L(H) be a von Neumann algebra. A quantum metric on
M is a weak-* algebra filtration of L(#) given by
d: L(H) — [0, 0], such that the O-term is M’. More precisely:

e Each term V; « d~1([0, t]) is an operator system in L(H)
which is closed in the weak-* topology. le., d is lower
semicontinuous and

d(a*) = d(\a) = d(a) d(a+ b) < max(d(a), d(b)).

o Also VsV C Vsit. le., d(ab) < d(a) + d(b).
e Also Vo = M.
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What is a quantum metric?

(In our sense)

Let M C L(H) be a von Neumann algebra. A quantum metric on
M is a weak-* algebra filtration of L(#) given by
d: L(H) — [0, 0], such that the O-term is M’. More precisely:

e Each term V; « d~1([0, t]) is an operator system in L(H)
which is closed in the weak-* topology. le., d is lower
semicontinuous and

d(a*) = d(\a) = d(a) d(a+ b) < max(d(a), d(b)).

o Also VsV C Vsit. le., d(ab) < d(a) + d(b).
e Also Vo = M.
Behold! (But note other definitions, in particular Rieffel's.)
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Independence of H

Doesn't a filtration of £(#) 2 M depend on #H?

Theorem
No.
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Independence of H

Doesn't a filtration of £L(#) 2 M depend on H?

Theorem

No.

To understand this, consider more generally operator spaces

V C L(H1, Ho).

which are bimodules of M} C £(H;) and M), C L(Hz). These are
quantum relations between M7 and M. The lattice of quantum
relations is stable with respect to ®L(#), and tensoring also
preserves *, and composition of relations. This move unites all
faithful representations of M1 and M.
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First motivation: Classical metrics

If (X, d) is a metric space, let M = (°(X) and H = (?(X).

Theorem
Quantum metrics on M are equivalent to classical metrics on X.
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First motivation: Classical metrics
If (X, d) is a metric space, let M = (°(X) and H = (?(X).

Theorem
Quantum metrics on M are equivalent to classical metrics on X.

We define a filtration of L(H) by letting d(ey,) = d(x, y) for
elementary matrices. In general d(a) is the displacement of a, the
supremal “distance” of its “motion” as a superposition of x — y.

This construction is reversible, because all bimodules of M’ = M
are spanned by elementary matrices:

0
0
*

O ¥ ¥
* O ¥
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Classical metrics, continued

In the case M = ¢2(X), our quantum axioms correspond well with
the axioms of a classical metric space:

dx,y)=0iff x=y — M =V
d(x,y) = d(y,x) = Ve=V;
d(X’Z) S d(X7y) + d(y,Z) — stt g Vs+t-
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Classical metrics, continued

In the case M = ¢2(X), our quantum axioms correspond well with
the axioms of a classical metric space:

dx,y)=0iff x=y — M =V,
d(x,y) = d(y,x) = Ve=V¢
d(X7Z) S d(X>y) + d(y,Z) — VSVt g Vs+t~

The only discrepancy is that we allow infinite displacements. This
is because the displacement is a supremum, for example:

ac L(3(zZ)) a[f](n) = f(n?) d(a) = oc.

Besides, we can allow d(x,y) = oo classically.
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Second motivation: The double commutant theorem

Another alignment: Passing to a subalgebra N/ C M generalizes
the quotient operation X — X/ ~ induced by a pseudometric.
o If M = (>(X), then every subalgebra is N' = £>°(X/ ~).
o If d is a pseudometric on X, we can define a filtration on
L(¢?(X)) as usual. Then Vo = N, where N = (>(X/ ~)
and x ~ y when d(x,y) = 0.
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Second motivation: The double commutant theorem

Another alignment: Passing to a subalgebra N/ C M generalizes
the quotient operation X — X/ ~ induced by a pseudometric.
o If M = (>(X), then every subalgebra is N' = £>°(X/ ~).
o If d is a pseudometric on X, we can define a filtration on
L(¢?(X)) as usual. Then Vo = N, where N = (>(X/ ~)
and x ~ y when d(x,y) = 0.
e In general a quantum pseudometric on M is one with
Vo 2 M’ and is viewed as a metric on N/ = Vj C M.
e A quantum metric on any M C L(#H) is, first, a quantum
pseudometric on L(H).
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Third motivation: Quantum error correction
(My motivation)

In quantum computation, there is an essential theory of quantum
error correction.

o Take M = L(H), with dimH < co. Usually
L(H) = Mp(C)®", meaning “a register with n qubits”.
e The errors (to be corrected or detected) are an operator
system & C L(H). An E-detecting code is a subspace
Hc € H such that pap = e(a)p for a € €. Here pis
projection onto H¢ and € : £ — C is a slope.
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Third motivation: Quantum error correction
(My motivation)

In quantum computation, there is an essential theory of quantum
error correction.

o Take M = L(H), with dimH < co. Usually
L(H) = Mp(C)®", meaning “a register with n qubits”.

e The errors (to be corrected or detected) are an operator
system & C L(H). An E-detecting code is a subspace
Hc € H such that pap = e(a)p for a € €. Here pis
projection onto H¢ and € : £ — C is a slope.

e We generalize this to all M C L(H) by letting p € M be a
self-adjoint idempotent and pap = e(a)p, with € : £ — M.

e This is a mutual generalization with classical error detection,
in the sense of independent sets in graphs.
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Quantum error correction (continued)

Given a quantum code p € M C L(H) with pap = e(a)p for
a € &, we could take & = V; for a quantum metric on M. Then p
is a quantum minimum distance code.

e An example: There is a trivial quantum metric
d: Mp(C) — {0,1} with d(A) =0 iff Aoc /. Then
(My(C), d)®" is quantum Hamming space. (Despite the use
of quantum Hamming space from the beginning, a general
definition of quantum metrics was overlooked!)
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Quantum error correction (continued)

Given a quantum code p € M C L(H) with pap = e(a)p for
a € &, we could take & = V; for a quantum metric on M. Then p
is a quantum minimum distance code.

e An example: There is a trivial quantum metric
d: My(C) — {0,1} with d(A) =0 iff Ao /. Then
(My(C), d)®" is quantum Hamming space. (Despite the use
of quantum Hamming space from the beginning, a general
definition of quantum metrics was overlooked!)

e More examples: Every quantum metric on a qubit M»(C) is
given by d(X), d(Y), and d(Z), up to conjugation, where X,
Y, and Z are the Pauli spin matrices. Also
d(X) <d(Y)+d(Z), etc. A metric qubit is like a classical
triangle.
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Fourth motivation: Measurable metric spaces

(Nik's motivation)

Weaver [J. Funct. An., 1996] defined measurable metric spaces.
Given an abstract o-algebra ¥, one defines a distance function
d(a, b) for booleans a, b € . The distance function satisfies some
delicate axioms. Measurable metric spaces have various favorable
properties.
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Fourth motivation: Measurable metric spaces

(Nik's motivation)

Weaver [J. Funct. An., 1996] defined measurable metric spaces.
Given an abstract o-algebra ¥, one defines a distance function
d(a, b) for booleans a, b € . The distance function satisfies some
delicate axioms. Measurable metric spaces have various favorable
properties.

Happily, the axioms can be made less delicate. A measurable
metric space is exactly a quantum metric on M = L*°(X), if this is
a von Neumann algebra.
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Quantum graphs, posets, uniform spaces, ...

Suppose that M C L(H) and € C L(H) is an M’-bimodule, a
quantum relation.

e If £ is an operator system, then (M, ) is a quantum graph.
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Quantum graphs, posets, uniform spaces, ...

Suppose that M C L(H) and € C L(H) is an M’-bimodule, a
quantum relation.
e If £ is an operator system, then (M, ) is a quantum graph.

o If £ is an algebra with ENE* = M/, then (M, €) is a
quantum poset.



The definition Four motivations Variations C™-algebras Loose ends
[o]e] 000000 @00 (e]e) [e]e]e}

Quantum graphs, posets, uniform spaces, ...

Suppose that M C L(H) and € C L(H) is an M’-bimodule, a
quantum relation.
e If £ is an operator system, then (M, ) is a quantum graph.
o If £ is an algebra with ENE* = M/, then (M, €) is a
quantum poset.

e If {E} is a family of quantum graphs satisfying the
Weil-Bourbaki axioms, then each £ is a quantum entourage
and (M, {€}) is a quantum uniform space.
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Quantum graph theory

Theorem

If a graph I has valence v and n vertices, then the independence
number o) > [n/(v + 1)].

We can define the valence of a quantum graph (M, &) as

v =r — 1, where r is the rank of £ as a left M’-module.
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Quantum graph theory

Theorem
If a graph I has valence v and n vertices, then the independence
number o) > [n/(v + 1)].

We can define the valence of a quantum graph (M, &) as
v =r — 1, where r is the rank of £ as a left M’-module.

Theorem (Knill-Laflamme-Viola [1999])
IfT = (Myn(C), &) is a finite, purely quantum graph, then

of) = Hﬂ v—li-l—‘ '

The quantum independence number is exactly the maximal
M’-rank of a quantum code. The proof uses Tverberg's theorem
from convex geometry.

Loose ends
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Quantum graphs (continued)

Theorem
If T is a graph with valence v, then the chromatic number
x(MN <v+1.

But here there is a surprise...
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Quantum graphs (continued)

Theorem
If T is a graph with valence v, then the chromatic number
x(MN <v+1.

But here there is a surprise...

Theorem (Steven Lu)

There exists a quantum graph T = (M,(C), £) with valence one,
and with

x(T) = [logy(n)].

Here a quantum coloring is a homomorphism f : £?(S) — M,
where S is a set of colors and each f(s) is a quantum code.
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Topologies from metrics

o Rieffel begins with a C*-algebra A and considers compatible
quantum metrics in his sense. This is fine, but backwards
relative to undergraduate analysis.

e Traditionally, a set X is a canvas, a metric d(x,y) is a
painting on the canvas, and the topology 7 induced by d is
the painting's impression.
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Topologies from metrics

o Rieffel begins with a C*-algebra A and considers compatible
quantum metrics in his sense. This is fine, but backwards
relative to undergraduate analysis.

e Traditionally, a set X is a canvas, a metric d(x,y) is a
painting on the canvas, and the topology 7 induced by d is
the painting's impression.

e A quantum topology on M is a weakly dense C*-subalgebra
A C M, an algebra of bounded, “continuous” elements. If
M = (>2(X), then A C M comes from a topology on X with
a compactification.

e If M =/¢°°(X) and X has a metric d, then there a C*-algebra
A of bounded, uniformly continuous functions. We want a
quantum version of this.
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The continuous C* algebra

Given M C L(H) and {V:}, an element a € £(H) is commutation
uniform if for every € > 0, there exists a § > 0, such that

xeVs = |llxa]ll <ellx]].

Let A be the set of commutation-uniform a.
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The continuous C* algebra

Given M C L(H) and {V:}, an element a € £(H) is commutation
uniform if for every € > 0, there exists a § > 0, such that

xeVs = |llxa]ll <ellx]].

Let A be the set of commutation-uniform a.

Theorem
A is a C*-subalgebra of M and is weak-* dense.

The construction generalizes to quantum uniformities.
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xeVs = |llxa]ll <ellx]].

Let A be the set of commutation-uniform a.

Theorem
A is a C*-subalgebra of M and is weak-* dense.

The construction generalizes to quantum uniformities.

Example: Rieffel tori.
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The continuous C* algebra

Given M C L(H) and {V:}, an element a € £(H) is commutation
uniform if for every € > 0, there exists a § > 0, such that

xeVs = |llxa]ll <ellx]].

Let A be the set of commutation-uniform a.

Theorem
A is a C*-subalgebra of M and is weak-* dense.

The construction generalizes to quantum uniformities.

Example: Rieffel tori.
One can also make a Lipschitz algebra by taking § o e.

Four motivations Variations C*-algebras Loose ends
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Tropicalization

e The tropicalization of the semiring R is the limit

log(exp(ta) + exp(tb))/t — max(a, b)
log(exp(ta) exp(th))/t> — a+ b

as t — 0o. This limit is recently important in algebraic

geometry...

Loose ends
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Tropicalization

The tropicalization of the semiring R is the limit

log(exp(ta) + exp(tb))/t — max(a, b)
log(exp(ta) exp(th))/t> — a+ b

as t — 0o. This limit is recently important in algebraic
geometry...

And was always important in error correction. Minimum
distance is the tropicalization of error likelihood:

[exp(—t|[x[[*) < exp(—t)] — [lIx|| > 1].

The heat equation or Brownian motion on a manifold also
tropicalizes to minimum distance.

Loose ends
@00



The definition Four motivations Variations

Rigidity
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metrics are “soft”. Our definition is “tropical”.

Loose ends
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Rigidity
e Von Neumann quantum metrics are “rigid” while Rieffel
metrics are “soft”. Our definition is “tropical”.

e Our definition is clearly correct for quantum error correction.
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Rigidity
Von Neumann quantum metrics are “rigid” while Rieffel
metrics are “soft”. Our definition is “tropical”.
Our definition is clearly correct for quantum error correction.

Rieffel obtains Gromov-Hausdorff convergence
[SO(3) = Map1(C)] — C(S?).

We do not know whether our quantum metrics can do this.

Unf. we have two definitions of Gromov-Hausdorff limits.
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Rigidity

Von Neumann quantum metrics are “rigid” while Rieffel
metrics are “soft”. Our definition is “tropical”.

Our definition is clearly correct for quantum error correction.

Rieffel obtains Gromov-Hausdorff convergence
[SO(3) = Map1(C)] — C(S?).

We do not know whether our quantum metrics can do this.
Unf. we have two definitions of Gromov-Hausdorff limits.

A natural map like this also seems possible:

{Von Neumann quantum metrics}

— {Rieffel quantum metrics}.

What is the quality of this correspondence?
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A factory for C*-algebras

e The single most important use of classical metrics is to
construct topological spaces.

e Von Neumann quantum metrics are a way to construct
C*-algebras from Von Neumann algebras. Is this a useful
source of C*-algebras?
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