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1 Introduction

The theory of Gromov hyperbolic spaces, introduced by M. Gromov in the eighties, has been
considered in the books [CDP], [GdH], [Sh], [Bow], [BH], [BBI], [Ro] and in several papers,
but it is often assumed that the spaces are geodesic and usually also proper (closed bounded sets
are compact). A notable exception is the paper [BS] of M. Bonk and O. Schramm. The purpose
of the present article is to give a fairly detailed treatment of the basic theory of more general
hyperbolic spaces. However, we often (but not always) assume that the spagasg, which
means that the distance between two points is always equal to the infimum of the lengths of all
arcs joining these points.

We do not assume that the reader has any previous knowledge on hyperbolic spaces.

*MSC 2000 Subject Classification: 53C23



A motivation for this article was my work [&5], where | generalize some results of M.
Bonk, J. Heinonen and P. Koskela [BHK] for domains in Banach spaces with the quasi-
hyperbolic metric. These metric spaces are intrinsic, but they need not be geodesic, and they
are proper only in the finite-dimensional case.

The main idea in this article is that geodesics are replaceddiyort arcs An arc a with
endpointse andy is h-short withh > 0 if its length [(«) is at mostjz — y| + h. Geodesic
rays to a boundary point will be replaced by certain sequencésshibrt arcs, calledoads
and geodesic lines between boundary points will be replaced by another kind of arc sequences,
calledbiroads

Alternatively, we could sometimes make use of the result of Bonk and Schramm [BS, 4.1]
stating that every-hyperbolic metric space can be isometrically embedded iatbyperbolic
geodesic space. The proof of this embedding theorem involves transfinite induction, and | have
preferred direct and more elementary proofs.

Some results and proofs are rather obvious modifications of the classical case where the
space is geodesic and proper. Presumably, a part of the theory belongs to the folklore. On the
other hand, some concepts are genuinely more complicated than in the classical case. For ex-
ample, the center of al-short triangle consists of three arcs and not of three points, and the
roads and biroads mentioned abover are clumsier than geodesic rays and lines.

Certain ideas of the paper seem to be new also in the classical case. In 3.12 we give a simple
converse of the stability theorem. (A stronger result with a harder proof has been given by Bonk
[Bo].) In Section 5 we consider a functie) . (wherep € X ande > 0), not only as a metric
of the Gromov boundary X but as a “metametric” of the Gromov closuk& = X U 0.X of a
hyperbolic spaceX; thend,.(z,z) > 0 for z € X. This enables us to extend each quasi-iso-
metry f: X — Y between hyperbolic spaces to mafis X* — Y* that are quasibius rel
0X, notonly in0X.

Hyperbolic spaces play an important role in group theory, but connections with group theory
are not considered in this article. See [KB] for a recent survey.

Acknowledgement thank Juha Heinonen for calling my attention to this area and for en-
couragement.

2 Hyperbolic spaces

2.1. Summaryl start each section with a brief summary. In Section 2 we give the definition
and the basic properties of hyperbolic spaces. The definition is given in terms of the Gromov
product. An alternative characterization for intrinsic hyperbolic spaces in terms of slim triangles
is also given.

2.2. Notation and terminologyy aspacewe mean a metric space. The distance between points
x andy is usually written asx — y|. An arc in a spaceX is a subset homeomorphic to a real
interval. Unless otherwise stated, this interval is assumed to be closed. Then the arc is compact
and has two endpoints. We write = ~ y if a is an arc with endpoints andy. If needed, this
notation also gives an orientation farfrom x to y. Occasionally, we consider a singleton}
asanarev: r n .

A spaceX isintrinsic if

|z —y| = nf{l(e)] oz = ~ y},
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for all x,y € X. Intrinsic spaces are often calléshgth space®r path-metric spaces the
literature.
Leth > 0. We say that an are: = ~ y is h-shortif

la) < |z —y[+h

Thusa is a geodesic iff it is 0-short. We see thtis intrinsic iff for each pairz, y € X and
for eachh > 0 there is arh-short arcx: © ~ y.

The basic notation is fairly standard. We RtandN denote the sets of real numbers and
positive integers, respectively. Balls and spheres are written as

Bla,r) ={z: |v —a| <7}, Bla,7) ={z: |z —a|] <7},
S(a,r)={z: |z —a| =1}

More generally, it # A C X, we set
B(A,r)={zr e X :d(z,A) <r}.

The distance between nonempty sétsl’ C X isd(A, A’), and the diameter of a setis
d(A). TheHausdorff distancéetweend and A’ is defined by

dy(A, A =1inf {r: A’ € B(A,r), Ac B(A,r)}.

For an aray, we leta|u, v] denote the closed subarc@between points, v € «, and for half
open subarcs we writg[u, v) = afu, v]\{v}. For real numbers, t we setsAt = min{s, t}, sV
t = max{s, t}. To simplify notation we often omit parentheses writifig = f(x) etc.

2.3. ConventionThroughout the article, we lef denote a metric space.
2.4. Lemma.Every subarc of ah-short arc ish-short.
Proof. Suppose that:: = ~ y is h-short and that, v € o with u € afz, v]. Then
2=l + (afu,o]) + o =yl < Ua) x|+
< |z —u[+[u—v|l+v—y[+h,
which yieldsl(a[u, v]) < |u —v| + h. O

2.5. RemarkAssume thatv: x ~ yis anh-short arc of lengthl, = [(«), and letp: [0, L] — «
be its arclength parametrization. Then

s =t] = h <lp(s) = ()] < |s =]

for all s,¢ € [0, L]. Thus the arclength parametrization of/asshort arc is ark-rough geodesic
in the sense of Bonk and Schramm [BS]. The converse is not true, becalisewagh geodesic
is defined byjs — t| — h < |¢(s) — ¢(t)| < |s —t| + h, and it need not even be continuous.

2.6. Arcs or paths?t is usually possible to work alternatively with arcs or paths (maps of
an interval). Whenever possible, | prefer arcs because of shorter notation. However, paths are
unavoidable when studying quasi-isometries, which need not be continuous or injective.
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2.7. The Gromov productorz,y, p € X we define th&Gromov produc{z|y), by

2(|y)p = |z —pl+ |y —p| — |z — ¥yl

A geometric interpretation of the Gromov product is obtained by mapping the triplep)
isometrically onto a tripléz’, 3/, p’) in the euclidean plane. The circle inscribed to the triangle
7'y'p’ meets the sidely’, '] and[p’, ¢/] at pointsz* andy*, respectively, and we have|y), =
2" —pl=y" —pl.

A useful property of the Gromov product is that in hyperbolic spaces, it is roughly equal to
the distance betweegnand anh-short arc: x ~ y; see 2.33.

We next give some elementary properties of the Gromov product.

2) |z =yl = (2[2)y + (y|2)a-

2.8. Lemma.(1) (z|y), = (y|x),, (z|ly)y = (z|y)s =
|2

0 < (zly), <|z—p|Aly—p|
1)l < Ip—ql.
[(z|y)p — (z]2),] < |y — 2|
i

(

(3) p
(4) [(zly)p — (=
() (x
(6) If a: p ~ yis h-short and ifr € «, then

|z —pl = h/2 < (zly)p <[z —pl

Proof. (1) is trivial, and (2) follows by direct computation. The first inequality of (3) is the
triangle inequality. Furthermore,

2(zly)p < |z —pl+ 1y —pl = (lz = p|l = |y = p|) = 2|z = p,
and similarly2(x|y), < 2|y — p|, so (3) is true. The proof of (4) is equally easy:
2|(z[y)p — (@|y)gl = |l = pl = |z —al + 1y —pl = |y —al| <2lp —ql,

and also (5) follows from the triangle inequality.
The second inequality of (6) follows from (3). Sinaeés h-short, we havép — x|+ |z —y| <
[(a) < |p —y| + h, which implies the first inequality of (6).]

2.9. Lemma.Suppose that: y ~ z is h-short and thatr € X. Then(y|z), < d(z,a) + h/2.
In particular, (y|z), < h/2forall p € a.

Proof.Letp € a. Since|z — p| + |y — p| < () < |y — z| + h, the triangle inequality gives
20 —pl =]z — 2| = [z —pl+|x =yl =y —pl = 2(yl2). —
and the lemma follows.]
2.10. Definition.Let 6 > 0. A spaceX is (Gromov)d-hyperbolicif
(2.11) (x[2)p = (@|y)p A (yl2)p —

forall z,y,z,p € X. A space isGromov hyperbolior briefly hyperbolicif it is §-hyperbolic
for somes > 0.



Alternatively, the definition can be written as
(2.12) lz—z[+ly—pl < (o —yl+ ]z =pl) V(I —pl + |y — 2]) + 2.
A third formulation of (2.11) is given in (4.6). We shall occasionally make use of the inequality
(2.13) (zfu)p = (x]y)p A (yl2)p A (2]u)p — 26,
which is obtained by iterating (2.11).

2.14. Examples.The real line is0-hyperbolic. A classical example of a hyperbolic space is
the Poincag half spacer,, > 0 in R" with the hyperbolic metric defined by the element of
length|dz|/z,. This space ig-hyperbolic withé = log 3 [CDP, 4.3]. More generally, uniform
domains with the quasihyperbolic metric are hyperbolic; see [BHK, 1.11] for domaiR8 in
and [Va5] for arbitrary Banach spaces.

Every bounded space is trivially hyperbolic, but only unbounded hyperbolic spaces are in-
teresting.

In the rest of this section we studyshort arcs in hyperbolic spaces. The following useful
result is usually (forh = 0) mentioned together with the so-called tripod map; see [GdH, pp.
38,41]. However, tripods are not needed in this article.

2.15. Tripod lemma. Suppose that,;: a ~ b;, i = 1,2, are h-short arcs in aj-hyperbolic
space. Letr; € «; be a point with|z; — a| < (b1|bs),, and letz,, x, € ay be points with
|z — a| = |z — a| andi(as[a, 24]) = l(ay[a, z1]). Then

w1 — wo| <46+ h, |z —xy] < 46+ 2h.
Proof. Sett = |z; — a| = |z — a|. By 2.8(6) we havéx;|b;), >t — h/2. Hence
t— |.T1 - $2|/2 = ($1|I2)a Z (x1|bl)a VAN (b1|b2)a VAN (b2|$2)a — 26 2 t— h/2 - 25,

which implies the first inequality.
Let/; denote the length metric of;, i = 1,2, that is,/;(u, v) = I(o[u, v]). We have

w2 — @3] < la(2,25) = |la(a, 22) — lo(a, 25)| = [lo(a, 22) — li(a, 21)].

Sincet < [;(a,x;) < t+ hfori = 1,2, we obtain|zy, — x4| < h, and the second inequality
follows. [

2.16. Length mapsSuppose that andg are rectifiable arcs witH«) < I(5). Amapf: a —
is alength mapf

[(falu, v]) = l(afu, v])

forall u,v € a.

Suppose that,, as: a ~ bareh-short arcs in @a-hyperbolic space with common endpoints
and that (o) < l(a2). Let f: a; — a9 be the length map fixing. Then|fz — z| < 46 + 2h
for all z € «; by the tripod lemma 2.15. The following two lemmas give related results for
somewhat more general situations.



2.17. Ribbon lemmalet X be an intrinsici-hyperbolic space, let;: a; ~ b; be h-short arcs
in X,i=1,2,letl(a;) < (), a1 — az| < p, d(by,an) < u, and letf: a; — s be the
length map withfa; = as. Then|fx — 2| < 85 + 5u + Shforall x € «;.

Proof. Let again/; denote the length metric af;, i = 1,2. Choose a poiny € a, with
b1 —y| < p. Then

ZQ(yv fbl) < |l2(a2,y) - 12(a27fb1)| = |l2(a27y) - ll(alablﬂ
<las —y| — |ar — by|| + h < 2u+ h.

Letz € oy and sets = ly(ay,x), L =1(aq). If s > L — p— h, thenly(fx, fby) = l1(z,b1) <
w~+ hand

[fo — ] < |fz— for] +[fbr —y[ + |y — b + |b1 — 2]
<(u+h)+Q2u+h)+p+ (n+h) =51+ 3h.

Assume that < L — i — h. Choose ar-short arcag: a1 ~ y. Since
jar —y[ 2 Jar —bi| = [y —bi| = L—h—p=>s,
there is a point, € ag with ly(aq, x¢) = s wherel, is the length metric ofy,. We have
2(01Yy)a, = lar — b1 +|ar —y| = b1 —y| > L —h+s—pu> 2s.

Hence|x — x| < 49 + 2h by 2.15. Set = I(«) — s = lo(y, o). If t > |aa — y| — p, then
s =I(a) =t <las —y|+h—laz —y| + p < 2p+ hand

|fz — x| < [fr —as| + |az — ar| + a1 — x| < 25 4+ p < 5p+ 2h.
Assume that < |a; — y| — p. There is a poink, € as[as, y| with Iy(x2, y) = t. We have
2(afaz)y = lar — y| + laz — y| — |ar — az| = 2[az — y| —2p = 2¢,
whence|xy — 25| < 45 + 2h by 2.15. Hence

|fr — | < |for — 2| + |22 — 20| + |70 — 27|
<|s+t—Ils(as,y)| + (40 + 2h) + (46 + 2h).

Here
s+t — la(az, y)| = i) — la(ag, y)| < |lar —y| —|aa —yl| + h < p+h,
and we obtain the desired estimafe — x| < 80 + p + 5h. O

2.18. Second ribbon lemmalet X be an intrinsici-hyperbolic space and let;: a; ~ b; be
h-short arcs inX, i = 1,2, with |a; — as| < p, |by — by| < u. Then the Hausdorff distance
dy(aq, ) is at mosd + 5y + 5h.



Proof.Letz € a;. We must find a poing € a, with |z—y| < 85+5u+5h. If [(aq) < (),
this is given by 2.17. Assume thHt,) < I(aq) and letf: a; — oy be the length map with
fas = ay. If x € fas, we may choosg = f~'x by 2.17. Assume that € «;[fbs, b;] and let
[; denote the length metric of;. We have

|z —b1| < Li(fb2,b1) = li(ar,b1) — li(ay, fbs)
= ll(al,bl) — lz(@g,bg) S |CL1 - b1’ + h — ’CLQ - b2| S 2/L+ h.

Hence|x — bs| < 3u + h, and we may choosg= b,. O

2.19. Lemma.Leto;: p ~ a;, i = 1,2, beh-short arcs in a-hyperbolic space, lef > 0 and
lety; € o, be points withp — y;| > (a1]az), — ¢. Then

(1ly2)p = (a1]ag)p| < 66 + g + 3h.

Proof. We write (z|y) = (z|y), for x,y € X. Sett = (ai|az). Since|p — y;| — h/2 <
(yila;) < |p — ;| by 2.8(6), we obtain

(y1ly2) > (y1]ar) A (ai]az) A (azlys) — 20
>|lw—wm|AtA|p—ya| —h/2—-20>t—25 —q— h/2.

It remains to show that
(2.20) (y1ly2) <t + 65 + g+ 3h.
We have

t > (arfyr) A (yily2) A (y2]az) — 20

>
> p =y A (ly2) Alp —y2| — h/2 = 26.

We may assume thgi — y1| < [p—va|. If [p—y1| > t+h/2+20, then(y,|y2) < t+h/2+ 20,
and (2.20) holds. Assume thiat— y;| < ¢+ h/2 + 24. Let z; € «; be points with|p — z;| = ¢.
Sinceq; is h-short, we obtain

i — 21| < |lp—w| —t| +h < (h/2+20)V g+ h <20+ q+ 2h.

AS |21 — 29| < 40 + h by 2.15, we havéy; — 23| < 66 + ¢ + 3h, whence(y;|y2) < (22|y2) +
60 + q + 3h < |p — 2| + 6 + ¢ + 3h, and (2.20) follows]

2.21. Triangles.By atrianglein X we mean a triple ofarcs: b ~ ¢, B:a ~c, v: a ~ b.
The pointsa, b, ¢ are theverticesand the arcs, 3, v are thesidesof the triangleA = («, 5, 7).
A triangle ish-shortif each side isi-short. We set

re = (b|¢)a, Tp = (alc)p, Te = (a|b)e, |Al=aUBU7Y.
From 2.8(2) we get

(2.22) la—bl=r,+m, la—c|l=rs+71 |[b—c|=1y+re.

7



Let a, and b, be the points ofy such that setting,, = v[a,a,] andy, = ~[b,,b] we
havel(v,) = r, andi(y,) = r,. Then~ is the union of successive subargs~*,~, where
v* = vla,, b,] is called thecenter of the side in the triangleA. The arcy* may degenerate to
a point; this happens iff is a geodesic. We say that the subdivision

Y ="%Yr U

is the subdivision ofy induced by the trianglé\ (or by the pointc). The sidesy and § are
divided similarly. Thecenter of the triangle\ is the set

Z(A)=a"UpB" Uy
Observe that for each vertexof A we have
(2.23) AN S(v,r,) C Z(A).

2.24. Lemma.Suppose thak is -hyperbolic and that\ is anh-short triangle inX. Then
(1) I(7*) < h for each sider of A,
(2) d(Z(A)) < 46 + 4h.

Proof.Let A be asin 2.21. By (2.22) we get
ja— b +1(v*) = 1o +1(y) + 15 = 1(y) < a— b + h,

which implies (1). Furthermorgqs — a,| < 40 + 2h by the tripod lemma 2.15, and (2) follows
from (1).O

2.25. Lemma.Suppose thad\ is anh-short triangle. Then:
(1) d(v, Z(A)) > r, — h for each vertex of A.
(2) If z € X and ifd(x, ) < t for each sider of A, thend(x, Z(A)) < 3t + h/2.

Proof. Let A be as in 2.21. We havé(a,7) > r, — h for 7 = 3,~. By 2.9 we have
d(a,a) > r, — h/2, and (1) follows.

To prove (2), choose a poigt € « with |z — y| < t. It suffices to show thad(y, a*) <
2t + h/2. We may assume thate «,. By 2.9 we obtain

ro < d(,8) +h/2 < |b—y[+ |y —a|+d(z,8) + h/2 < |b—y|+ 2t + h/2.

Moreover,
O

b—yl+ |y —ba| <l(e) = s, Wwhenced(y, a”) < |y — ba| < 2t + h/2 as desired.



2.26. Slim triangles and the Rips conditiobet § > 0. A triangle A in a spaceX is J-slim if
each side- of A is contained inB(|A]\ 7,0).

Let A be a family of arcs inX such that

() If « € A, then every subarc ef is in A.

(2) For eache,y € X, = # y, andh > 0 there is am-short membet: © ~ y of A.

Observe that (2) implies tha is intrinsic. For example, the family of all arcs in an intrinsic
space satisfies (1) and (2). In§¥] | consider the case where the space is a domain in a Banach
space with the quasihyperbolic metric aAds the family of allc-quasigeodesics with a fixed
C.

We say thatX is a (4, h, A)-Rips spacef every h-short triangle inX with sides inA is
d-slim. In the case wherd is the family of all arcs inX, we simply say thak is (J, 2)-Rips

2.27.Hyperbolicity and the Rips conditiod/e shall show that for intrinsic spaces, tlaeh, A)-
Rips condition is quantitatively equivalent éehyperbolicity. We formulate this in 2.34 and
2.35, but we remark that from 2.15 and 2.24 it easily follows that an intrifi$igperbolic
space i, h, A)-Rips witho’ = 46 + 2h for eachh andA, which is a slightly weaker result
than 2.35.

Indeed, letA = («, 3,v) be anh-short triangle and let € a: b ~ c. If |z — 0] < 7y, then
d(z,~) < 45+ h by the tripod lemma 2.15. Similarly — ¢| < r. implies thatd(z, 5) < 40+ h.
In the remaining case we havec o*, and theni(z,v) < d(ba, ) + l(a*) < 46 + 2h by 2.15
and 2.24.

As a by-product, the following proof gives Lemma 2.33, which will be very useful in appli-
cations.

2.28. Lemma.Suppose thaX is (¢, h, A)-Rips and thaty, 3: = ~ y are h-short members of
A. Thena C B(3,4).

Proof. This follows from the definition by dividing into two subarcd]

We introduce an auxiliary notion.
2.29. Definition. A spaceX hasproperty P(d, h, A) if
(alb)y A (ale)p < 6
whenever: b ~ cis h-short,a € A, a € X andp € a.

2.30. Lemma.A §-hyperbolic space has properfy(§ + h/2,h,A) for everyh > 0 and for
everyA.

Proof. With the notation of 2.29 we have
(alb)y A (alc), < (ble), + 0.
Here(b|c), < h/2 by 2.9, and the lemma follows]
2.31. Lemma.A (0, h, A)-Rips space has properi9(6 + h/2, h,A).



Proof. With the notation of 2.29, choogeshort memberg: a ~ candy: a ~ b of A. By
the Rips condition, there is a poipte 5U~ with |¢ — p| < 6. We may assume thate 3. Then

la—pl+lp—cf <l|la—q|+]qg—pl+Ip—ql+]¢g—¢
<U(B)+20 <l|a—c|+h+ 25,
whence(alc), <0+ h/2. 0

2.32. Lemma.Suppose thak' has propertyP (9, h, A) and thata: b ~ cis anh-short member
of A. Then
d(p, o) < (ble), + 26

for eachp € X.

Proof. The arca is the union of the closed sets= {z € «a: (p|b). < 0} andB = {p €
a: (ple), < 0}. Sinceb € A, ¢ € B and sincex is connected, there is a pointe AN B. Then

46 > 2(plb), +2(plc)y =20p —yl + b —y| +lc—y| —[p—b] —|p— ¢
> 2d(p,a) 4+ |b—c| = |p—b] = [p — ¢| = 2d(p, @) — 2(b|c),. O

Combining Lemmas 2.9, 2.30 and 2.32 we get the following useful result, which shows that
in a hyperbolic space, the Gromov prodicty), is roughly equal to the distanc&p, «) for
anyh-short arc: © ~ y.

2.33. Standard estimateSuppose thak is d-hyperbolic, thatp € X and thata: x ~ y is
h-short. Then
d(p,a) —20 — h < (z|y), < d(p,a) + h/2.

The second inequality is true in every spdce.

2.34. Theoremlf X is (4, h, A)-Rips, thenX is ¢’-hyperbolic withd’ = 35 + 3h/2.

Proof.Let a,b,c,p € X. Chooseh-short members:: b ~ ¢, 8:a ~ ¢,y:a ~ bof A.
Sincea C B( U~,d) by the Rips condition, we obtain by 2.9

(alc)p A (alb), < d(p, B) Nd(p,y) + /2 < d(p,a) + 6+ h/2.

SinceX has property?(6 + h/2, h, A) by 2.31, Lemma 2.32 give§p, o) < (b|c), + 26 + h.
Consequently,
(alc), A (alb), < (blc), + 30 + 3h/2,

and the theorem follow$.]

2.35. Theorem.If X is d-hyperbolic, thenX is (¢, h, A)-Rips withd’ = 36 + 3h/2 for each
h > 0 and for eachA.

Proof. Suppose that\ = («, 3,7) is anh-short triangle inX and letz € «. We must show
that

(2.36) d(z,3U~y) < 30+ 3h/2.
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Leta, b, c be the vertices oA as in 2.21. By 2.30, the spacé has propertyP(§ + h/2, h, A),
and hence 2.32 gives

d(z,v) < (a]b)y + 20 + h, d(z, ) < (a|c), + 25 + h.
Consequently,

d(z,fU~y) =d(z,[) Nd(z,y) < (alb); A (alc)z +25 + h
< (ble)z + 3 + h.

Since(b|c), < h/2 by 2.9, this yields (2.36)]

2.37.RemarkTheorems 2.34 and 2.35 show that the propedtiegperbolic andd, /, A)-Rips
are quantitatively equivalent. Moreover, the propdiyh, A)-Rips is quantitatively indepen-
dent of the familyA.

2.38. Notes.The classical versions of the results of Section 2 in geodesic spaces can be found
in most of the books mentioned in the introduction. In the geodesic case, the center of a side of
a triangle degenerates to one point, and thus the céift®j of a geodesic triangl& contains

at most three points.

3 Geodesic stability

3.1. SummaryWe study quasigeodesics and more general arcs and paths in an intrinsic hyper-

bolic space. We show that two such arcs or paths joining given poiatsib run close to each

other even ifa — 0| is large. This property of hyperbolic spaces is catieddesic stabilityWe

also show that conversely, this property implies that the space is hyperbolic. As applications

we show that a quasi-isometry between intrinsic spaces preserves hyperbolicity and study the
behavior of the Gromov product in a quasi-isometry.

3.2. TerminologyLet A > 1 andu > 0. We say that a map: X — Y between metric spaces
is a(A, p)-quasi-isometryf

(3.3) Ao =yl = p <|fo— fyl < Nz -yl +p

forall z,y € X. The mapf need not be continuous. In the case whérd — Y is a map of a
real intervall, we say that such a map i & u)-quasi-isometric path
These and related maps appear with various names in the literature. For example, [BS] calls
a map satisfying (3.3) is a rough quasi-isometry. In my earlier papers on the free quasiworld |
replaced the left side of (3.3) by !(|z — y| — 1) and called such mapscoarsely op-roughly
\-bilipschitz. My reason was that jf is bijective, thenf ! satisfies exactly the same condition.
For i = 0, (3.3) reduces to th&-bilipschitzcondition

AN e —y| < |fr — fy] < Mz —yl.

A bilipschitz map between metric spaces is always an embedding.
Anarca: a ~ bin aspaceX is a\-quasigeodesic\ > 1, if

l(afu,v]) < Au — v
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for all u,v € a. Then the arclength parametrizatipn [0, /()] — « satisfies the inequalities
AHs =t < eo(s) — (B < |s — 1],
and thusp is A-bilipschitz.

3.4. RemarkThe quasi-isometry condition (3.3) is often implied by seemingly different condi-
tions. For example, suppose tifatX — Y is a bijective map between intrinsic spaces such that
f and f~! are uniformly continuous. Thefiis a quasi-isometry. To see this, lety € X and
choose a number > 0 such that fu — fv| < 1 wheneven,v € X and|u —v| < ¢. Leth >0

and choose ah-shortarcy: © ~ y. Letk > 0 be the unique integer withy < [(v) < (k+1)q.
Choose successive points= x, ..., zx+1 = y such that(v[z,;_1,z;]) < ¢ for all j. Then
|fxj—1 — fz;| <1, whence

\fe—fyl <k+1<Il(v)/q+1<|z—yl/¢g+h/q+1.

As h — 0, we get|fz — fy| < | — y|/q + 1, which is the first inequality of (3.3). Treating
similarly the inverse mag—! we obtain the second part of (3.3).

More generally, the result holds for roughly quasiconvex spaces, which means that each pair
x,y can be joined by an argwith [() < ¢1]z — y| + co.

To prove the stability theorem 3.7 we need two lemmas. The first lemma is valid in every
metric space.

3.5. Lemma.Suppose thay: = ~ y is anh-short arc in a spaceX. Letr > 0, s > 0, and
suppose tha@ C X is a set such thafz,y} C @ C B(y,r) and such thatl(Q;,Q2) < s
whenever) = QU Qs, x € Q1, y € Q. Theny C B(Q,2r + s+ h).

Proof. Assume that the lemma is false. $et 2r 4+ s + h. There iss > 0 and a point € v
such thatd(z, Q) = t + 4e. Sincel(y[z, z]) > |x — z| > t + 4e, there isx; € ~v[x, z] with
[(y]x1, 2]) = t/2 + 2¢. Similarly, there iszy € [z, y] with [(y[z, z5]) = t/2 4 2¢. Set

V' =[x, 2], =z, 2], Y2 =y[we,y], U =B, r+¢),U; = B(y,r+¢),

i=1,2.
If U" meets(, there is a point’ € ~' with d(2', Q) < r + e. Sincer < t/2, we obtain the
contradiction

t+4de=d(z,Q)<r+4e+|z—2|<r+e+t/2+2 <t+ 3.

HenceQ NU' = @. AsQ C B(v,r), we thus have&) = Q, U Q, with Q; = Q N U;. From
the condition on) it follows that there are pointg € @, with |¢; — ¢2| < s + e. Furthermore,
there arey; € +; such thatly; — ¢;| < r + . Then|y; — y2| < 2r + s + 3¢, and we get the
contradiction

t+4e <1(y) <l(V[y,u2]) <lph — w2l +h<2r+s+3e+h=t+3c.0

12



3.6. Projection lemma. Suppose thak is an intrinsic (0, h)-Rips space. Let C X be an
h-short arc and letr1, x5 € X andy,, y» € v be points such that

(1) |x; — yi| = d(zi,y) > R>0fori=1,2,

(2) |£L'1 — ZL’2| < 2R — 46 — h.
Then|y; — ya| < 83 + 2h.

Proof. Pickyy € v[y1, y2] With |yo — y1| = |yo — y2|. Chooseh-short arcs3;: y; ~ x; and
a: x1 ~ 1o, Applying twice the Rips condition we obtaify,, y»] C B(3UaU s, 24). Hence
there isz € 51 U a U By with |z — o] < 20.

If z € a, then

R <d(zi,y) < lwi — 2| + ]2 = yol <o —2[+20
fori = 1,2, and we obtain
2R < |xy — z| + |xg — 2| + 40 < |z — 22| + h + 49,
which is a contradiction by (2). Thuse 3; U 35, and we may assume that ;. Then

|21 — 1| = d(21,7) < o1 — 2|+ |2 — yo| < |21 — 2| + 26,
|1 — 2|+ |z — | <UBL) < o — | + by

whencel|z — y;1| < 26 + h. Consequently,
ly1 — | < 20y — vo| < 2|yr — 2| + 2|z — yo| < 85 +2h. O

3.7. Stability theorem.Suppose thak’ is an intrinsicd-hyperbolic space and that: [a, b] —
X andy': [@/, V] — X are (), p)-quasi-isometric paths with(a) = ¢'(a) andp(b) = ¢'(b).
Thendy (im ¢, im ') < M(9, A, p).

Proof. Fix h > 0 and choose ah-short arcy: ¢(a) — ¢(b). It suffices to find an estimate
dp(v,imp) < M(X, u,d,h). The spaceX is (&', h)-Rips with§’ = 36 + 3h/2 by 2.35. We
show that

(3.8) imy C B(y, M), ~C B(imyp, My),

whereM; = 30\*(40’ + h) + 8\2p and My = 2M; + p + h.

Setr = 5\(40" + h), R = Ar + u, I = [a,b], and defing;: I — R by g(t) = d(¢(t),7).
Lets € 1. For the first inclusion of (3.8) we must show tlegis) < M.

We may assume tha{s) > R. Set

ap=sup{t € I:t <s, g(t)
bo=1inf{t € I:t > s, g(t)

L:bo—ao—’f’.

R},

<
< R},

Choose points,, vy € I such that

ap —1/2 < ug < ag, glug) < R, by <wvg < bg+1/2, g(vg) < R.
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We may assume that— aq < by — s. Then
9(s) < gluo) + |p(s) — p(uo)| < R+ A(s — uo) + p < R+ AL/2+7) + p.
It suffices to show that
(3.9) L < 8AR+ 2\u,
because then
g(s) S R4H4NR+ Np+ M+ < 6X2R + 2\ = M.

We may assume thdt > 0. Settingu = ag + /2, v = by — r/2 we havel = v — u. Letn
be the integer within — 1)r < L < nr. If n < 4, then (3.9) is clearly true. Suppose that 5.
Sincen < L/r + 1, we haven < 5L /4r. Divide [u, v] into subintervald; = [t;_,t], 1 <i <
n, by pointst; = u + ¢L/n. For eachi € {0,...,n} lety; € v be a point closest tgp(¢;). For
all < we havelp(t;) — y;| = g(t;) > Rand

lp(ti) — @(ts)| < AMti —tiy) +p < R< 2R — 40" — h.
Hence the projection lemma 3.6 givies 1 — y;| < 8’ + 2h. Since
[p(u) — yol = g(u) < g(uo) + |o(uo) — p(u)] < R+ Ar+p=2R
and similarly|p(v) — y,| < 2R, we get
o(u) — o) < lp(u) = yol + Y lyic1 — vl + [yn — 9(v)] < 4R + 2n(46" + h).

=1

As [p(u) — ¢(v)| > L/X — p, this yields

L <4XR+ 2X\n(48" + h) + .

Heren < 5L/4r, whence the middle term on the right is at mége, and (3.9) follows.
To prove the second part of the theorem, observedhat im ¢ satisfies the condition of
3.5 withs = p. Hence we can apply 3.5 with= u, » = M; and obtainy C B(Q, M;). O

3.10. Remarks1. Theorem 3.7 holds with/ = M, + M, for eachh > 0. Ash — 0, we get
the explicit bound\/ = 10805 + 252 .

2. The stability theorem 3.7 holds, in fact, in every hyperbolic space. As observed in [BS,
5.4], this follows from the embedding theorem [BS, 4.1] of Bonk and Schramm.

The following special case of the stability theorem 3.7 is frequently needed in applications:

3.11. Theorem.Suppose thatv: a ~ b is an h-short arc and thatG: a« ~ b is a c-
quasigeodesic in an intrinsi&-hyperbolic space. Thefy (a, ) < M(d,¢,h). O

We next give a converse of 3.7.
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3.12. Theoremleth > 0, § > 0. Suppose thak is an intrinsic space such thatC B(«, )
whenever- anda are arcs inX with common endpoints such thais ~-short and

(3.13) [(T[u,v]) < 3lu—wv|+4h
for all u,v € 7. ThenX is (4, h)-Rips.

Proof.Let A = («, 3,) be anh-short triangle with vertices, b, c as in 2.21. Letw be the
point of o closest toa and leto: a ~ w be h-short. Letp be the first point oty in «. Then
T = ola, p| Ualp, b] is an arc fromu to b. We show that satisfies the condition of the theorem.
It suffices to show that

(3.14) I(ofu, p]) + l(alp,v]) < 3Ju —v| + 4h

forall u € ola, p], v € a[p,b].
Since

la —u|+ |u—p| <o) <|a—w|+h=d(a,a)+h
<la—vl+h<l|a—u|+|u—2v|+h,

we havelu —p| < |u—v|+h, and thugp —v| < |p—u|+ |u—v| < 2|u—wv|+ h. Consequently,

I(ou,p]) < |u—p|+h < |u—v|+ 2h,
l(alp,v]) < |p—v|+h < 2ju—v|+2h,

and (3.14) follows. )
By the condition of the theorem we obtaitip,b] C 7 C B(v,6). Similarly alp,c] C
B(f3,9), and the theorem is provedl

3.15. TerminologyWe say that a map: X — Y between metric spaces;isroughly injective
if the diameter of each point-inverse is at mpsA (), x)-quasi-isometry is clearlyu-roughly
injective. A mapf: X — Y is u-roughly surjectivef for eachy € Y there isx € X with
|fx —y| < p. Some authors include this condition in the definition of a (rough) quasi-isometry;
maps without this condition are then called (roughly) quasi-isometric embeddings or (rough)
quasi-isometries into.

Amapg: Y — X isap-roughinverseof f: X — Y if |gfx — x| < pand|fgy —y| < p
forallz € X andy € Y.

3.16. Lemma.lf f: X — Y has au-rough inverse, therf is 2u-roughly injective andu-
roughly surjective. Conversely, ffis y;-roughly injective and.,-roughly surjective, then there
isamapg: Y — X such that

lgfe—x| < p, |fgy—yl < s

forall x € X andy € Y. Thusg is a u-rough inverse off with = p; V ps.
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Proof. Assume thay: Y — X is au-rough inverse off. If a,b € X and fa = fb, then
la—b| <l|a—gfa|+|gfb—b| < 2u, soy is 2u-roughly injective. Furthermore, if € Y, then
ly — fgy| < u, whencef is u-roughly surjective.

In the converse part of the lemma, defipeY” — X as follows: For eacly € Y choose a
pointy’ € fX with |y —¢/| < p,. If y € fX, we lety’ = y. Choose a point’ € f~'{y/'} and
setgy = 2’. Thenfgy = 3/, whence|fgy — y| < ps. If z € X, thengfx € f~!fz, which
yields|gfz — x| < u; by p;-rough injectivity.[]

3.17. Lemma.(1) If X Ly 2B zandif fi is a (\;, pu;)-quasi-isometry, therf, o f; is a
(A, p)-quasi-isometry withh = A\ Ay and o = Aopq + .

(2) If f: X — Y is ap-roughly surjective(\, iu)-quasi-isometry, therf has a\u-rough
inverse, which is &\, 3\u.)-quasi-isometry.

Proof. (1) follows by direct computation. In (2), the mgpis A\u-roughly injective and:-
roughly surjective, so it has &u-rough inversgy: Y — X satisfying|fgy — y| < p for all
y € Y by 3.16. Ify, ¢/ € Y, then

Mgy —gy'| — u < |fgy — foy'| < Ngy — gv'| + u,
ly—y'| —2u <|foy— foy'| < |y —v'| +2p,

which yield
Ay =/ =33 <lgy — g¢/| < Ay — o/ + 3\,
and the lemma followd.].
We next show that hyperbolicity is preserved by quasi-isometries.

3.18. Theorem.Suppose thak andY are intrinsic metric spaces and thgt X — Y is a
p-roughly surjective(\, )-quasi-isometry. I1fX is 6-hyperbolic, theny” is ¢’-hyperbolic with
8 = (8, A\, ).

Proof. We show that” satisfies the condition of 3.12 with = 3/4 andd = M (5, \, ).
Alternatively, one can easily show by stability thatsatisfies a Rips condition.

Lemma 3.17(2) gives au-rough inversgy: Y — X of f, andg is a (A, 3\u)-quasi-iso-
metry. Assume that, 7: a ~ b are arcs inY” with common endpoints such thatis h-short
andr satisfies (3.13). It suffices to find a numbei(§, \, ) such that- C B(y, M).

Let ¢ andt be the arclength parametrizationspfndr, respectively. Ther is (1, h)-
quasi-isometric and is (3, 4h/3)-quasi-isometric. A& = 3/4, both paths aré3, 1)-quasi-iso-
metric. By 3.17(1), the pathg ¢, goy are(N, i')-quasi-isometric with\" = 3\, u/ = A+3\p.
By the stability theorem 3.7, there M (6, A, 1) such thaim (g o ¥)) C B(im (g o ), My).

Lety € 7. Sincegy € im (g o ¢), there is a point; € im (g o ) with |gy — 21| < M.
Choose a poiny; € v with gy; = ;. It suffices to show thaly — 1| < M(J, A\, u). As
|fgz — z| < Auforall z € Y, we obtain

ly— w1l <ly— foyl + 1fgy — fai| + | for — | S Ap+ ANgy — 21| + p+ M
<2+ AMo+ p= M6, A\, ). O

As another application of stability we study the behavior of the Gromov prdduigt,, in
a quasi-isometry.
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3.19. Theorem.Suppose thak andY are intrinsic d-hyperbolic spaces and thgt X — Y
is (A, 1)-quasi-isometry. Let, y, z,p € X and writez’ = fz etc. for images. Set= (z|y), —
(z]z), and s’ = (2'|y/)y — (2'|7"),. Then there is a number = C(4, A, 1) > 0 with the
following properties:

(1) A zly)y — C < (2']y)y < Azly)p + C,

(2) A7Hs| = C < |s'] < Als| + C,

(3)If s >0,then\'s —C < ¢ < As+C.

Proof. Settingz = p in (2) we see that (1) follows from (2). To prove (2) and (3),let 0
and letA,, A, be h-short triangles inX with verticesp, z,y andp, z, z, respectively, such
that A, and A, have a common side: p ~ z. We may assume that> 0. Choose points
uy, u, € o such that

|uy _p| = <x|y)p7 |uz _p| = (x|z)p> Uy, € Of[p7 Uy]-
Sincea is h-short, we have
(3.20) s <|uy, —u,| <s+h.

Next choosé:-short triangles\), A7 in Y with verticesy’, ',y andyp’, 2/, 2/, respectively,

and with a common side”: p’ ~ z'. Letuy, u] € " be points with

luy — ' = (@y)y, [u? =P = (@']2),.

As above, we gelts’| < |uy — u?| < || 4 h.

Let C4, Cs, ... denote positive constants depending only(ém\, i, k). To get constants
independent ok we may puth = 1 or, for better estimates, lét— 0.

The spaceX is (¢, h)-Rips with ¢’ = 36 + 3h/2 by 2.35. If 7 is a side ofA, or A, its
arclength parametrization {$, h)-quasi-isometric, and o ¢ is (A, Ak + p)-quasi-isometric. By
the stability theorem 3.7, the imagé= f7 = im (f o ) lies in a neighborhood (7", M) of
the corresponding side’ of Aj or A7 with M = M (4, A, u, h). By 2.24 we havel(Z(A,)) <
46+3h, and thusi(fZ(A,)) < 4\5+3\h+p. Sinceu, € Z(A,) by (2.23), the point, = fu,
lies within distanceC; = M + 4\ + 3\h + p from the sides ofA]. By 2.25(2) this implies
thatd(u,, Z(Ay)) < 3C, + h/2. Moreoveruy € Z(A}), d(Z(A})) < 49 + 3h, and we obtain

(3.21) |y — wy| < 3Cy + h/24 d(Z(A})) < 301 +40 + 4h = Cy,
and similarly
(3.22) ul, — | < Cs.

These estimates and (3.20) imply that
|8'] < Juy — | < |uy, — L] + 205 < Muy — | + p+2C < As+ M+ p+ 20y,

which is the second inequality of (2).
The first inequality of (2) is obtained similarly:

] > fuy —ul] = h > Juj, =l = h —2C;
> AN Yy — ] — pp—h—2Cy > X' — p— h — 205,
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The second inequality of (3) follows from (2). Also the first inequality of (3) follows from
(2) if & > 0. Assume that’ < 0. It suffices to find an estimate

(3.23) |s'] < Cs,
because thesl + C3 > 0, and (2) gives
Nls<C3+C <5 4+205+C.

Sinceluy — p'| — [u] — p'| = ' < 0, we may assume that) € «"[p’,u]. We may also

assume that’| > C,. Then (3.22) gives
u, = p'| = JuZ = p'| = Co > |ul = p'| = |¢'] = [uy, — .

Hence there is a point € a[p, u.] with [/ — p/| = |u}) — p'|. Sincea/ C B(a, M), we can
choose a point” € " with |v" —v'| < M. We show that
(3.24) 0" —uy| < M + h.

If " € a"[uy, 2'], the h-shortness of” gives

0"~ ol — ) < " = )+ < " ] ]
§M+|’U,/y/—p/’—|—h,

which implies (3.24). Iv” € o"[p’, uy], we similarly getu; — v"| + [v" — p'| < |uy — p'[ + h.
Here[v” —p'| > [v —p| — [v" = v"| > |uy — p'| — M, and (3.24) follows.
By (3.24) we havev’ — uy| < 2M + h. Thus (3.21) gives

0" — | < 0" —uy| + |uy —wy ] <2M +h+ Cy = Cy,
whence
v —u,| <|v—uy|+h <ACy+ A+ h.
By (3.22) we obtain

No = sl + g1 > o = ] > g =] = o' = ]| — Jul, —

>|s'|—2M — h=|s'| = Cy.
These estimates imply (3.23) witty = Cy + A(A\Cy + A+ h) + p. O.

3.25. Notes.This section is mainly based on [Bo] and [BS]. The simple proof of 3.12 seems
to be new. A related but deeper result was proved by Bonk [Bo]. He considers the following
weaker form of geodesic stability: For eagh> 1 there isM > 0 such that for each-
quasigeodesia: = ~ y there is a geodesig: © ~ y such thatw C B(~, M). This does not
mean thatv C B(f3, M) for every geodesi@: = ~ y. He shows that this condition implies
that a geodesic space is Gromov hyperbolic.
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4 Quasisymmetric and quasinbbius maps

4.1. SummaryWe give the theory of quasisymmetric and quasims maps needed in Section
5. These maps are also considered in the relative setting and in metametric spaces.

4.2. Metametric spaced.et M be a set. A functiol: M x M — [0, c0) is ametametridf

(1) d(a,b) = d(b,a) forall a,b € M,

(2)d(a,c) < d(a,b) +d(b,c) forall a,b,c € M,

(3) d(a,b) = 0 implies thata = b.

In other words,d satisfies the axioms of a metric except that the possibility ) > 0 is
allowed. The paif M, d) is ametametric spaceén the subsetnet M = {x € M : d(x,z) = 0},
d defines a metric.

It is possible that this concept has been considered (probably with another name) in the
literature, but the author has not been able to find it. A trivial example of a metametric is the
constant functionl(z, y) = 1 forall x,y € M.

We say that a poini € M is smallor large according asl(a,a) = 0 or d(a, a) > 0.

A metametrial of M induces a Hausdorff topology in the usual way: Wiitg:, r) = {z €
M : d(x,a) < r}and observe tha(a,r) = @if r < d(a,a)/2, becauseifl(a,z) < d(a,a)/2,
thend(a,a) < d(a,z) + d(z,a) < d(a,a). AsetU C M is open if for eactu € U there is
r > 0 such thatB(a,r) C U. We see that each large point df is isolated in this topology.

A basis for this topology is given by balB(a, r) for small pointsa and by singletongb} for
large pointg.

A metametric space is metrizable. In fact, a metametrgan be changed to a metrig
simply by setting/, (z, z) = 0 andd; (x, y) = d(z, y) for z # y. Thend andd, define the same
topology. By this trick one could avoid the use of metametrics, but this would be artifical and
unnatural, for example, with the metametjg., to be considered in Section 5.

Some familiar results on metric spaces fail to be true for metametric spaces. For example,
if a is a large point, then the constant sequefige with z; = a converges ta: (because all
pointsz; lie in each neighborhood af), butd(z;,a) does not tend to 0. A map satisfying the
(¢, 0)-condition is continuous, but the converse is only true at small points.

Let (M',d’) be another metametric space. We say that a fhap/ — M’ is positiveif
d'(fz, fy) > 0 wheneverd(z,y) > 0. In other words, the inverse image!{y} of each small
pointy € fX consists of a single small point &f. A map between metric spaces is positive iff
it is injective. Amapf: M — M’ is \-bilipschitzif

A ld(x,y) < d(fx, fy) < Md(z,y)

forall z,y € M. A bilipschitz map is always positive and continuous, but it need not be injec-
tive.

4.3. Quasisymmetnlet (M, d) be a metametric space. We say that a triple- (x,y, z) of
points inM is positiveif d(z, z) > 0. Theratio of a positive triplel’ = (x,y, z) is the number

T| = d(x,y)/d(z,z) > 0.

Suppose thatM’, d’') is another metametric space. A positive mapM — M’ maps
every positive triplel’ = (z,y, z) in M to a positive triplefT = (fz, fy, fz) in M’. Let
n: [0,00) — [0, 00) be @ homeomorphism. We say thfais n-quasisymmetrid
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(1) f is positive,

(2) |fT| < n(|T]) for each positive tripld".

A \-bilipschitz map is)-quasisymmetric withy(¢) = \%t.

We next consider relative quasisymmetry. Lt and M’ be as above and let ¢ M.
We say that a triple” = (x,y,z) in M is atriple in (M, A) if x € Aor{y,z} C A A
map f: M — M’ is positive relA if d(fz, fy) > 0 wheneverd(z,y) > 0 andz € A. This
implies thatf maps every positive triple i)/, A) to a positive triple in}/’. We say thatf is
n-quasisymmetric reH if

(1) f is positive relA,

(2) |fT| < n(|T)) for each positive tripld™in (M, A).

We see that a map: M — M’ is n-quasisymmetric ifff is n-quasisymmetric reM!. If f
is n-quasisymmetric rell, the restrictionf| A is n-quasisymmetric.

We next show that in order thd@tbe quasisymmetric rel it suffices to verify (2) for each
triple T' = (x,y, z) with z € A. However,y must be replaced by another function.

4.4, Lemma. Let n: [0,00) — [0,00) be a homeomorphism, I€t\/,d) and (M’',d’) be

metametric spaces, and let C M. Suppose thaf: M — M’ is positive relA and that

|fT| < n(|T]) for each tripleT’ = (z,y, z) in (M, A) withx € A. Thenf is n;-quasisymmetric
rel A with n; depending only on.

Proof.Let T = (z,y, z) be a positive triple inV/ with {y, z} C A. ForT} = (z,y,z) we
have
d(z,y) _ d(zx) +d(z,y)
d(z,z) = d(z2)

and similarly| fT'| <1+ |fT1|. Hence|fT| < no(|T|) with no(t) = 1+ n(1 + ¢).
To complete the proof we show thitT'| < 2n(2|T'|) for small|T’|. Assume that

T = =1+|T],

TI<5AL+n ()

ThenT, = (y, z, z) is positive, and

o d(y, x) d(y, ) _ 1 —1/1
1= 3.2 < @) -~ =1 =" @ AAT
Hence|fT5| < 1/2,and
d(fz, fy) T

4.5. Cross differences and cross ratidset ) = (z,y, z,w) be a quadruple of points in a
metametric space@V/, d). Thecross differencef @ is the real number

cd@ =cd(Q,d) =d(z,y) + d(z,w) — d(z, z) — d(y, w).

The quadruplé) is positiveif d(z, z) > 0 andd(y,w) > 0, and then theross ratioof () is the
number
d(z, y)d(z, w)

@ = (@) = o)

> 0.

20



Permutating the points, y, z, w we get at most 6 different numbers far() (three numbers
and their reciprocals). The reader should be warned that in the literature, at least 5 of them are
called the cross ratio dfr, y, z, w).

In a metric space, the cross difference (or half of it) can be considered as a four-point version
of the Gromov product, because we have

Cd (xapa yap) = 2(x|y)p

forall x,y,p € M. Itis easy to see that a metric spakas J-hyperbolic iff
(4.6) cd (2,y,2,p) Aed (2, y,p, 2) < 20

forall z,y, z,p € X.

It is possible to consider the cross ratio also in the extended sgaee)M U {oc}, but in
the present article we only consider quadbius maps between bounded spaces.

Let X be a metric space. A direct computation shows that

(4.7) sed (2,9, 2,w) = =(zly)p — (zlw)p + (2]2) + (ylw),

forall z,y, z,w,p € X. Consequentlythe right-hand side is independent of the pginThis
is the key fact behind the quantitative quashius invariance of the metametrit; . of the
Gromov closureX™* of a hyperbolic spac&’, to be considered in Section 5.

4.8. Quasindbius mapsLet (M, d) and(M’, d’') be metametric spaces. Observe that a positive
mapf: M — M’ maps every positive quadruplgin M to a positive quadruplé@ in M. Let
n: [0,00) — [0, 00) be @ homeomorphism. A mapp M — M’ is said to be)-quasindbiusif

(1) f is positive,

(2) cr fQ < n(cr Q) for each positive quadrupl@ in M.

LetAC M.Amapf: M — M'isn-quasindbius relA if f is positive relA and satisfies
(2) for each positive quadrupl@ = (z,y, z,w) with {z,w} C A. This implies that (2) also
holds for quadruple® with {y, z} C A, becauser (z,y, z,w) = cr (y, z, w, 2).

4.9. Properties We list some properties of quasisymmetric an quégims maps.

1. Letf: M — M’ be bijective, letA ¢ M, and assume thgt maps each small point of
A to a small point. Iff is n-quasisymmetric orn-quasindbius relA, thenf~t: M’ — M is
1’-quasisymmetric on’-quasindbius relf A with ' = n=1(¢t=1)~L.

The condition for small points is needed to guarantee fhatis positive relfA, but it
holds automatically except in some trivial cases whr@and A contain just a few points. For
example, assume thate A is small and that there are pointss M andz € A such that the
pointsz, y, z are all distinct. Then the quadruple= (x, z,y, z) is positive andtr ) = 0. If f
is quasindbius relA, thencr fQ = 0, which implies that/(fz, fz) = 0.

2.1f f+ M — M'isn-quasisymmetric (relt), thenf is 6-quasindbius (relA) with § = 6,.
The proof in [Va4, 6.25] for metric spaces holds almost verbatim in the metametric case.

4.10. Notes.Quasisymmetric maps in metric spaces were introduced in [TV], qudsis

maps in [\Val], and the relative case in §2]. Lemma 4.4 is from [¥4, 6.17], where its proof
contains misprints. The metametric case has not been previously considered. It will turn out to
be relevant in 5.35 and 5.38.
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5 The Gromov boundary and closure

5.1. SummaryWe associate to eacdhhyperbolic space a sétX, called theGromov boundary
of X. For eaclp € X and for smalk > 0 we define a metametri¢, . in the Gromov closure
X* = X U0X, andd, .|0X is a metric of0.X. The spac&)X with d,. is complete but, in
general, not compact as in the case of proper spaces. The identity’mag), .) — (X*, d, )
is n-quasindbius withn depending only o’ /e. Each quasi-isometry: X — Y between
hyperbolic spaces extends to a mép X* — Y*, which is quasimbius in the metametrics
dy. andd, ..

5.2. Gromov sequenceket X be a metric space. We fix a base pqirg X; the pair(X, p) is
then apointed spaceWe shall write briefly

(zly) = (zly)y

for z,y € X. For a sequence of points;) of points inX we use the notation
T = (2;) = (Ti)ien = (T1,72,...).

We say that a sequengen X is aGromov sequendgé (z;|z;) — oo asi — oo andj — oc.
This implies thafz; — p| = (z;|z;) — oo. Since|(z]y), — (z|y),] < |p — q|, this concept is
independent of the choice of the base point. In the literature, the Gromov sequences are usually
called sequences converging at infinity or tending to infinity.

ConventionlIn the rest of this section we assume th#t p) is a pointedy-hyperbolic space,
but now X need not be intrinsic.

We say that two Gromov sequenceandy in X areequivalentand writez ~ g if (z;|y;) —
oo asi — oo. Since(x;|z;) > (xilyi) A (yi|z:) — 0, we see that this is indeed an equivalence

relation. The following observations are sometimes useful:

5.3. Lemma.(1) A Gromov sequence is equivalent to each of its subsequences.

(2) If z ~ gy, then(z;|y;) — oo asi, j — oo.

(3) If £ ~ g, then the sequende, y1, z2,v2, - .. ) IS @ Gromov sequence equivalentito
andy.

(4) If w and v are nonequivalent Gromov sequences, then the set of all nurtiaérs) is
bounded.

(5) If z is a Gromov sequence andiifis a sequence such thét;|y;) — oo, theny is a
Gromov sequence equivalentio

(6) If T is a Gromov sequence andijifs a sequence such that

lim sup i = yil <1,

theny is a Gromov sequence equivalentito

Proof. (1) is obvious, (2) follows from the inequalityz;|y;) > (x:|vi) A (vily;) — 9, and
(3) follows from (1) and (2). If (4) is false, there are subsequemte$u andv’ of v such that
(uf|vl) — oo, and then:’ ~ o/, which implies thati ~ .
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Part (5) follows from the inequalityy;|y,) > (vilx:) A (z|z;) A(z;|y;) — 26, and (6) follows
from (5) and from the estimate

2(zilyi) = |zi — pl + lyi — p| — |zi — yil
> |z — pl(1 = |2zi — yil /|zi — p|) — 00. O

5.4. More definitionsWe letz denote the equivalence class containing the Gromov sequence
Z. The set of all equivalence classes

0X = {z: z is a Gromov sequence iK }
is theGromov boundarpf X, and the set
X"=XUoX

is theGromov closuref X. We may use the notatiai X for the Gromov boundary if there is
a danger of misunderstanding.

5.5. Remark on raysA geodesic rayn a spaceX is an isometric image of the half lirj@, co).

In the classical caseX( geodesic and proper) one can alternatively define a boundary point as
an equivalence class of geodesic rays [GdH, p.119], and the geodesic rays are widely used as a
tool. In the general case, joining a pointire X to a pointa € 0.X is somewhat problematic,
because (1) geodesics do not exist and (2) the Ascoli theorem is not available. We shall return
to this problem in 6.2.

We want to define the Gromov produet]b) for all a,b € X*. Suppose that,b € 0.X and
choose Gromov sequences: a, y € b. The numbersz;|y;) need not converge to a limit but
they converge to a rough limit in the following sense:

5.6. Lemma.Leta,b € 0X, a #0b,and letz, 7’ € a, 4,y € b, z € X. Then
limsup(z;y;) < liminf(z;|y;) + 20 < oo,
i,j—00 4,J—00
lim sup(7;]2) < liminf(z;|2) +d < oo.

Proof. We prove the first part of the lemma; the proof of the second part is similar but
simpler. Sets = liminf; ;... (z;|y;). Thens < oo, because otherwise ~ y and thuse = b.
Since(z;|z),) — oo and(y;|y;) — oo asi,j,k,I — oo, there ism € N such that(z;|z},) >
s+ 30 and(y;|y;) > s+ 30 for all i, j, k,I > m. For these indices we have

(zily;) + 20 > (zg]ay) A (@) ly) A (yilyy) > (s +30) A (23 ]yp).

Asi, j — oo, thisimplies that+26 > (s+35) A(z}|y;), whencgx)|y)) < s+2§ for k, 1 > m.
The lemma follows[]

5.7. Definitions.Given a,b € 0X, we could try four possible definitions fd@r|b). Choose
Gromov sequences € a, y € b, form the liminf and the limsup ofz;|y;), and then the
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supremum and the infimum over all members:@ndb. By 5.6, these four numbers lie in an
interval of length2d. We choose the smallest of these numbers and define

(5.8) (alb) = inf {liminf(x;|y;): T € a,y € b}.
i,j—00

The same definition is used in [CDP] and [Sh], but [GdH] and [BH] have sup instead of inf.
However, with sup | cannot extend the basic inequality:) > (alb) A (blc) — § to points
a,b,c € 90X unlesss is replaced byo.

Observe that for € 0.X we have(a|a) = oo and that(a|b) < oo for a # b.

Fora € 0X andy € X we set

(aly) = (yla) = inf {lim inf(z;]y): & € a}.

Then(aly) < |y — p| < oo by 2.8(2).

5.9. Notation.For sequences andy in X and forz € X we set

li (z|y) = liminf(z;|y;), 1s(z|y) = limsup(z;|y;),

li (Z[2) = liminf(z;[2), Is(Z|z) = limsup(z|2).

5.10. Lemma.lf a,b € 0X, then(a|b) = inf {li (Z|y): T € a, § € b}.

Proof. Let s denote the right-hand side. Trivially:|b) < s. We may assume that # b
and thus(alb) < oo. Chooset > (alb). There are sequencas € a« andy € b with
liminf; ;.. (z;|y;) < t. Hence there are increasing sequences of intg@grsind (j;) such
that the sequende — (z;, |y;,) tends to a limit’ < t. Now the subsequende;, ) is in « and
similarly (y;,) € b by 5.3(1), whence < ¢ < t, and the lemma follows.].

5.11. Lemma.Suppose that € a € 90X,y € b€ dX, z € X. Then

I <ls(2[y) < (alb) + 24,
(alz) <1 (Z|z) <1s(Z|2) < (alz) + 9,

Proof. The case:r = b is clear, and we may assume thag b. The first inequality in both
cases follows from the definition §f|b) and(a|z). The last inequalities follow from 5.6

5.12. Proposition.If a, b, c € X*, then(a|c) > (a|b) A (blc) — §.

Proof. We prove the case, b,c € 0X. Letz € a, § € b, Z € c. Then(z;|z;) > (z:]y:) A
(yi|2;) — ¢ for eachi € N, and hence

li (212) > Tim inf((zalys) A (sl0)) — 8 =1 (2lg) AT (g12) = 6 > (alb) A (ble) — .

By 5.10 this implies the lemmal
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5.13. The functiong, andd.. Let0 < ¢ < 1. Fora, b € X* we write

Qe(aa b) - Qp,a(aa b) - 6_6((1“))

with the agreement > = 0. Thenp.(a, b) = 0.(b,a), ando.(a,b) = 0ifand only ifa = b €
0X. Furthermore, fon, b, c € X* we have

—(log 0=(a, c))/e = (ale) = (alb) A (ble) — 0,

and hence

(5.14) e %0.(a,c) < o-(a,b) V o.(b,c).

We set

(5.15) d.(a,b) = dy(a,b) =inf > 0.(a;_1,q;)
j=1

over all finite sequences= aq, ..., a, = bin X*.

5.16. Proposition.Suppose thatd < 1/5. Then the functiod. is a metametric inX*, and the
corresponding metric spaaeet X is 0.X. Moreover,

(5.17) 0-(a,1)/2 < d.(a,b) < o-(a,b)
forall a,b € X*.

Proof. Clearly d. satisfies the conditions (1) and (2) of a metametric in 4.2 and the second
inequality of (5.17). Since.(a,b) = 0iff a = b € 0X, it suffices to prove the first inequality
of (5.17). | follow [GdH, 7.10].

Sincee® < e!/° < 5/4, (5.14) gives

(5.18) 20-(a,c) < o:(a,b) V o:(b, ¢)

forall a,b,c € X*. Leta = ag,...,a, = b € X* and setR = Z;;l o:(a;_1,a;). It suffices
to show thato.(a,b)/2 < R. This is trivially true ifn = 1, and we proceed by induction on
n. Let & be the largest integer wit[?z1 o:(aj—1,a;) < R/2. Then0 < k < n—1and

Z;’L:km 0-(aj-1,a;) < R/2.
Casel. 1 < k < n — 2. By the induction hypothesis we have

o-(a,ar) < R,  o-(ari1,b) < R.
Moreover,o.(ay, ax+1) < R. Applying twice the estimate (5.18) we obtain
0-(a,b)/2 < $0.(a,0) < 0.(a, ax) V oc(ag, ary1) V 0 (a41,0) < R.
Case2. k = 0. Arguing as in Case 1 we get
50:(a,b) < o-(a,a1) V 0-(ar,b) < R.

Case3. k =n — 1 This case is similar to Case 2.
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5.19. ConventionFrom now on | always assume tha& 1 A (1/50). Theng./2 < d. < p..

5.20. Remarks1. In the literature, the distaneg(a,b) is usually only considered for points
a,b € 0X. Itis defined by the formula (5.15), where all pointslie in 0X. This gives a
numberd.(a,b), and we havel. < d. < p. < 2d. by 5.16.

2. The conditiore < 1 is mainly for convenience; most considerations are valid whenever
ed < 1/5.

3.1fa € X, then(a|z) < |a — p| = (ala) for all z € X*. Hencep.(a, z) > o.(a,a), which
implies thatd, (a, a) = o.(a,a) = e~5la77l,

4. The points ofX are large in the metametrit and the points of.X are small.

5. We havel.(p,a) = o.(p,a) = 1forall a € X*, whenceX* is boundedwith diameter
1 <d(X*) <2.

6. A sequence itX is Gromoyv iff it is Cauchy in the metametri. Hence we may consider
X* as the completion ok . A proof for the completeness is given in 5.31.

5.21. Lemma.letz be a sequence in a hyperbolic spacend leta € 0.X. Then the following
conditions are equivalent:

(1) (zila) — oo,

(2) de(x;,a) — 0,

(3) z is a Gromov sequence ande a.

Proof. Clearly (1) is equivalent to the conditian(z;,a) — 0, and the equivalence (%
(2) follows from (5.18).

(3) = (1): Let M > 0. Sincez is a Gromov sequence, there is an integesuch that
(xi|z;) > M fori,j > m. Fori > m we thus havéim inf, . (x;|z;) > M. By 5.11 this yields
M < (z;la) + §, whence(z;|a) — oc.

(1) = (3): Since(z;|x;) > (z;|a) A (xjla) — I — oo by 5.12,7 is a Gromov sequence.
Settingb = = we have(z;|b) — oo by the part (3)= (1) of the lemma. It follows thata|b) >
(alx;) A (blz;) — 6 — oo, whence(alb) = oo and thusy = b. O

5.22. Corollary. If z € a € 0X andy € b € 0X, thend.(z;,y;) — d.(a,b). If z € X, then
d.(x;,2) — d.(a, z). O

5.23. Remark.ConsideringX™* as the completion oK in the metametriel., we could extend
d. from X to X™* without defining the Gromov product for boundary points.

We next give an improvement of Lemma 5.10. The result is not needed later in this article.

5.24. Lemmalf a,b € 0.X, then there are sequences: a« andy € b suchthatz;|y;) — (a|b).
If = € X, there isz € a such that(z;|z) — (a|z).

Proof. We only prove the first part of the lemma. We may assume(thét = ¢t < oo. From
5.10 it follows that for each € N there are sequences € a andy™ € b such thati (z"|7") <
t + 1/n. Passing to subsequences and using 5.3(1) we may assunethal < ¢ + 1/n for
all : andn. By 5.21 we havéz!|a) — oo and(y?|b) — oo asi — oo. For eachn we can
therefore choose an indef) with (27, |a) > n and(yj,, [b) > n. Define sequences andy’
by z;, = @i\, ¥, = Yi(,)- By 5.21 we have’ € a, i € b. Moreover,(z;|y;,) < ¢+ 1/n forall
n, whencds (z'|y’) < t. On the other handi (z'|y’) > (a|b) = t, and the lemma follows.]
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5.25. The role ofp ande. We study how the metametrit, . of X* depends op ande. Suppose
that0 < e, < 1A (1/59) and setx = ¢’ /e. The definition ofe, . givesg, . = ¢ .. By (5.17)
this yields

(5.26) dpe(x,y)*/2 < dpo(z,y) < 2%, (z,y)*

for all z,y € X*. This means that the identity ma’, d,.) — (X, d, /) is asnowflake mam
the sense of [BS, p. 281]. In particular, this map-iguasisymmetric withy(t) = 201¢«,

Next letp,q € X and setr = [p — ¢|, A = ¢". By 2.8(4) we havé(x|y), — (z]y),| < r. As
e < 1, we obtaing, . /A < g0, < Ao, By (5.17) this yields

(5.27) dpe(,y)/2X < dge(,y) < 2Xdy (2, y)

for all z,y € X*. In other words, the identity map\*, d,.) — (X*, d,.) is 2\-bilipschitz.

It follows that this identity map igj-quasisymmetric with)(¢) = 4)\?t. The dependence
of n on|p — ¢| cannot be avoided. Similar estimates show that the identity (¥epd,.) —
(X*,d, ) is n-quasisymmetric withy(t) = 2>3\?t>. The family of metricsi, .|0X has been
called the canonical quasisymmetric gauge; see [BHK, p. 18].

The quasimbius version is more quantitative:

5.28. Proposition.Let X be ad-hyperbolic space, ldi < ¢,&’ < 1A (1/56) and letp, ¢ € X.
Then the identity mapX*,d,.) — (X*,d,.) is n-quasindbius withn(t) = 16t, and the
identity map(X*,d,.) — (X*,d, ) is #-quasindbius withd(t) = 4**1¢t* wherea = £'/e.

Proof.Let Q) = (z,y, z,w) be a quadruple iX. From (4.7) it follows that the number
0pe(T,Y)0p (2, W)
0pe (T, 2)0pe(y, w)

is independent of. By (5.17) this implies thatr (Q,d,.) < 16¢cr (Q,d,.). By 5.22 this holds
for all quadruples) in X*.
The second part follows similarly by the equality.. = of .. [J

5.29. A topology ofX*. Let T* be the topology ofX* induced by the metametri¢. ; see 4.2.
From (5.26) and (5.27) it follows that" is independent gf ande. In this topology, every point
of X is isolated, and X is the topological boundary of in X*.

It is possible (and perhaps more useful) to define a topoiBgef X* that induces the
original topology ofX and the same topology ofX asT*; see [BH, p. 429], [KB, p. 6]. This
topology consists of alll € T7* such that/ N X is open in the original topology oX .

5.30. CompletenesA Cauchy sequence in a metametric spaktk d) is defined as usual, but
a convergent sequence need not be Cauchy. Indeég,if) > 0, then the constant sequence
(a,a,...) converges ta but it is not Cauchy.

A metametric space is said to bempleteaf every Cauchy sequence is convergent. A closed
subset of a complete metametric space is complete.

5.31. Proposition.If X is hyperbolic, then(X*, d.) is a complete metametric space and
(0X,d.) is a complete metric space.
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Proof. SincedX is closed inX*, it suffices to show tha\* is complete. Assume that
a = (a;) is a Cauchy sequence Xi*. We first consider the special case where the painlie
in X. Since
—e(a;]aj) =log o.(a;, aj) <log2d.(a;,a;) — —oo

asi, j — oo, the sequence is Gromov. By 5.21 it converges toe 0.X.

Next leta be arbitrary. For eachwe can find a point; € X with d.(z;,a;) < 1/i by 5.21.
Fori < j we haved.(z;, z;) < d.(a;,a;) + 2/i. Hencez is a Gromov sequence. Settihg= &
we haved.(a;,b) < 1/i + d.(x;,b) — 0 by 5.21, whence converges té. [

5.32. Boundary extension of quasi-isometriesthe previous results of this section, the spaces
are not assumed to be intrinsic. From now on, intrinsicness is required, because we want to
make use of Theorem 3.19 on the change of the Gromov product in a quasi-isometry.

Suppose thaX andY are intrinsicé-hyperbolic spaces and th#t X — Y is a (A, p)-
quasi-isometry. We first choose the base pgings X andqg € Y so thaty = fp. Let0 < ¢ <
1 A (1/560). We considerX ™ andY™* with the metametricd. = d,. andd. = d,.; see 5.13.

We want to extend to a mapf*: X* — Y* between the Gromov closures. The following
considerations are essentially from [BS, Section 6].iée a Gromov sequence iXi. Then
3.19(1) yields fz;|fz;) > A ! (a;|z;)—C — oo asi, j — oo, whencefz = (fx;) is a Gromov
sequence. Furthermorejif~ g, thenfz ~ fy by 3.19(1). Consequently,has an extension to
amapf*: X* — Y*, defined byf*z = Z wherez = fz, andf* is continuous in the topologies
defined by the metametries andd.. (But f need not be continuous in the original topologies
of X andY.) Moreover,f* defines a continuous majy : 0X — 9Y between metric spaces.

The assignment — f* has clearly the functorial properties’ = id and(fog)* = f*og*.

We show thabf is injective. Suppose that b € 0X with f*a = f*b. Choosing Gromov
sequences € a andy € bwe have( fz;|fy;) — oo. By 3.19(1), this implies thatz;|y;) — oo,
whencea = b.

It follows that f* is a positive map in the metametri¢sandd..

We prove thatf* is quasisymmetric in the metametri¢sandd.. Let (z, y, z) be a positive
triple in X* and set = d.(z,y)/d.(z, z). Writing 2’ = fx etc. we must find an estimate

(5.33) di(a',y') < n(t)d(a', 2')
wheren(t) — 0 ast — 0. We may assume that y, z € X, because (5.33) can be extended to
X* by continuity.
We haveto. (2, 2)/2 < o-(z,y) < 2to.(z, z), whence
(5.34) —log2t < e(xly) —e(z]z) < —log &.
Casel.t < 1/2. Now (z|y) — (x]|z) > 0, and 3.19(3) gives
e(@'|y) —e(@'|2') > —A"tlog2t — eC

with C' = C(d, \, ). Sincee < 1, this and (5.17) imply (5.33) with(t) = 4e“t/*,
Case2.t > 1/2. Now (5.34) gives

el(zly) — (z]2)] < (log2t) V |log 3],
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and by 3.19(2) we get
e(@'|2") — e(2'|y") < A((log2t) V |log &) + €C.
Consequently, (5.33) holds with

4t for0 <t <1/2,
n(t) =< 22+e  for1/2 <t <1,
AMLeCA  fort > 1.

We see thaif* is in fact power quasisymmetrig(t) of the forme(t® v ¢1/*)). The function
depends o, A, ) but not one.

The mapdf: 0X — 0Y need not be surjective; see 5.37. It is known to be surjectiye if
is roughly surjective [BS, 6.3(4)]. We prove thaf is surjective if f is weakly surjectiveby
which we mean that

. d(y, fX)
m sup ———

< 1.
ly—gq|—o0 |y - Q|

The definition is independent of the choice of the base ppoftY. A roughly surjective map
is trivially weakly surjective.

Lety € b € 9Y. Writing r; = d(y;, fX)/|y; — q| we havelimsup,_, . r; = r < 1. Choose
a numbers with r < s < 1. Replacingy by a subsequence we may assume that s for all i.
We can find points; € X with |y; — fz;| < s|ly; — ¢| for alli. Thenfz = (fx;) is a Gromov
sequence equivalent foby 5.3(6). Since

(fzilfz;) < Mailzy) + C

by 3.19, alsar is a Gromov sequence. Moreovérf: = b, whencedf is surjective. In fact,
df is a homeomorphism, which follows from quasisymmetry and can also be easily proved
directly.

We summarize these results in the following theorem. A more quantitative result is given in
5.38 in terms of quasiidbius maps.

5.35. Theorem.Suppose thatX and Y are pointed intrinsici-hyperbolic spaces and that
f: X — Y is a base point preserving\, u)-quasi-isometry. Therf has an extension
f*: X* — Y™, which is continuous in the metametriésand d., where0 < ¢ < 1 A (1/59).
Moreover, f* defines an injective mapf: 0X — 0Y.

The mapf* is n-quasisymmetric irl. and d. and hencej-quasisymmetric reb.X with n
depending only on, A, i. If f is weakly surjective, thefif is a homeomorphism ontay”.

5.36. Remark A quasi-isometryf: X — Y need not be injective. In the metametrit.sand
d. it is nevertheless quasisymmetric. This phenomenon cannot occur in metric spaces, where a
quasisymmetric map is injective by definition.

5.37. Examplesl. Let X be the Poincar 2-disk with its hyperbolic metric and &t be the
3-disk. The natural embedding X — Y is an isometry. The induced boundary nigpis the
inclusion of the circle).X into the spher@Y . It is not surjective.
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2. LetY be the Poinca half plane and lek C Y be the half disKz € Y: |z| < 1} where
|z| is the euclidean norm, equipped with the metric inherited fiorihend.Y is the extended
real line,0o X = [—1, 1], and the inclusiorf : X — Y induces the inclusioflf : 95X — 0gY,
which is not surjective.

In these examplesX andY are geodesic locally compact hyperbolic spaces. In the first
examplef is not open, and in the second examflés not proper. This is natural in view of the
following result, which can be proved by standard path lifting arguments.

Suppose thaf : X — Y is a locally \-bilipschitz open map between metric spaces, where
X is proper andY” rectifiably connected. Thehis surjective.

We next give a base point invariant quasinius version of Theorem 5.35.

5.38. Theorem.Suppose thak andY” are intrinsic d-hyperbolic spaces and thgt X — Y
is a (\, u)-quasi-isometry. Lep € X andq € Y. Thenf has an extensiorf*: X* — Y*,
which is continuous in the metametri¢s. andd, ., where0 < ¢ < 1 A (1/59). Moreover, f*
defines an injective mapf: 0.X — 0Y.

The mapf* is n-quasindbius ind, . andd, . and hence)-quasindbius rel0X with » de-
pending on, A, 1 but not on the base pointsandq and not ore. If f is weakly surjective, then
df is a homeomorphism onty”.

Proof. Setq’ = fp. The mapf defines a base point preserving map (X,p) — (Y, q'),
and the extensiorf; is n-quasisymmetric withy = 7, by 5.35. By 4.9.2, the mag; is
f-quasindbius withd = 6, in d,. andd, .. From 5.28 it follows thatf* is 160-quasindbius.
O

6 Roads and biroads

6.1. Summaryln a proper geodesic hyperbolic space, one can join a point of the space to a

boundary point by a geodesic ray, and two boundary points by a geodesic line. In an arbitrary
intrinsic hyperbolic space, geodesic rays will be replaced by certain sequences of arcs, called
roads and geodesic lines by another kind of sequences of arcs, ¢attatls Unfortunately,

this makes the theory more complicated than in the classical case.

6.2. Roads.n the theory of proper geodesic hyperbolic spagesdesic rayfiave turned out
to be useful. For example, one can define a boundary point as an equivalence class of geodesic
rays. In a general intrinsic space they are no longer available. One can join palhte @oints
of 0.X by quasi-isometric rays; see [BS, 5.2], [KB, 2.16] and Remark 6.4 below. However, |
prefer to work with certain sequences/ethort arcs, callecbads
Similarly, geodesic linesvill be replaced by another kind of arc sequences, cdllezhds
and considered in 6.10.
Let X be a metric space and lgt> 0, » > 0. A (i, h)-road in X is a sequence of arcs
a;: y; ~ u; With the following properties:
(1) Eachq; is h-short.
(2) The sequence of length&y;) is increasing and tends te.
(3) Fori < j, the length ma,;: a; — «a; with g;;y; = y; satisfiesg;;z — x| < p for all
Tr € q;.
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Observe that3) implies that|y; — y;| < p for all i andj. If y; = y; = y for all i andj, we
say thatx is aroad fromy. Thelocus|a| of a roada is the union of all arcsy;.

In the case. = 0, h = 0 we have a geodesic ray. More precisely, the Idaliss a geodesic
ray, and eachy; is an initial subarc.

The indexing set for a road is usual; but occasionally it is convenient to use a subset
{i € N: ¢ > k} for somek > 1. For example, ifx is a road indexed b and if z € a4, we can
define asubroads of &, G;: z ~ u;, i > k, by

2 = griz, i = Oéi[Zz‘, Uz]
6.3. Lemma.Suppose that is a (u, h)-road, a; : y; ~ u;. Then(u;) is a Gromov sequence.

Proof. Let: < j and letg;; : a; — «a; be the length map as above. By 2.8(6) we obtain
(giuilug)y, = |gijui — ys| — h/2 = U(oq) = 3h/2.

Sincely; —yi1| < pand|g;ju; —u;| < p, this and 2.8 imply thafu,|u;),, > () —3h/2—2pu —
0o asi — oo. [

6.4. RemarkLeta be a(u, h)-road,a;: y; ~ u;, and setl; = [(«;), Lo = 0. Lety;: [0, L;] —
«; be the arclength parametrization @f with ¢;(0) = y;. Define a mapp: [0,00) — X by
(p(t) = (pl(t) for L1 <t< L,

Let0 < s <t and choose indices< j with L;,_; < s < L;, Lj_1 < j < L;. Then

s —t] = h <lp;(s) — ;O] < [s —t].

Since|pi(s) — ¢;(s)| < u, we see thap satisfies the rough isometry condition

s =t —p—h<|o(s) =) < |s—t[+p

forall s,z > 0.
However, it is usually easier to work with the sequeaddan with the functionp.

6.5. Roads in a hyperbolic spacBuppose thak is aj-hyperbolic space and thatis a(u, h)-
road inX, «;: y; ~ u;. By 6.3 the sequende:;) is Gromov and thus defines an elemént «
of the Gromov boundary.X. We writea: y ~ b and say thatv joinsthe sequence = (y;) to
b. If y; = y for all 7, we writea:: y ~ b.

We show that ifX is intrinsic, then each pair € X, b € 9.X can be joined by a road. This
result will be given in 6.7, and it follows immediately from the following more precise result.

6.6. Lemma.Let X be aj-hyperbolic space, lej € X, letu be a Gromov sequence X and
let a,,,: vy ~ u,, be a sequence df-short arcs. Then there is @6 + 2h, h)-road 5: y ~ @
such that eaclw; is a subarc of some,,,;) with [(3;) = .

Proof. Since (u;|u;), — oo, we can choose for eache N an integerm(i) such that
(ujlug)y > i for j,k > m(i) and such thain(1) < m(2) < ... We havely — u,;)| =
() [um(s))y = %, Which implies that there is a subabg = o,.;)[y, vs] of lengthi. We show
that is the desired road.
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By 2.8(6) we have
(Viltm@))y = |y — vil = h/2 =i = 3h/2.

This implies that is a Gromov sequence equivalenticsee 5.3(5). Let < j and letg: 5, —
B; be the length map fixing. Forx € 3; we havelr — y| < i < (Up(i)|Um(j))y- BY 2.15 this
yields|gz — x| < 40 4+ 2h, whences is a(4d + 2h, h)-road.OJ

6.7. Theorem.Let X be an intrinsici-hyperbolic space and let€ X, a € 90X, h > 0. Then
there is a(4d + 2h, h)-road3: y ~ a. O

If «: y ~ b € 0X is ageodesic ray in a hyperbolic spakethen(z|b) — oo asz € «
tends to the end. We next give a version of this result for roads.

6.8. Lemma.Leta: y ~ b € 9X be a(u, h)-road in a hyperbolic pointed spadeX, p) and
let M > 0. Then there is a subroad (see 62pf & such that(x|b) > M for all x € |3].

Proof. The result is clearly independent pf and we may assume that= y;. Write
a;: y; ~ u;. Astis a Gromov sequence by 6.3, theré such thatuy |u;) > M+5+4p+3h/2
forall j > k. Let3: z ~ b be the subroad of defined by3; = «;[griur, u;], i > k. Suppose
thatz € f3; for somei > k. It suffices to show thatz|b) > M.

Letj > i. Sinceq; is h-short, we havey;;x — y;| > |gx;ur — y;| — h. By 2.8(6) this yields
(9i57|uz)y, > (grjurlus)y, — 3h/2, which implies that

(x|u;) > (ugluj) —4p — 3h/2 > M + 6.

As j — oo, we obtain(z|b) > M by 5.11.00

If o andj are geodesic rays in a geodesibyperbolic spac&’ converging to the same point
b € 0X, thena andj run eventually close to each other. More precisely, there are subrays
a; C aandf; C f such that the bijective length mafy oy — f; satisfies|fx — z| <
160 for all x € «;; see [GdH, 7.2]. Similar results can be obtained (fori)-roads in an
intrinsic hyperbolic space. We prove the following result, which seems to be sufficient in several
applications. See also 6.25.

6.9. Closeness lemma.et X be an intrinsics-hyperbolic space and let: § ~ band3: z ~
b be (1, h)-roads in X converging to the same poihte 9.X. Then for eachr, € X there is
R > 0 such thatd(z, |3|) < 76+ p+ 3hforall z € |a] \ B(zo, R).

Proof. The result is clearly independent gf, and we choose, = y;. Write «; : 3; ™~ u;,
Bi: zi ~ v; and set’ = |y; —z;|. We show that the lemma holds with= K +1+70+4pu+4h.
Assume that € |a|\ B(yi, R) and chooseé with = € «;. Since(u,|v;),, — oo, thereism > i
With (v )y, > |2 — y1| + 3p. Chooseh-short arcsy: y,,, ~ vy, and7: yp, ™ 2.

There is a point:; € a,, with |z; — z| < u. We have

|21 = Ym| <1 — 2| + |2 — 1] + |Y1 — Y| < (um|vm)y1 —p < (um|vm)ym-

By the tripod lemma 2.15 we can find a poirt € ~ with |zo — 21| < 46 + h. As X is
(36,3h/2)-Rips by 2.35, there is a point € (3, U T with |z3 — 25| < 3§ + 3h/2 < 36 + 2h.
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We havel(7) < |y, — 2m| + h < K + 2u + h, whencer lies in the ballB(y;, K + 3u + h).
Since
22—l > |z —y| — o — 21| = 21 — 29| > R—46 —pp — b,

we obtain
d(xe,7) > R— K — 40 — 4 — 2h = 1 + 30 + 2h.

Hencexs € f3,,. This implies the lemma, becaugg — x| < 76 + p + 3h. O

6.10. Biroads.Let X be a metric space and let> 0, h > 0. By a(u, h)-biroadin X we mean
a sequence of arcsv;: u; ~ v; in X together with length mapg;: v; — ; for ¢ < j with
the following properties:

(1) Eachry; is h-short.

(2) For some (and hence for all) € v, we havelu; — 1| — oo, |v; — x1| — 0.

() gii = id, gix = gjr 0 g fori < j < k.

(4) |gijz — | < pforalli < jandx € .
The locus|y| is again defined as the union of all args

In the case: = 0, h = 0 we have a geodesic line. More precisely, the I0gyi$s a geodesic
line, and the mapg;; are inclusions.

Each pointy, € ~, divides a(u, h)-biroad?y into two (u, h)-roadsa and3, where

6.11. Lemma.Suppose that is a (i, h)-biroad, v;: uv; ~ v;. Thenu and v are Gromov
sequences an@d;|v;), < p+ h/2 for all p € v, and for alli.

Proof. Dividing ~ into two roads we see from 6.3 thatandv are Gromov sequences. The
inequality follows from 2.8(4) and (2.9

6.12. Biroads in a hyperbolic spacéet X be aj-hyperbolic space and letbe a(yu, h)-biroad
in X, v: u; ~ v By 6.11, the sequenc@ésandv define distinct elemenis = @ andb = v of
the Gromov boundarg X . We write5: a ~ b and say that the biroagljoins a to b.

6.13. Lemma.Let X be an intrinsici-hyperbolic space and let b € 0X, a # b, h > 0. Then
there is a(u, h)-biroad 7y : a ~ b with y = 125 + 10h.

_ Proof. Fix a base poinp € X. By 6.3 there aré i, h)-roadsa: p ~ a, o;: p ~ u; and
B:p b, B p v with gy = 40+2h. Observe that = 30 +4h. Sincea # b, the sequence
of numbergu;|v;) is bounded by 5.3(4). Passing to subsequences we may assume that

(6.14) |(wilvi) = (ujlvy)| < h
for all - andj. Moreover, we may assume that

for all .. We choosé:i-short arcsy; : u; ~ v; and show that the sequengavith suitable length
mapsy;; is the desired biroad.
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For eachi € N, theh-short triangleA; = («;, 3;, ;) induces the subdivisions
a=a;Ua;Ua], fi=BUB UG vi=Uy Uy

of the sides wittp € o, N 3}, u; € 7}; see 2.21. The lengths of the centefsj;, v; are at most
h by 2.24. Moreover,

(6.16) l(eg) = 1(B7) = (uilv), Uei) =1(7), L(B) =1(7)
We write~; = v;[y;, z:] with y; € 7, 2 € 7.
Leti < 5. We show that
(6.17) (i) <U(v;) = he
By (6.16) we have
l(ow) = Uaf) + 1(af) = (uilvi) + 1(7),
(o) = l(oz;) +1(aj) + l(oz;-’) < (ujlvy) +h+1(75).

By (6.14) and (6.15) these inequalities imply (6.17).

Similarly I(+]") < 1(v7) — h, whencel(v;) + (i) < () + I(7])- It follows that there is
a well defined orientation preserving length mag: g;;: v — 7; with gy; = y;,. It remains to
show that

(6.18) gz — | < p

for eachx € ;. We consider three cases.
Casel. x € .. This case is rather similar to Case 2 but easier. We omit the proof, which
gives (6.18) in the improved forfgx — z| < 3ug + 2h = u — 2h.
Case2.z € /. Sets = l(v;[z;, z]). There is a bijective length map,;: v/ — [/ fixing
v; With |p;2 — x| < po; see 2.15. Lelf: 5; — 3; be the length map fixing. Sinces is a
(10, h)-road, we havefy,x — ;x| < po. Furthermore,

(6.19) L(Bjlp, feir]) = U(Bilp, pix]) = (us|vi) + 1(B]) + s.

The pointw = ;z; is the common endpoint ¢f; and3;.
Subcas®a. fp;x € 3]. Settingz = goj_lfgpix we have|x — z| < 3ug. By (6.19) we obtain

Uvilyss 2]) = 1)) + U(Bjw, feix])
= 1(7;) + (wilve) +1(B7) + s — (uj|v;) — 1(B;)-

On the other hand,
(slys, 9]) = L(vilyss #]) = 1(77) + 5.
Since the length of each center arc is at nigshese estimates and (6.14) yield

2 = gx| <|I(v;) +1057) — 107 = UG+ [(uilvi) = (uslvj)] < 3,

whencelgx — z| < 3puo + 3h = p — h.
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Subcaseb. fy;x ¢ 3]. Sett = (3;[f piz, w]). By (6.19) we have
(ujlv) +1(8;) —t = (ugvi) +1(B]) + s,
which yieldss +t < 2h. If gz € 7}, then|gz — z;| < h. If gz € 47, then
|97 — 2| < U(vsly;» 92]) = L) +s <h+s,
which is thus valid in both cases. As= ¢,z;, we get
gz — x| < gz — 2| + |z — w[ + |w = foix| + | foir — x|
<h+s+p+t+2ug=3up+3h=pu—h.

Case3.r € 7. Now [z — ;| < h and|gr — y;| < h. By Case 1 we havgy; — y;| =
ly: — gyi| < i — 2h. These estimates yie|dx — z| < p, and the theorem is provedl

We next give a version of the standard estimate 2.33 for biroads.

6.20. Extended standard estimatelet X be j-hyperbolic, letp € X and leta: a ~ b be a
(11, h)-biroad. Then

d(p, |al) — 46 — h < (alb), < d(p,|al) + p+ h/2.
Proof. Write «; : u; ~ v;. Then 2.33 gives
d(p, ;) — 26 — h < (u;|v;), < d(p, ;) + h/2.
Sinced(p, |a|) < d(p, ;) < d(p,|a|) + w for largei, the lemma follows from 5.11]

6.21. Strings.Working with a road or a biroad = («;) is somewhat uncomfortable, because
one must often choose a particular membgand then go from one member to another with
the length mapg;;. It is sometimes easier to work with an object obtained by identifying the
members ofv. This object is called the string of, and it is defined as follows:
Leta: g ~ b, a;: y; ~ u; be a(p, h)-road in a domairds and letdu & be the disjoint union
of all o;, that is,
dua = {(z,7): i €N, z € a;}.

Define an equivalence relation ilu & by setting(z, i) ~ (v, j) if eitheri < j, y = g;;x or
Jj <1, x = g;;y. The sestr a of all equivalence classes is tb&ing of &. For each, we let

(6.22) i o — stra

denote the natural map, defined fay i) € m;z.
If £, ¢ € stra, we can find representatives, i) € &, (z,4) € ¢ with the same index Since
the mapgy;; are length maps, the number

1€, ¢) = Uai[, 2])

depends only og and (. The function/ is a metric instr @, and the maps; of (6.22) are
length maps in a natural sense. The initial poiptsf «; define an initial poiny* of str &, and
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we obtain a bijective isometry : stra — [0, 00) by settingw(&) = I(y*, £). The mapw also
defines a linear order istr &; then¢ < ( iff there arei € N and(z,i) € &, (z,i) € ¢ such that
the pointsy;, =, z, u; are in this order om;.

Thelocus|¢| of an element € str a is the set of alke € G such thatz, ) € £ for somei.
Then|a| = J{[¢|: € € stra}.

Thestring of a(u, h)-biroada: a ~ b, a;: u; ~ v, in G is defined similarly. Now there is
a bijective order preserving isometry str @ — R, andw is unique up to an additive constant.
We shall use obvious notation likg , £&,] and[—o0, &] for intervals instr .

6.23. Extended triangledt is possible to extend parts of the theory/ethort triangles (see
2.21) to the case where some of the vertices lie on the Gromov boufdarggome sides of
such a generalized triangle will He, h)-roads or(u, h)-biroads with suitablg: and h. We
consider only the case where all vertices lie on the boundary and prove first the following
version of the Rips condition for such triangles:

6.24. Theorem.Let X be an intrinsicd-hyperbolic space, let,b,c € 0X, leta: b ~
¢, B:c~a, ¥: a ~ bbe(u,h)-biroads and letc € |&|. Thend(zx, || U |¥|) < C(6, u, h) =
466 + 11p + 22h.
Proof. Expressingy as a union of twd, h)-roads we find by 6.9 a membey: b; ~ ¢, of
a such that
d(I’ ai) < 2 d(blv |’7|) < 017 d(clv |B|) < Cl
whereC; = 76 + p + 3h. Similarly we find an args; : ¢, ~ a, such that

d(az, |7]) < Ch, d(er, i) < Cy + p.

Chooseh-short arcs?': ¢; ~ ay andy’: as ~ by. There is a point; € «a; with |27 — x| < p.
SinceX is (30 + 2h, h)-Rips by 2.35, we find a point, € 5 U+ with |z — 21| < 3 + 2h.
If o € [, it follows from the second ribbon lemma 2.18 that therg & 5, with |z, —y| <
If 25 € +', we choosé: € N such thati(ay, v;) < C + pandd(by,v,) < C; + u. By 2.18
we again find a poing € ~; with |z — y| < Cs, and thenz —y| < C. O

In order to prove a version of the tripod lemma 2.15 for extended triangles we make some

preparation. LeX be a hyperbolic space, letb, ¢ be distinct points id X, and let
a:bne Bicrna, y:ianb

be (i, h)-biroads. Thern(a, 3,7) is an extendedy, h)-triangle. Fori € N, we letw; denote
each of the natural maps — stra, 3; — strf3, 7 — str7. Given an elemend,, € stra,
the intervals(—oo, &,] and[¢,, co) define two(u, h)-roads converging to andc, respectively.
If, in addition, &5 € str 3 andé, € str¥, there are three natural (orientation reversing) bijective
length maps and their inverses between the corresponding intervals, for exgmgle co) —
(—o0, év] with s = &,.
6.25. Extended tripod lemmalet X be an intrinsics-hyperbolic space and Iéty, 3,7) be an
extended ., h)-triangle as above. Then there are elemefitsc stra, & € str 3, &, € stry
such that the corresponding length mapsatify the inequality

d( fel, 1g]) < C (6, p, )

for all £ in the domain off.
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Proof. By the closeness lemma 6.9 we find elemefits, b), ((a,c) € stra, ¢(8,¢),
((B,a) € str B and((vy,a),((,b) € stry such that

d([¢(y, a)l, [€(8,a)]) v d([C(v, b)l, [¢(a, D)) v d([C(e, )], [C(B, ¢)]) < Cy

with C; = 76+ 21+ 3h. Choose an integérsuch that the natural imagex; covers the interval
[C(a, b),((a, ¢)] and such that the corresponding relations holdrfgr andr;~;. Choose points
ba,Ca € oy, cg,ag € (i, ay,b, € v such that, for examplé, is the unique point with
miba = ((a, b). Then

(6.26) lag — ay| V by — bal V |ca — cal < Cy + 2p.

Choosingh-short arcs?’: ¢, ~ ag andvy’: ag ~ b, we obtain ank-short triangle with
sidesa; (b, cal, #',7'- Choose points,, € «;, j; € 3', x, € 4" in the center of this triangle;
see 2.21. By (6.26) and by the second ribbon lemma 2.18 we find pgjrts3; andz., € ;
with [v5 — 23| V |z, — 2! | < Ca = 80 + 5(C1 + 2u1) + 5h. Since the diameter of the center is
at mostdd + 4h by 2.24, we have

(6.27) |To — x|V |xg — 24| V |1y — 24| < C3 =40 + 4h + 2C,.

We show that the lemma holds with = m;z,, &5 = Mz, & = mz,.
Consider the intervalfz, co) C str 3, (—o0,&,] C stry, and letf: [£3,00) — (—00,&,]
be the length map withis = . Let§ > £g. It suffices to find an estimate

(6.28) d(|f&l, [€]) < €0, p, ).

By the closeness lemma 6.9 we can find eleménts str 3 and(, € str4 such that; >
€ G <&, d(|¢s],1¢]) < €1 < Cs. Choose integers: andn such that writingy,, : w, ™~ v,
we have

[§ﬁ7Cﬂ] C T m, [ngv] C T Yns U(Bm) < l(ﬂ'numgv)'
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Let ys, 23 € Bm, Yy, 24 € 7, e the unique points with,,ys = &3, T2 = (3, Ty, =
&y Tnzy = Gy Thenlyg —y, | V |25 — 2| < C3 4+ 2p by (6.27). Lety: 5,,]ys, 23] — 7, be the
orientation reversing length map witly; = v.,. There is a point € (3,,[y3, 23] with m,z = &.
By the ribbon lemma 2.17 we haygr — 2| < Cy = 85 + 5(C5 + 2u) + 5h. Sincex € [¢| and
gz € | f€], this implies (6.28) withC' = Cy = 4585 + 110p + 125h. O

6.29. Extended stabilit\We next extend the stability theory of Section 3 to the case where at
least one endpoint lies on the Gromov boundary, The main result is given in 6.32. We start with
the easy case of two roads or biroads with common endpoints.

6.30. Lemma. Suppose thafX is an intrinsic §-hyperbolic space. Ify,a’ are (i, h)-roads
g~ b e dX or(u,h)-biroadsa ~ b, thendy (|a|, |a/]) < 435 + 11u + 20h.

Proof. We prove the case of biroads. Let |a|. By 6.9 we can find members : u; ~ v;
of & anda’; of &’ such that

d(uiaoé;') S Ca d(Ui,CY;) S C7 d(maal) S 22

whereC' = 76 + 2; + 3h. By Lemma 2.18 this yields; C B(«a/,85 + 5C + 5h), whence
d(z,|a']) < 438 + 11+ 20h. O

6.31. Lemma.Suppose thak is an intrinsico-hyperbolic space and that: [0,00) — X isa
(A, n)-quasi-isometry; se€8.3). Theny(t) converges to a poirit € 0.X ast — oo.

If o: R — X isa(\, u)-quasi-isometry, theg(¢) converges to limita, b € 90X ast — —oo
ort — oo.

We shall writea = p(—o0) andb = ¢(00).

Proof. It suffices to prove the first part of the lemma. l0ek s < t. We must show that
(p(s)]p(t)) — oo ass — oo. Leth = 1 and choose ah-short arco: ¢(s) ~ (t). By 3.7
we havedy (ag, ¢[s, t]) < M (5, A\, n). By the standard estimate 2.33 we get

(o(s)|e(t) > d(p, ast) — 26 — h > d(p, ¢[s,t]) — M — 26 — h.
For eachu € [s, t] we have
Ip = p(u)| > |¢(0) — p(u)| = |(0) — p| = s/A — p—[p(0) = p| — o0
ass — oo, and the lemma follows]

6.32. Theorem(Extended stability) Suppose thétis an intrinsicé-hyperbolic space.

(1) Lety: [0,00) — X be a(A, u)-quasi-isometry and let: ¢(0) ~ ¢(co) be a(u, h)-
road. Thendy (|a],im @) < M (8, A, i1, h).

(2) Letp: R — X be a(\, pu)-quasi-isometry and let: ¢(—o0) n ¢(c0) be a(u, h)-
biroad. Theniy (|al,im¢) < M(J, A, i, h).

Proof. We prove part (2); the proof of (1) is rather similar. We may assumeitkat, < .
Let M, be the numbed (4, \, ) given by the stability theorem 3.7. Define a sequence of
numbersRk, < R; < ... by
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Setu; = o(—R;), v; = ¢(R;) and choosé-short arcss; : u; ~ v;. We show that the sequence
Bis a(u, h)-biroads: ¢(—oo) ~ @(oo) With ;= 1 (5, A, i, h).

We havedy (5;, ¢|—R;, R;]) < M,. Hence we can choose pointse 5; with |y; — ¢(0)] <
M,. Settings; = I(5;[y:, vi|]) we have

si < [yi —vil + h < [yi —@(0)] + [0(0) — @(R;)| + h < Mo + AR + pp + h,
Sit1 2 [Yir1 — vis| = |0(0) — @(Ris1)| — [9(0) = yis1| = Ripa /A — p — Mo,

whences; 1 > s; + 1. Similarly ¢, > t; + 1 for t; = I(5;[u;, y;]). Consequently, for each pair
i+ < j there is a unique orientation preserving length map 3, — 3; with g;;y; = y;. Since
d(ui, B) V d(v;, B;) < My, it follows by the ribbon lemma 2.17 that

|gijw — x| < 8 + 5My + 5h = ju (0, A, p, h)

for all 2 € ;. Hencep is a(1, h)-biroad frome(—oc0) to (o).
Sincedy (|5],im ¢) < My, the theorem follows from 6.301

6.33. Roughly starlike spacetet X be ad-hyperbolic space and lét > 0, x> 0, h > 0.
We say thatX is (K, u, h)-roughly starlikewith respect to a poiny € X if for eachz € X
there is &y, h)-roada: y ~ b € 0X with d(z, |a|) < K.

In the casq: = 0, h = 0, the condition is the same as in [BHK, p. 18].

The spaceX is said to be K, i, h)-roughly starlike with respect to laoundary pointa €
0X if for eachz € X thereis au, h)-biroada: a ~ b € 0X with d(z, |a|) < K.

If X is (K, u, h)-roughly starlike with respect to € X* for all h > 0, we say thatX is
(K, nv)-roughly starlikewith respect to:.

The essential parameter of rough starlikenegs.ilmn fact, in intrinsic spaces we can always
chooseh to be arbitrarily small ang: fairly small:

6.34. Lemma.Suppose thak is an intrinsico-hyperbolic space.

(1) If X is (Ko, 1o, ho)-roughly starlike with respecttgp € X, thenX is (K7, 1, h)-roughly
starlike with respect tg for everyh > 0 and forp; = 40 + 1, Ky = K (Ko, o, ho, 9).

(2) If X is (Ko, o, ho)-roughly starlike with respect ta € 0X, thenX is (Ks, po, h)-
roughly starlike with respect tefor everyh > 0 and foruy, = 12041, Ky = Ks(Ko, o, ho, 0).

Proof. (1) We may assume that< 1/2. Letx € X and choose &, ho)-roada: y ~ b
with d(z, |a|) < Ky. By 6.7 there is &y, h)-roads: y ~ b. By 6.30 we have

du(|al, |8]) < C =430+ 11( V po) +20(1 V hy),

whenced(z, |3]) < Ko + C.
Part (2) is proved similarly with the aid of Lemma 6.13.

6.35. Lemma.(Two-point starlikeness) Suppose thatis an intrinsicé-hyperbolic space and
that X is (K, u)-roughly starlike withy = 126 + 1 with respect touy € 0X. Letzy, 2y €
X, h > 0. Then there is gy, h)-biroad a: a; ~ ay such thatd(z;,|a|) < K;(K,d) for
i=1,2.
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Proof. We may assume thdt < 1/10. There are(y, h)-biroadsa;: ag ~ a;, i = 1,2,
such thatd(z;, |a;|) < K. If a; = ao, we can choose = &; by 6.30. Assume that; # a
and setC' = 466 + 11u + 3. Choose pointy; € |a;| with |z; —y| < K+ 1, i = 1,2.
We may assume thal(ys, |a|) A d(yy, |as|) > C, since otherwise we may take = a; or
a = as. Choose gy, h)-biroadas: a; ~ ay. By the extended Rips condition 6.24 we have
d(yi, |as|) < C, i = 1,2, and the lemma holds with = a3, K1 = K +C + 1. [0

In [V a5] we shall make use of roads and biroads to study hyperbolic domains with the quasi-
hyperbolic metric in Banach spaces. These domains are always roughly starlike with respect to
each point in the domain and in its boundary.
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canonical gauge, 27
center of a triangle, 8
closeness lemma, 32
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cross difference, 20
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extended stability, 38

extended standard estimate, 35
extended triangles, 36
extended tripod lemma, 36

geodesic ray, 23

Gromov boundary, 23

Gromov closure, 23

Gromov hyperbolic space, 4

Gromov product, 4

Gromov product of boundary points, 24
Gromov sequence, 22

Hausdorff distance, 3
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h-short triangle, 7
hyperbolic space, 4

induced subdivision, 8
intrinsic space, 2

large point, 19
length map, 5

locus of a biroad, 33
locus of aroad, 31

metametric, 19

pointed space, 22
positive map, 19
positive quadruple, 20
positive triple, 19
projection lemma, 13
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quasigeodesic, 11
quasindbius, 21
quasisymmetric map, 19

ratio of a triple, 19

ray, 30

relative positivity, 20
relative quasiribius, 21
relative quasisymmetry, 20
ribbon lemma, 6

Rips condition, extended, 36
Rips space, 9

road, 30

rough inverse, 15

roughly injective map, 15
roughly starlike space, 39
roughly surjective map, 15

slim triangle, 9

small point, 19

stability, 11, 13

stability, extended, 38

standard estimate, 10

standard estimate, extended, 35
string, 35

subroad, 31

triangle, 7

triangle, extended, 36
tripod lemma, 5
two-point starlikeness, 39

weakly surjective map, 29



