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Localization

“Nearsigthedness” and off-diagonal decay

Communications channels in digital and wireless communication

Correlation matrices in statistics

Approximate diagonalization of pseudodifferential operators

Physics, i.e. the Anderson model

Density matrices in quantum chemistry

Tim Wertz Localization of Matrix Factorizations



Localization

“Nearsigthedness” and off-diagonal decay

Communications channels in digital and wireless communication

Correlation matrices in statistics

Approximate diagonalization of pseudodifferential operators

Physics, i.e. the Anderson model

Density matrices in quantum chemistry

Tim Wertz Localization of Matrix Factorizations



Localization

“Nearsigthedness” and off-diagonal decay

Communications channels in digital and wireless communication

Correlation matrices in statistics

Approximate diagonalization of pseudodifferential operators

Physics, i.e. the Anderson model

Density matrices in quantum chemistry

Tim Wertz Localization of Matrix Factorizations



Localization

“Nearsigthedness” and off-diagonal decay

Communications channels in digital and wireless communication

Correlation matrices in statistics

Approximate diagonalization of pseudodifferential operators

Physics, i.e. the Anderson model

Density matrices in quantum chemistry

Tim Wertz Localization of Matrix Factorizations



Localization

“Nearsigthedness” and off-diagonal decay

Communications channels in digital and wireless communication

Correlation matrices in statistics

Approximate diagonalization of pseudodifferential operators

Physics, i.e. the Anderson model

Density matrices in quantum chemistry

Tim Wertz Localization of Matrix Factorizations



Localization

“Nearsigthedness” and off-diagonal decay

Communications channels in digital and wireless communication

Correlation matrices in statistics

Approximate diagonalization of pseudodifferential operators

Physics, i.e. the Anderson model

Density matrices in quantum chemistry

Tim Wertz Localization of Matrix Factorizations



Localization

“Nearsigthedness” and off-diagonal decay

Communications channels in digital and wireless communication

Correlation matrices in statistics

Approximate diagonalization of pseudodifferential operators

Physics, i.e. the Anderson model

Density matrices in quantum chemistry

Tim Wertz Localization of Matrix Factorizations



Wiener’s Lemma

Definition

We denote by A (T) the Banach algebra of functions with absolutely
convergent Fourier series endowed with the norm

‖f ‖A = ‖{ak}‖`1 =
∑
k∈Z
|ak |.

Theorem (Wiener’s Lemma, 1932)

If f ∈ A (T) and f (t) 6= 0 for all t ∈ T, then 1/f ∈ A (T).
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Wiener’s Lemma and Matrices

Let f =
∑
k∈Z

ake ikt ∈ A (T).

Construct a matrix Af = (ajk) by setting ajk = aj−k .

If |f (t)| ≥ δ > 0, then 1/f ∈ A (Wiener’s Lemma).

(Af )−1 = A1/f .

{ak} ∈ `1 means that Af satisfies some off-diagonal decay condition.
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Inverse-closedness

Definition

Let A ⊂ B be two Banach algebras with common identity. We say that
A is inverse-closed in B if

a ∈ A and a−1 ∈ B =⇒ a−1 ∈ A .

Inverse-closedness is also known as: A is a spectral/local/full subalgebra
of B, A is invariant under the holomorphic calculus in B, spectral
invariance.

Theorem (Wiener’s Lemma)

The Banach algebra of functions with absolutely convergent Fourier series,
A (T) is inverse closed in the Banach algebra of continuous functions
C (T).
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Decay Algebras

M = (mjk), j , k ∈ Z,mjk ∈ C.

Bb := {M : for some n ∈ N,mjk = 0 when |j − k | > n}.

Bc := Bb w.r.t. ‖ ‖op.
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Decay Algebras, cont.

Av :=
{
M : |mjk | ≤ Cv−1(j − k)

}
.

A 1
v :=

{
M : sup

j∈Z

∑
k∈Z
|mjk |v(j − k) , sup

k∈Z

∑
j∈Z
|mjk |v(j − k) <∞

}

Cv :=

{
M :

∑
j∈Z

supk∈Z |mk,k−j |v(j) <∞

}
.
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Some Algebraic Properties

Definition

Let A be a Banach algebra of matrices and let L and L ∗
0 = A \L be

the sub-algebras of lower- and strictly-upper-triangular matrices,
respectively. Then, we say that A is strongly decomposable if there exists
a bounded projection P which maps A onto L parallel to L ∗

0 . Let
Q = I − P.

Definition

An invertible matrix A ∈ A admits a canonical factorization in A if
A = LU where L, L−1 ∈ L and U,U−1 ∈ L ∗.
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Abstract Harmonic Analysis

Definition (Fourier Series of an Operator)

1 M(θ) : T→ `2(Z) given by M(θ)x(n) = θnx(n).

2 fA(θ) := M(θ)AM(θ−1).

3 fA(θ) ∼
∑
k

θkAk .

Remark
1 A ∈ Bc if and only if fA is continuous.

2 A ∈ L ∩Bc if and only if fA has a holomorphic extension to D which
is continuous in D.

3 A ∈ L ∗ ∩Bc if and only if fA has a bounded holomorphic extension
outside of D which is continuous in C \ D.
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Two useful results

Theorem (Baskakov, Krishtal, 2005)

Let A ∈ L ∩Bc . Then A−1 ∈ L if and only if fA(z) is invertible for all
z ∈ D.

Lemma (Gohberg, Laiterer, 1972)

Let A ⊂ Ac ⊂ B(`2) be a strongly decomposable inverse-closed
sub-algebra that satisfies ‖A‖B(`2) ≤ C‖A‖A . Then, if ‖A− I‖B(`2) < 1,
A admits a canonical factorization A = LU in A such that

L−1 = I− PV + P[VPV]− P[VP[VPV]] + . . . , (1)

U−1 = I−QV +Q[[QV]V]−Q[Q[[QV]V]V] + . . . , (2)

where V = A− I and the series converge in A .
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Main Result

Theorem (Krishtal, Strohmer, W., 2013)

Let A ⊂ Bc ⊂ B(`2) be an strongly decomposable inverse-closed
sub-algebra that satisfies

‖A‖B(`2) ≤ C‖A‖A .

Then, if A admits a canonical factorization A = LU in Bc , we have
L,U ∈ A .
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Idea of the proof

1 Define the holomorphic extensions

fL(z) =
∑
k

zkLk , z ∈ D and fU(z) =
∑
k

zkUk , z ∈ C \ D.

2 Choose ε ∈ (0, 1) such that ‖[fL(ε)]−1LU[fU(1/ε)]−1 − I‖B(`2) < 1.

3 Then A′ = [fL(ε)]−1LU[fU(1/ε)]−1 = L′U′.

4 So (L′)−1[fL(ε)]−1L = D = U′fU(1/ε)U−1.
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Corollaries

Corollary

Suppose A ∈ A admits a Cholesky factorization A = C∗C. Then,
C,C∗ ∈ A .

Any two LU factorizations differ by an invertible diagonal matrix.

Corollary

Suppose that A ∈ A admits a QR factorization A = QR. Then
Q,R ∈ A .

Consider A∗A = R∗Q∗QR = R∗R and apply the previous corollary.
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Next steps

Eigenvector localization

More general decay patterns
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Thanks!
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