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1 Introduction

The theory of Gromov hyperbolic spaces, introduced by M. Gromov in the eighties, has been
considered in the books [CDP], [GdH], [Sh], [Bow], [BH], [BBI], [Ro] and in several papers,
but it is often assumed that the spaces are geodesic and usually also proper (closed bounded sets
are compact). A notable exception is the paper [BS] of M. Bonk and O. Schramm. The purpose
of the present article is to give a fairly detailed treatment of the basic theory of more general
hyperbolic spaces. However, we often (but not always) assume that the space isintrinsic, which
means that the distance between two points is always equal to the infimum of the lengths of all
arcs joining these points.

We do not assume that the reader has any previous knowledge on hyperbolic spaces.

∗MSC 2000 Subject Classification: 53C23
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A motivation for this article was my work [V̈a5], where I generalize some results of M.
Bonk, J. Heinonen and P. Koskela [BHK] for domains in Banach spaces with the quasi-
hyperbolic metric. These metric spaces are intrinsic, but they need not be geodesic, and they
are proper only in the finite-dimensional case.

The main idea in this article is that geodesics are replaced byh-short arcs. An arcα with
endpointsx andy is h-short withh ≥ 0 if its length l(α) is at most|x − y| + h. Geodesic
rays to a boundary point will be replaced by certain sequences ofh-short arcs, calledroads,
and geodesic lines between boundary points will be replaced by another kind of arc sequences,
calledbiroads.

Alternatively, we could sometimes make use of the result of Bonk and Schramm [BS, 4.1]
stating that everyδ-hyperbolic metric space can be isometrically embedded into aδ-hyperbolic
geodesic space. The proof of this embedding theorem involves transfinite induction, and I have
preferred direct and more elementary proofs.

Some results and proofs are rather obvious modifications of the classical case where the
space is geodesic and proper. Presumably, a part of the theory belongs to the folklore. On the
other hand, some concepts are genuinely more complicated than in the classical case. For ex-
ample, the center of anh-short triangle consists of three arcs and not of three points, and the
roads and biroads mentioned abover are clumsier than geodesic rays and lines.

Certain ideas of the paper seem to be new also in the classical case. In 3.12 we give a simple
converse of the stability theorem. (A stronger result with a harder proof has been given by Bonk
[Bo].) In Section 5 we consider a functiondp,ε (wherep ∈ X andε > 0), not only as a metric
of the Gromov boundary∂X but as a “metametric” of the Gromov closureX∗ = X ∪ ∂X of a
hyperbolic spaceX; thendp,ε(x, x) > 0 for x ∈ X. This enables us to extend each quasi-iso-
metryf : X → Y between hyperbolic spaces to mapsf ∗ : X∗ → Y ∗ that are quasim̈obius rel
∂X, not only in∂X.

Hyperbolic spaces play an important role in group theory, but connections with group theory
are not considered in this article. See [KB] for a recent survey.

Acknowledgement. I thank Juha Heinonen for calling my attention to this area and for en-
couragement.

2 Hyperbolic spaces

2.1. Summary.I start each section with a brief summary. In Section 2 we give the definition
and the basic properties of hyperbolic spaces. The definition is given in terms of the Gromov
product. An alternative characterization for intrinsic hyperbolic spaces in terms of slim triangles
is also given.

2.2. Notation and terminology.By aspacewe mean a metric space. The distance between points
x andy is usually written as|x − y|. An arc in a spaceX is a subset homeomorphic to a real
interval. Unless otherwise stated, this interval is assumed to be closed. Then the arc is compact
and has two endpoints. We writeα : x y y if α is an arc with endpointsx andy. If needed, this
notation also gives an orientation forα from x to y. Occasionally, we consider a singleton{x}
as an arcα : x y x.

A spaceX is intrinsic if

|x− y| = inf{l(α)| α : x y y},
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for all x, y ∈ X. Intrinsic spaces are often calledlength spacesor path-metric spacesin the
literature.

Let h ≥ 0. We say that an arcα : x y y is h-short if

l(α) ≤ |x− y|+ h.

Thusα is a geodesic iff it is 0-short. We see thatX is intrinsic iff for each pairx, y ∈ X and
for eachh > 0 there is anh-short arcα : x y y.

The basic notation is fairly standard. We letR andN denote the sets of real numbers and
positive integers, respectively. Balls and spheres are written as

B(a, r) = {x : |x− a| < r}, B̄(a, r) = {x : |x− a| ≤ r},
S(a, r) = {x : |x− a| = r}.

More generally, if∅ 6= A ⊂ X, we set

B̄(A, r) = {x ∈ X : d(x,A) ≤ r}.

The distance between nonempty setsA,A′ ⊂ X is d(A,A′), and the diameter of a setA is
d(A). TheHausdorff distancebetweenA andA′ is defined by

dH(A,A′) = inf {r : A′ ⊂ B̄(A, r), A ⊂ B̄(A′, r)}.

For an arcα, we letα[u, v] denote the closed subarc ofα between pointsu, v ∈ α, and for half
open subarcs we writeα[u, v) = α[u, v]\{v}. For real numberss, twe sets∧t = min{s, t}, s∨
t = max{s, t}. To simplify notation we often omit parentheses writingfx = f(x) etc.

2.3. Convention.Throughout the article, we letX denote a metric space.

2.4. Lemma.Every subarc of anh-short arc ish-short.

Proof.Suppose thatα : x y y is h-short and thatu, v ∈ α with u ∈ α[x, v]. Then

|x− u|+ l(α[u, v]) + |v − y| ≤ l(α) ≤ |x− y|+ h

≤ |x− u|+ |u− v|+ |v − y|+ h,

which yieldsl(α[u, v]) ≤ |u− v|+ h. �

2.5. Remark.Assume thatα : x y y is anh-short arc of lengthL = l(α), and letϕ : [0, L] → α
be its arclength parametrization. Then

|s− t| − h ≤ |ϕ(s)− ϕ(t)| ≤ |s− t|

for all s, t ∈ [0, L]. Thus the arclength parametrization of anh-short arc is anh-rough geodesic
in the sense of Bonk and Schramm [BS]. The converse is not true, because anh-rough geodesic
is defined by|s− t| − h ≤ |ϕ(s)− ϕ(t)| ≤ |s− t|+ h, and it need not even be continuous.

2.6. Arcs or paths?It is usually possible to work alternatively with arcs or paths (maps of
an interval). Whenever possible, I prefer arcs because of shorter notation. However, paths are
unavoidable when studying quasi-isometries, which need not be continuous or injective.
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2.7. The Gromov product.Forx, y, p ∈ X we define theGromov product(x|y)p by

2(x|y)p = |x− p|+ |y − p| − |x− y|.

A geometric interpretation of the Gromov product is obtained by mapping the triple(x, y, p)
isometrically onto a triple(x′, y′, p′) in the euclidean plane. The circle inscribed to the triangle
x′y′p′ meets the sides[p′, x′] and[p′, y′] at pointsx∗ andy∗, respectively, and we have(x|y)p =
|x∗ − p| = |y∗ − p|.

A useful property of the Gromov product is that in hyperbolic spaces, it is roughly equal to
the distance betweenp and anh-short arcα : x y y; see 2.33.

We next give some elementary properties of the Gromov product.

2.8. Lemma.(1) (x|y)p = (y|x)p, (x|y)y = (x|y)x = 0.
(2) |x− y| = (x|z)y + (y|z)x.
(3) 0 ≤ (x|y)p ≤ |x− p| ∧ |y − p|.
(4) |(x|y)p − (x|y)q| ≤ |p− q|.
(5) |(x|y)p − (x|z)p| ≤ |y − z|.
(6) If α : p y y is h-short and ifx ∈ α, then

|x− p| − h/2 ≤ (x|y)p ≤ |x− p|.

Proof. (1) is trivial, and (2) follows by direct computation. The first inequality of (3) is the
triangle inequality. Furthermore,

2(x|y)p ≤ |x− p|+ |y − p| − (|x− p| − |y − p|) = 2|x− p|,

and similarly2(x|y)p ≤ 2|y − p|, so (3) is true. The proof of (4) is equally easy:

2|(x|y)p − (x|y)q| =
∣∣|x− p| − |x− q|+ |y − p| − |y − q|

∣∣ ≤ 2|p− q|,

and also (5) follows from the triangle inequality.
The second inequality of (6) follows from (3). Sinceα ish-short, we have|p−x|+ |x−y| ≤

l(α) ≤ |p− y|+ h, which implies the first inequality of (6).�

2.9. Lemma.Suppose thatα : y y z is h-short and thatx ∈ X. Then(y|z)x ≤ d(x, α) + h/2.
In particular, (y|z)p ≤ h/2 for all p ∈ α.

Proof.Let p ∈ α. Since|z− p|+ |y− p| ≤ l(α) ≤ |y− z|+ h, the triangle inequality gives

2|x− p| ≥ |x− z| − |z − p|+ |x− y| − |y − p| ≥ 2(y|z)x − h,

and the lemma follows.�

2.10. Definition.Let δ ≥ 0. A spaceX is (Gromov)δ-hyperbolicif

(2.11) (x|z)p ≥ (x|y)p ∧ (y|z)p − δ

for all x, y, z, p ∈ X. A space isGromov hyperbolicor briefly hyperbolicif it is δ-hyperbolic
for someδ ≥ 0.
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Alternatively, the definition can be written as

(2.12) |x− z|+ |y − p| ≤ (|x− y|+ |z − p|) ∨ (|x− p|+ |y − z|) + 2δ.

A third formulation of (2.11) is given in (4.6). We shall occasionally make use of the inequality

(2.13) (x|u)p ≥ (x|y)p ∧ (y|z)p ∧ (z|u)p − 2δ,

which is obtained by iterating (2.11).

2.14. Examples.The real line is0-hyperbolic. A classical example of a hyperbolic space is
the Poincaŕe half spacexn > 0 in Rn with the hyperbolic metric defined by the element of
length|dx|/xn. This space isδ-hyperbolic withδ = log 3 [CDP, 4.3]. More generally, uniform
domains with the quasihyperbolic metric are hyperbolic; see [BHK, 1.11] for domains inRn

and [Vä5] for arbitrary Banach spaces.
Every bounded space is trivially hyperbolic, but only unbounded hyperbolic spaces are in-

teresting.

In the rest of this section we studyh-short arcs in hyperbolic spaces. The following useful
result is usually (forh = 0) mentioned together with the so-called tripod map; see [GdH, pp.
38,41]. However, tripods are not needed in this article.

2.15. Tripod lemma.Suppose thatαi : a y bi, i = 1, 2, are h-short arcs in aδ-hyperbolic
space. Letx1 ∈ α1 be a point with|x1 − a| ≤ (b1|b2)a, and letx2, x

′
2 ∈ α2 be points with

|x2 − a| = |x1 − a| andl(α2[a, x
′
2]) = l(α1[a, x1]). Then

|x1 − x2| ≤ 4δ + h, |x1 − x′2| ≤ 4δ + 2h.

Proof.Sett = |x1 − a| = |x2 − a|. By 2.8(6) we have(xi|bi)a ≥ t− h/2. Hence

t− |x1 − x2|/2 = (x1|x2)a ≥ (x1|b1)a ∧ (b1|b2)a ∧ (b2|x2)a − 2δ ≥ t− h/2− 2δ,

which implies the first inequality.
Let li denote the length metric ofαi, i = 1, 2, that is,li(u, v) = l(αi[u, v]). We have

|x2 − x′2| ≤ l2(x2, x
′
2) = |l2(a, x2)− l2(a, x

′
2)| = |l2(a, x2)− l1(a, x1)|.

Sincet ≤ li(a, xi) ≤ t + h for i = 1, 2, we obtain|x2 − x′2| ≤ h, and the second inequality
follows. �

2.16.Length maps.Suppose thatα andβ are rectifiable arcs withl(α) ≤ l(β). A mapf : α→ β
is a length mapif

l(fα[u, v]) = l(α[u, v])

for all u, v ∈ α.
Suppose thatα1, α2 : a y b areh-short arcs in aδ-hyperbolic space with common endpoints

and thatl(α1) ≤ l(α2). Let f : α1 → α2 be the length map fixinga. Then|fx − x| ≤ 4δ + 2h
for all x ∈ α1 by the tripod lemma 2.15. The following two lemmas give related results for
somewhat more general situations.
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2.17. Ribbon lemma.LetX be an intrinsicδ-hyperbolic space, letαi : ai y bi beh-short arcs
in X, i = 1, 2, let l(α1) ≤ l(α2), |a1 − a2| ≤ µ, d(b1, α2) ≤ µ, and letf : α1 → α2 be the
length map withfa1 = a2. Then|fx− x| ≤ 8δ + 5µ+ 5h for all x ∈ α1.

Proof. Let againli denote the length metric ofαi, i = 1, 2. Choose a pointy ∈ α2 with
|b1 − y| ≤ µ. Then

l2(y, fb1) ≤ |l2(a2, y)− l2(a2, fb1)| = |l2(a2, y)− l1(a1, b1)|
≤

∣∣|a2 − y| − |a1 − b1|
∣∣ + h ≤ 2µ+ h.

Let x ∈ α1 and sets = l1(a1, x), L = l(α1). If s ≥ L− µ− h, thenl2(fx, fb1) = l1(x, b1) ≤
µ+ h and

|fx− x| ≤ |fx− fb1|+ |fb1 − y|+ |y − b1|+ |b1 − x|
≤ (µ+ h) + (2µ+ h) + µ+ (µ+ h) = 5µ+ 3h.

Assume thats ≤ L− µ− h. Choose anh-short arcα0 : a1 y y. Since

|a1 − y| ≥ |a1 − b1| − |y − b1| ≥ L− h− µ ≥ s,

there is a pointx0 ∈ α0 with l0(a1, x0) = s wherel0 is the length metric ofα0. We have

2(b1|y)a1 = |a1 − b1|+ |a1 − y| − |b1 − y| ≥ L− h+ s− µ ≥ 2s.

Hence|x − x0| ≤ 4δ + 2h by 2.15. Sett = l(α0) − s = l0(y, x0). If t ≥ |a2 − y| − µ, then
s = l(α0)− t ≤ |a1 − y|+ h− |a2 − y|+ µ ≤ 2µ+ h and

|fx− x| ≤ |fx− a2|+ |a2 − a1|+ |a1 − x| ≤ 2s+ µ ≤ 5µ+ 2h.

Assume thatt ≤ |a2 − y| − µ. There is a pointx2 ∈ α2[a2, y] with l2(x2, y) = t. We have

2(a1|a2)y = |a1 − y|+ |a2 − y| − |a1 − a2| ≥ 2|a2 − y| − 2µ ≥ 2t,

whence|x0 − x2| ≤ 4δ + 2h by 2.15. Hence

|fx− x| ≤ |fx− x2|+ |x2 − x0|+ |x0 − x|
≤ |s+ t− l2(a2, y)|+ (4δ + 2h) + (4δ + 2h).

Here

|s+ t− l2(a2, y)| = |l(α0)− l2(a2, y)| ≤
∣∣|a1 − y| − |a2 − y|

∣∣ + h ≤ µ+ h,

and we obtain the desired estimate|fx− x| ≤ 8δ + µ+ 5h. �

2.18. Second ribbon lemma.LetX be an intrinsicδ-hyperbolic space and letαi : ai y bi be
h-short arcs inX, i = 1, 2, with |a1 − a2| ≤ µ, |b1 − b2| ≤ µ. Then the Hausdorff distance
dH(α1, α2) is at most8δ + 5µ+ 5h.
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Proof.Letx ∈ α1. We must find a pointy ∈ α2 with |x−y| ≤ 8δ+5µ+5h. If l(α1) ≤ l(α2),
this is given by 2.17. Assume thatl(α2) < l(α1) and letf : α2 → α1 be the length map with
fa2 = a1. If x ∈ fα2, we may choosey = f−1x by 2.17. Assume thatx ∈ α1[fb2, b1] and let
li denote the length metric ofαi. We have

|x− b1| ≤ l1(fb2, b1) = l1(a1, b1)− l1(a1, fb2)

= l1(a1, b1)− l2(a2, b2) ≤ |a1 − b1|+ h− |a2 − b2| ≤ 2µ+ h.

Hence|x− b2| ≤ 3µ+ h, and we may choosey = b2. �

2.19. Lemma.Letαi : p y ai, i = 1, 2, beh-short arcs in aδ-hyperbolic space, letq ≥ 0 and
let yi ∈ αi be points with|p− yi| ≥ (a1|a2)p − q. Then

|(y1|y2)p − (a1|a2)p| ≤ 6δ + q + 3h.

Proof. We write (x|y) = (x|y)p for x, y ∈ X. Sett = (a1|a2). Since|p − yi| − h/2 ≤
(yi|ai) ≤ |p− yi| by 2.8(6), we obtain

(y1|y2) ≥ (y1|a1) ∧ (a1|a2) ∧ (a2|y2)− 2δ

≥ |w − y1| ∧ t ∧ |p− y2| − h/2− 2δ ≥ t− 2δ − q − h/2.

It remains to show that

(2.20) (y1|y2) ≤ t+ 6δ + q + 3h.

We have

t ≥ (a1|y1) ∧ (y1|y2) ∧ (y2|a2)− 2δ

≥ |p− y1| ∧ (y1|y2) ∧ |p− y2| − h/2− 2δ.

We may assume that|p−y1| ≤ |p−y2|. If |p−y1| > t+h/2+2δ, then(y1|y2) ≤ t+h/2+2δ,
and (2.20) holds. Assume that|p− y1| ≤ t+ h/2 + 2δ. Let zi ∈ αi be points with|p− zi| = t.
Sinceα1 is h-short, we obtain

|y1 − z1| ≤
∣∣|p− y1| − t

∣∣ + h ≤ (h/2 + 2δ) ∨ q + h ≤ 2δ + q + 2h.

As |z1 − z2| ≤ 4δ + h by 2.15, we have|y1 − z2| ≤ 6δ + q + 3h, whence(y1|y2) ≤ (z2|y2) +
6δ + q + 3h ≤ |p− z2|+ 6δ + q + 3h, and (2.20) follows.�

2.21. Triangles.By a triangle in X we mean a triple of arcsα : b y c, β : a y c, γ : a y b.
The pointsa, b, c are theverticesand the arcsα, β, γ are thesidesof the triangle∆ = (α, β, γ).
A triangle ish-short if each side ish-short. We set

ra = (b|c)a, rb = (a|c)b, rc = (a|b)c, |∆| = α ∪ β ∪ γ.

From 2.8(2) we get

(2.22) |a− b| = ra + rb, |a− c| = ra + rc, |b− c| = rb + rc.
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β
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γ
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cβ

bα

bγ
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Let aγ and bγ be the points ofγ such that settingγa = γ[a, aγ] and γb = γ[bγ, b] we
havel(γa) = ra and l(γb) = rb. Thenγ is the union of successive subarcsγa, γ

∗, γb where
γ∗ = γ[aγ, bγ] is called thecenter of the sideγ in the triangle∆. The arcγ∗ may degenerate to
a point; this happens iffγ is a geodesic. We say that the subdivision

γ = γa ∪ γ∗ ∪ γb

is the subdivision ofγ induced by the triangle∆ (or by the pointc). The sidesα andβ are
divided similarly. Thecenter of the triangle∆ is the set

Z(∆) = α∗ ∪ β∗ ∪ γ∗.

Observe that for each vertexv of ∆ we have

(2.23) |∆| ∩ S(v, rv) ⊂ Z(∆).

2.24. Lemma.Suppose thatX is δ-hyperbolic and that∆ is anh-short triangle inX. Then
(1) l(τ ∗) ≤ h for each sideτ of ∆,
(2) d(Z(∆)) ≤ 4δ + 4h.

Proof.Let ∆ be as in 2.21. By (2.22) we get

|a− b|+ l(γ∗) = ra + l(γ∗) + rb = l(γ) ≤ |a− b|+ h,

which implies (1). Furthermore,|aβ − aγ| ≤ 4δ+ 2h by the tripod lemma 2.15, and (2) follows
from (1).�

2.25. Lemma.Suppose that∆ is anh-short triangle. Then:
(1) d(v, Z(∆)) ≥ rv − h for each vertexv of ∆.
(2) If x ∈ X and ifd(x, τ) ≤ t for each sideτ of ∆, thend(x, Z(∆)) ≤ 3t+ h/2.

Proof. Let ∆ be as in 2.21. We haved(a, τ ∗) ≥ ra − h for τ = β, γ. By 2.9 we have
d(a, α) ≥ ra − h/2, and (1) follows.

To prove (2), choose a pointy ∈ α with |x − y| ≤ t. It suffices to show thatd(y, α∗) ≤
2t+ h/2. We may assume thaty ∈ αb. By 2.9 we obtain

rb ≤ d(b, β) + h/2 ≤ |b− y|+ |y − x|+ d(x, β) + h/2 ≤ |b− y|+ 2t+ h/2.

Moreover,|b− y|+ |y − bα| ≤ l(αb) = rb, whenced(y, α∗) ≤ |y − bα| ≤ 2t+ h/2 as desired.
�
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2.26. Slim triangles and the Rips condition.Let δ ≥ 0. A triangle∆ in a spaceX is δ-slim if
each sideτ of ∆ is contained inB̄(|∆| \ τ, δ).

Let A be a family of arcs inX such that
(1) If α ∈ A, then every subarc ofα is in A.
(2) For eachx, y ∈ X, x 6= y, andh > 0 there is anh-short memberα : x y y of A.
Observe that (2) implies thatX is intrinsic. For example, the family of all arcs in an intrinsic

space satisfies (1) and (2). In [Vä5] I consider the case where the space is a domain in a Banach
space with the quasihyperbolic metric andA is the family of allc-quasigeodesics with a fixed
c.

We say thatX is a (δ, h,A)-Rips spaceif every h-short triangle inX with sides inA is
δ-slim. In the case whereA is the family of all arcs inX, we simply say thatX is (δ, h)-Rips.

2.27.Hyperbolicity and the Rips condition.We shall show that for intrinsic spaces, the(δ, h,A)-
Rips condition is quantitatively equivalent toδ-hyperbolicity. We formulate this in 2.34 and
2.35, but we remark that from 2.15 and 2.24 it easily follows that an intrinsicδ-hyperbolic
space is(δ′, h,A)-Rips withδ′ = 4δ + 2h for eachh andA, which is a slightly weaker result
than 2.35.

Indeed, let∆ = (α, β, γ) be anh-short triangle and letx ∈ α : b y c. If |x− b| ≤ rb, then
d(x, γ) ≤ 4δ+h by the tripod lemma 2.15. Similarly|x−c| ≤ rc implies thatd(x, β) ≤ 4δ+h.
In the remaining case we havex ∈ α∗, and thend(x, γ) ≤ d(bα, γ) + l(α∗) ≤ 4δ + 2h by 2.15
and 2.24.

As a by-product, the following proof gives Lemma 2.33, which will be very useful in appli-
cations.

2.28. Lemma.Suppose thatX is (δ, h,A)-Rips and thatα, β : x y y areh-short members of
A. Thenα ⊂ B̄(β, δ).

Proof.This follows from the definition by dividingβ into two subarcs.�

We introduce an auxiliary notion.

2.29. Definition.A spaceX haspropertyP (δ, h,A) if

(a|b)p ∧ (a|c)p ≤ δ

wheneverα : b y c is h-short,α ∈ A, a ∈ X andp ∈ α.

2.30. Lemma.A δ-hyperbolic space has propertyP (δ + h/2, h,A) for everyh > 0 and for
everyA.

Proof.With the notation of 2.29 we have

(a|b)p ∧ (a|c)p ≤ (b|c)p + δ.

Here(b|c)p ≤ h/2 by 2.9, and the lemma follows.�

2.31. Lemma.A (δ, h,A)-Rips space has propertyP (δ + h/2, h,A).
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Proof.With the notation of 2.29, chooseh-short membersβ : a y c andγ : a y b of A. By
the Rips condition, there is a pointq ∈ β∪γ with |q−p| ≤ δ. We may assume thatq ∈ β. Then

|a− p|+ |p− c| ≤ |a− q|+ |q − p|+ |p− q|+ |q − c|
≤ l(β) + 2δ ≤ |a− c|+ h+ 2δ,

whence(a|c)p ≤ δ + h/2. �

2.32. Lemma.Suppose thatX has propertyP (δ, h,A) and thatα : b y c is anh-short member
of A. Then

d(p, α) ≤ (b|c)p + 2δ

for eachp ∈ X.

Proof. The arcα is the union of the closed setsA = {x ∈ α : (p|b)x ≤ δ} andB = {p ∈
α : (p|c)x ≤ δ}. Sinceb ∈ A, c ∈ B and sinceα is connected, there is a pointy ∈ A∩B. Then

4δ ≥ 2(p|b)y + 2(p|c)y = 2|p− y|+ |b− y|+ |c− y| − |p− b| − |p− c|
≥ 2d(p, α) + |b− c| − |p− b| − |p− c| = 2d(p, α)− 2(b|c)p. �

Combining Lemmas 2.9, 2.30 and 2.32 we get the following useful result, which shows that
in a hyperbolic space, the Gromov product(x|y)p is roughly equal to the distanced(p, α) for
anyh-short arcα : x y y.

2.33. Standard estimate.Suppose thatX is δ-hyperbolic, thatp ∈ X and thatα : x y y is
h-short. Then

d(p, α)− 2δ − h ≤ (x|y)p ≤ d(p, α) + h/2.

The second inequality is true in every space.�

2.34. Theorem.If X is (δ, h,A)-Rips, thenX is δ′-hyperbolic withδ′ = 3δ + 3h/2.

Proof. Let a, b, c, p ∈ X. Chooseh-short membersα : b y c, β : a y c, γ : a y b of A.
Sinceα ⊂ B̄(β ∪ γ, δ) by the Rips condition, we obtain by 2.9

(a|c)p ∧ (a|b)p ≤ d(p, β) ∧ d(p, γ) + h/2 ≤ d(p, α) + δ + h/2.

SinceX has propertyP (δ + h/2, h,A) by 2.31, Lemma 2.32 givesd(p, α) ≤ (b|c)p + 2δ + h.
Consequently,

(a|c)p ∧ (a|b)p ≤ (b|c)p + 3δ + 3h/2,

and the theorem follows.�

2.35. Theorem.If X is δ-hyperbolic, thenX is (δ′, h,A)-Rips withδ′ = 3δ + 3h/2 for each
h > 0 and for eachA.

Proof.Suppose that∆ = (α, β, γ) is anh-short triangle inX and letx ∈ α. We must show
that

(2.36) d(x, β ∪ γ) ≤ 3δ + 3h/2.
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Let a, b, c be the vertices of∆ as in 2.21. By 2.30, the spaceX has propertyP (δ + h/2, h,A),
and hence 2.32 gives

d(x, γ) ≤ (a|b)x + 2δ + h, d(x, β) ≤ (a|c)x + 2δ + h.

Consequently,

d(x, β ∪ γ) = d(x, β) ∧ d(x, γ) ≤ (a|b)x ∧ (a|c)x + 2δ + h

≤ (b|c)x + 3δ + h.

Since(b|c)x ≤ h/2 by 2.9, this yields (2.36).�

2.37. Remark.Theorems 2.34 and 2.35 show that the propertiesδ-hyperbolic and(δ, h,A)-Rips
are quantitatively equivalent. Moreover, the property(δ, h,A)-Rips is quantitatively indepen-
dent of the familyA.

2.38. Notes.The classical versions of the results of Section 2 in geodesic spaces can be found
in most of the books mentioned in the introduction. In the geodesic case, the center of a side of
a triangle degenerates to one point, and thus the centerZ(∆) of a geodesic triangle∆ contains
at most three points.

3 Geodesic stability

3.1. Summary.We study quasigeodesics and more general arcs and paths in an intrinsic hyper-
bolic space. We show that two such arcs or paths joining given pointsa andb run close to each
other even if|a− b| is large. This property of hyperbolic spaces is calledgeodesic stability. We
also show that conversely, this property implies that the space is hyperbolic. As applications
we show that a quasi-isometry between intrinsic spaces preserves hyperbolicity and study the
behavior of the Gromov product in a quasi-isometry.

3.2. Terminology.Let λ ≥ 1 andµ ≥ 0. We say that a mapf : X → Y between metric spaces
is a(λ, µ)-quasi-isometryif

(3.3) λ−1|x− y| − µ ≤ |fx− fy| ≤ λ|x− y|+ µ

for all x, y ∈ X. The mapf need not be continuous. In the case wheref : I → Y is a map of a
real intervalI, we say that such a map is a(λ, µ)-quasi-isometric path.

These and related maps appear with various names in the literature. For example, [BS] calls
a map satisfying (3.3) is a rough quasi-isometry. In my earlier papers on the free quasiworld I
replaced the left side of (3.3) byλ−1(|x−y|−µ) and called such mapsµ-coarsely orµ-roughly
λ-bilipschitz. My reason was that iff is bijective, thenf−1 satisfies exactly the same condition.

Forµ = 0, (3.3) reduces to theλ-bilipschitzcondition

λ−1|x− y| ≤ |fx− fy| ≤ λ|x− y|.

A bilipschitz map between metric spaces is always an embedding.
An arcα : a y b in a spaceX is aλ-quasigeodesic, λ ≥ 1, if

l(α[u, v]) ≤ λ|u− v|
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for all u, v ∈ α. Then the arclength parametrizationϕ : [0, l(α)] → α satisfies the inequalities

λ−1|s− t| ≤ |ϕ(s)− ϕ(t)| ≤ |s− t|,

and thusϕ is λ-bilipschitz.

3.4. Remark.The quasi-isometry condition (3.3) is often implied by seemingly different condi-
tions. For example, suppose thatf : X → Y is a bijective map between intrinsic spaces such that
f andf−1 are uniformly continuous. Thenf is a quasi-isometry. To see this, letx, y ∈ X and
choose a numberq > 0 such that|fu− fv| ≤ 1 wheneveru, v ∈ X and|u− v| ≤ q. Leth > 0
and choose anh-short arcγ : x y y. Letk ≥ 0 be the unique integer withkq ≤ l(γ) < (k+1)q.
Choose successive pointsx = x0, . . . , xk+1 = y such thatl(γ[xj−1, xj]) ≤ q for all j. Then
|fxj−1 − fxj| ≤ 1, whence

|fx− fy| ≤ k + 1 ≤ l(γ)/q + 1 ≤ |x− y|/q + h/q + 1.

As h → 0, we get|fx − fy| ≤ |x − y|/q + 1, which is the first inequality of (3.3). Treating
similarly the inverse mapf−1 we obtain the second part of (3.3).

More generally, the result holds for roughly quasiconvex spaces, which means that each pair
x, y can be joined by an arcγ with l(γ) ≤ c1|x− y|+ c2.

To prove the stability theorem 3.7 we need two lemmas. The first lemma is valid in every
metric space.

3.5. Lemma.Suppose thatγ : x y y is anh-short arc in a spaceX. Let r > 0, s ≥ 0, and
suppose thatQ ⊂ X is a set such that{x, y} ⊂ Q ⊂ B̄(γ, r) and such thatd(Q1, Q2) ≤ s
wheneverQ = Q1 ∪Q2, x ∈ Q1, y ∈ Q2. Thenγ ⊂ B̄(Q, 2r + s+ h).

Proof.Assume that the lemma is false. Sett = 2r+ s+ h. There isε > 0 and a pointz ∈ γ
such thatd(z,Q) = t + 4ε. Sincel(γ[x, z]) ≥ |x − z| ≥ t + 4ε, there isx1 ∈ γ[x, z] with
l(γ[x1, z]) = t/2 + 2ε. Similarly, there isx2 ∈ γ[z, y] with l(γ[z, x2]) = t/2 + 2ε. Set

γ′ = γ[x1, x2], γ1 = γ[x, x1], γ2 = γ[x2, y], U
′ = B(γ′, r + ε), Ui = B(γi, r + ε),

i = 1, 2.
If U ′ meetsQ, there is a pointz′ ∈ γ′ with d(z′, Q) < r + ε. Sincer ≤ t/2, we obtain the

contradiction

t+ 4ε = d(z,Q) < r + ε+ |z − z′| ≤ r + ε+ t/2 + 2ε ≤ t+ 3ε.

HenceQ ∩ U ′ = ∅. AsQ ⊂ B̄(γ, r), we thus haveQ = Q1 ∪ Q2 with Qi = Q ∩ Ui. From
the condition onQ it follows that there are pointsqi ∈ Qi with |q1 − q2| < s+ ε. Furthermore,
there areyi ∈ γi such that|yi − qi| < r + ε. Then|y1 − y2| < 2r + s + 3ε, and we get the
contradiction

t+ 4ε ≤ l(γ′) ≤ l(γ[y1, y2]) ≤ |y1 − y2|+ h < 2r + s+ 3ε+ h = t+ 3ε. �
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3.6. Projection lemma. Suppose thatX is an intrinsic(δ, h)-Rips space. Letγ ⊂ X be an
h-short arc and letx1, x2 ∈ X andy1, y2 ∈ γ be points such that

(1) |xi − yi| = d(xi, γ) ≥ R > 0 for i = 1, 2,
(2) |x1 − x2| < 2R− 4δ − h.

Then|y1 − y2| ≤ 8δ + 2h.

Proof.Pick y0 ∈ γ[y1, y2] with |y0 − y1| = |y0 − y2|. Chooseh-short arcsβi : yi y xi and
α : x1 y x2. Applying twice the Rips condition we obtainγ[y1, y2] ⊂ B̄(β1∪α∪β2, 2δ). Hence
there isz ∈ β1 ∪ α ∪ β2 with |z − y0| ≤ 2δ.

If z ∈ α, then

R ≤ d(xi, γ) ≤ |xi − z|+ |z − y0| ≤ |xi − z|+ 2δ

for i = 1, 2, and we obtain

2R ≤ |x1 − z|+ |x2 − z|+ 4δ ≤ |x1 − x2|+ h+ 4δ,

which is a contradiction by (2). Thusz ∈ β1 ∪ β2, and we may assume thatz ∈ β1. Then

|x1 − y1| = d(x1, γ) ≤ |x1 − z|+ |z − y0| ≤ |x1 − z|+ 2δ,

|x1 − z|+ |z − y1| ≤ l(β1) ≤ |x1 − y1|+ h,

whence|z − y1| ≤ 2δ + h. Consequently,

|y1 − y2| ≤ 2|y1 − y0| ≤ 2|y1 − z|+ 2|z − y0| ≤ 8δ + 2h. �

3.7. Stability theorem.Suppose thatX is an intrinsicδ-hyperbolic space and thatϕ : [a, b] →
X andϕ′ : [a′, b′] → X are (λ, µ)-quasi-isometric paths withϕ(a) = ϕ′(a) andϕ(b) = ϕ′(b).
ThendH(imϕ, imϕ′) ≤M(δ, λ, µ).

Proof.Fix h > 0 and choose anh-short arcγ : ϕ(a) → ϕ(b). It suffices to find an estimate
dH(γ, imϕ) ≤ M(λ, µ, δ, h). The spaceX is (δ′, h)-Rips with δ′ = 3δ + 3h/2 by 2.35. We
show that

(3.8) imϕ ⊂ B̄(γ,M1), γ ⊂ B̄(imϕ,M2),

whereM1 = 30λ4(4δ′ + h) + 8λ2µ andM2 = 2M1 + µ+ h.
Setr = 5λ(4δ′ + h), R = λr + µ, I = [a, b], and defineg : I → R by g(t) = d(ϕ(t), γ).

Let s ∈ I. For the first inclusion of (3.8) we must show thatg(s) ≤M1.
We may assume thatg(s) > R. Set

a0 = sup{t ∈ I : t < s, g(t) ≤ R},
b0 = inf{t ∈ I : t > s, g(t) ≤ R},
L = b0 − a0 − r.

Choose pointsu0, v0 ∈ I such that

a0 − r/2 ≤ u0 ≤ a0, g(u0) ≤ R, b0 ≤ v0 ≤ b0 + r/2, g(v0) ≤ R.
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We may assume thats− a0 ≤ b0 − s. Then

g(s) ≤ g(u0) + |ϕ(s)− ϕ(u0)| ≤ R + λ(s− u0) + µ ≤ R + λ(L/2 + r) + µ.

It suffices to show that

(3.9) L ≤ 8λR + 2λµ,

because then

g(s) ≤ R + 4λ2R + λ2µ+ λr + µ ≤ 6λ2R + 2λ2µ = M1.

We may assume thatL > 0. Settingu = a0 + r/2, v = b0 − r/2 we haveL = v − u. Letn
be the integer with(n− 1)r ≤ L < nr. If n ≤ 4, then (3.9) is clearly true. Suppose thatn ≥ 5.
Sincen ≤ L/r + 1, we haven ≤ 5L/4r. Divide [u, v] into subintervalsIi = [ti−1, ti], 1 ≤ i ≤
n, by pointsti = u + iL/n. For eachi ∈ {0, . . . , n} let yi ∈ γ be a point closest toϕ(ti). For
all i we have|ϕ(ti)− yi| = g(ti) ≥ R and

|ϕ(ti−1)− ϕ(ti)| ≤ λ(ti − ti−1) + µ < R < 2R− 4δ′ − h.

Hence the projection lemma 3.6 gives|yi−1 − yi| ≤ 8δ′ + 2h. Since

|ϕ(u)− y0| = g(u) ≤ g(u0) + |ϕ(u0)− ϕ(u)| ≤ R + λr + µ = 2R

and similarly|ϕ(v)− yn| ≤ 2R, we get

|ϕ(u)− ϕ(v)| ≤ |ϕ(u)− y0|+
n∑

i=1

|yi−1 − yi|+ |yn − ϕ(v)| ≤ 4R + 2n(4δ′ + h).

As |ϕ(u)− ϕ(v)| ≥ L/λ− µ, this yields

L ≤ 4λR + 2λn(4δ′ + h) + λµ.

Heren ≤ 5L/4r, whence the middle term on the right is at mostL/2, and (3.9) follows.
To prove the second part of the theorem, observe thatQ = imϕ satisfies the condition of

3.5 withs = µ. Hence we can apply 3.5 withs = µ, r = M1 and obtainγ ⊂ B̄(Q,M2). �

3.10. Remarks.1. Theorem 3.7 holds withM = M1 + M2 for eachh > 0. As h → 0, we get
the explicit boundM = 1080λ4δ + 25λ2µ.

2. The stability theorem 3.7 holds, in fact, in every hyperbolic space. As observed in [BS,
5.4], this follows from the embedding theorem [BS, 4.1] of Bonk and Schramm.

The following special case of the stability theorem 3.7 is frequently needed in applications:

3.11. Theorem.Suppose thatα : a y b is an h-short arc and thatβ : a y b is a c-
quasigeodesic in an intrinsicδ-hyperbolic space. ThendH(α, β) ≤M(δ, c, h). �

We next give a converse of 3.7.
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3.12. Theorem.Leth > 0, δ > 0. Suppose thatX is an intrinsic space such thatτ ⊂ B̄(α, δ)
wheneverτ andα are arcs inX with common endpoints such thatα is h-short and

(3.13) l(τ [u, v]) ≤ 3|u− v|+ 4h

for all u, v ∈ τ . ThenX is (δ, h)-Rips.

Proof.Let ∆ = (α, β, γ) be anh-short triangle with verticesa, b, c as in 2.21. Letw be the
point of α closest toa and letσ : a y w beh-short. Letp be the first point ofσ in α. Then
τ = σ[a, p]∪α[p, b] is an arc froma to b. We show thatτ satisfies the condition of the theorem.
It suffices to show that

(3.14) l(σ[u, p]) + l(α[p, v]) ≤ 3|u− v|+ 4h

for all u ∈ σ[a, p], v ∈ α[p, b].
Since

|a− u|+ |u− p| ≤ l(σ) ≤ |a− w|+ h = d(a, α) + h

≤ |a− v|+ h ≤ |a− u|+ |u− v|+ h,

we have|u−p| ≤ |u−v|+h, and thus|p−v| ≤ |p−u|+ |u−v| ≤ 2|u−v|+h. Consequently,

l(σ[u, p]) ≤ |u− p|+ h ≤ |u− v|+ 2h,

l(α[p, v]) ≤ |p− v|+ h ≤ 2|u− v|+ 2h,

and (3.14) follows.
By the condition of the theorem we obtainα[p, b] ⊂ τ ⊂ B̄(γ, δ). Similarly α[p, c] ⊂

B̄(β, δ), and the theorem is proved.�

3.15. Terminology.We say that a mapf : X → Y between metric spaces isµ-roughly injective
if the diameter of each point-inverse is at mostµ. A (λ, µ)-quasi-isometry is clearlyλµ-roughly
injective. A mapf : X → Y is µ-roughly surjectiveif for eachy ∈ Y there isx ∈ X with
|fx− y| ≤ µ. Some authors include this condition in the definition of a (rough) quasi-isometry;
maps without this condition are then called (roughly) quasi-isometric embeddings or (rough)
quasi-isometries into.

A mapg : Y → X is aµ-rough inverseof f : X → Y if |gfx− x| ≤ µ and|fgy − y| ≤ µ
for all x ∈ X andy ∈ Y .

3.16. Lemma.If f : X → Y has aµ-rough inverse, thenf is 2µ-roughly injective andµ-
roughly surjective. Conversely, iff is µi-roughly injective andµs-roughly surjective, then there
is a mapg : Y → X such that

|gfx− x| ≤ µi, |fgy − y| ≤ µs

for all x ∈ X andy ∈ Y . Thusg is aµ-rough inverse off with µ = µi ∨ µs.
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Proof. Assume thatg : Y → X is aµ-rough inverse off . If a, b ∈ X andfa = fb, then
|a− b| ≤ |a− gfa|+ |gfb− b| ≤ 2µ, soϕ is 2µ-roughly injective. Furthermore, ify ∈ Y , then
|y − fgy| ≤ µ, whencef is µ-roughly surjective.

In the converse part of the lemma, defineg : Y → X as follows: For eachy ∈ Y choose a
point y′ ∈ fX with |y − y′| ≤ µs. If y ∈ fX, we lety′ = y. Choose a pointx′ ∈ f−1{y′} and
setgy = x′. Thenfgy = y′, whence|fgy − y| ≤ µs. If x ∈ X, thengfx ∈ f−1fx, which
yields|gfx− x| ≤ µi by µi-rough injectivity.�

3.17. Lemma.(1) If X
f1→ Y

f2→ Z and if fi is a (λi, µi)-quasi-isometry, thenf2 ◦ f1 is a
(λ, µ)-quasi-isometry withλ = λ1λ2 andµ = λ2µ1 + µ2.

(2) If f : X → Y is a µ-roughly surjective(λ, µ)-quasi-isometry, thenf has aλµ-rough
inverse, which is a(λ, 3λµ)-quasi-isometry.

Proof. (1) follows by direct computation. In (2), the mapf is λµ-roughly injective andµ-
roughly surjective, so it has aλµ-rough inverseg : Y → X satisfying|fgy − y| ≤ µ for all
y ∈ Y by 3.16. Ify, y′ ∈ Y , then

λ−1|gy − gy′| − µ ≤ |fgy − fgy′| ≤ λ|gy − gy′|+ µ,

|y − y′| − 2µ ≤ |fgy − fgy′| ≤ |y − y′|+ 2µ,

which yield
λ−1|y − y′| − 3λ−1µ ≤ |gy − gy′| ≤ λ|y − y′|+ 3λµ,

and the lemma follows.�.

We next show that hyperbolicity is preserved by quasi-isometries.

3.18. Theorem.Suppose thatX andY are intrinsic metric spaces and thatf : X → Y is a
µ-roughly surjective(λ, µ)-quasi-isometry. IfX is δ-hyperbolic, thenY is δ′-hyperbolic with
δ′ = δ′(δ, λ, µ).

Proof. We show thatY satisfies the condition of 3.12 withh = 3/4 andδ = M(δ, λ, µ).
Alternatively, one can easily show by stability thatY satisfies a Rips condition.

Lemma 3.17(2) gives aλµ-rough inverseg : Y → X of f , andg is a (λ, 3λµ)-quasi-iso-
metry. Assume thatγ, τ : a y b are arcs inY with common endpoints such thatγ is h-short
andτ satisfies (3.13). It suffices to find a numberM(δ, λ, µ) such thatτ ⊂ B̄(γ,M).

Let ϕ andψ be the arclength parametrizations ofγ andτ , respectively. Thenϕ is (1, h)-
quasi-isometric andψ is (3, 4h/3)-quasi-isometric. Ash = 3/4, both paths are(3, 1)-quasi-iso-
metric. By 3.17(1), the pathsg◦ϕ, g◦ψ are(λ′, µ′)-quasi-isometric withλ′ = 3λ, µ′ = λ+3λµ.
By the stability theorem 3.7, there isM0(δ, λ, µ) such thatim (g ◦ ψ) ⊂ B̄(im (g ◦ ϕ),M0).

Let y ∈ τ . Sincegy ∈ im (g ◦ ψ), there is a pointx1 ∈ im (g ◦ ϕ) with |gy − x1| ≤ M0.
Choose a pointy1 ∈ γ with gy1 = x1. It suffices to show that|y − y1| ≤ M(δ, λ, µ). As
|fgz − z| ≤ λµ for all z ∈ Y , we obtain

|y − y1| ≤ |y − fgy|+ |fgy − fx1|+ |fx1 − y1| ≤ λµ+ λ|gy − x1|+ µ+ λµ

≤ 2λµ+ λM0 + µ = M(δ, λ, µ). �

As another application of stability we study the behavior of the Gromov product(x|y)w in
a quasi-isometry.
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3.19. Theorem.Suppose thatX andY are intrinsicδ-hyperbolic spaces and thatf : X → Y
is (λ, µ)-quasi-isometry. Letx, y, z, p ∈ X and writex′ = fx etc. for images. Sets = (x|y)p −
(x|z)p and s′ = (x′|y′)p′ − (x′|z′)p′. Then there is a numberC = C(δ, λ, µ) > 0 with the
following properties:

(1) λ−1(x|y)p − C ≤ (x′|y′)p′ ≤ λ(x|y)p + C,
(2) λ−1|s| − C ≤ |s′| ≤ λ|s|+ C,
(3) If s ≥ 0, thenλ−1s− C ≤ s′ ≤ λs+ C.

Proof.Settingz = p in (2) we see that (1) follows from (2). To prove (2) and (3), leth > 0
and let∆y,∆z be h-short triangles inX with verticesp, x, y and p, x, z, respectively, such
that ∆y and∆z have a common sideα : p y x. We may assume thats ≥ 0. Choose points
uy, uz ∈ α such that

|uy − p| = (x|y)p, |uz − p| = (x|z)p, uz ∈ α[p, uy].

Sinceα is h-short, we have

(3.20) s ≤ |uy − uz| ≤ s+ h.

Next chooseh-short triangles∆′′
y,∆

′′
z in Y with verticesp′, x′, y′ andp′, x′, z′, respectively,

and with a common sideα′′ : p′ y x′. Letu′′y, u
′′
z ∈ α′′ be points with

|u′′y − p′| = (x′|y′)p′ , |u′′z − p′| = (x′|z′)p′ .

As above, we get|s′| ≤ |u′′y − u′′z | ≤ |s′|+ h.
Let C1, C2, . . . denote positive constants depending only on(δ, λ, µ, h). To get constants

independent ofh we may puth = 1 or, for better estimates, leth→ 0.
The spaceX is (δ′, h)-Rips with δ′ = 3δ + 3h/2 by 2.35. If τ is a side of∆y or ∆z, its

arclength parametrization is(1, h)-quasi-isometric, andf ◦ϕ is (λ, λh+µ)-quasi-isometric. By
the stability theorem 3.7, the imageτ ′ = fτ = im (f ◦ ϕ) lies in a neighborhood̄B(τ ′′,M) of
the corresponding sideτ ′′ of ∆′′

y or ∆′′
z with M = M(δ, λ, µ, h). By 2.24 we haved(Z(∆y)) ≤

4δ+3h, and thusd(fZ(∆y)) ≤ 4λδ+3λh+µ. Sinceuy ∈ Z(∆y) by (2.23), the pointu′y = fuy

lies within distanceC1 = M + 4λδ + 3λh + µ from the sides of∆′′
y. By 2.25(2) this implies

thatd(u′y, Z(∆′′
y)) ≤ 3C1 + h/2. Moreover,u′′y ∈ Z(∆′′

y), d(Z(∆′′
y)) ≤ 4δ + 3h, and we obtain

(3.21) |u′y − u′′y| ≤ 3C1 + h/2 + d(Z(∆′′
y)) ≤ 3C1 + 4δ + 4h = C2,

and similarly

(3.22) |u′z − u′′z | ≤ C2.

These estimates and (3.20) imply that

|s′| ≤ |u′′y − u′′z | ≤ |u′y − u′z|+ 2C2 ≤ λ|uy − uz|+ µ+ 2C2 ≤ λs+ λh+ µ+ 2C2,

which is the second inequality of (2).
The first inequality of (2) is obtained similarly:

|s′| ≥ |u′′y − u′′z | − h ≥ |u′y − u′z| − h− 2C2

≥ λ−1|uy − uz| − µ− h− 2C2 ≥ λ−1s− µ− h− 2C2.
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The second inequality of (3) follows from (2). Also the first inequality of (3) follows from
(2) if s′ ≥ 0. Assume thats′ < 0. It suffices to find an estimate

(3.23) |s′| ≤ C3,

because thens′ + C3 ≥ 0, and (2) gives

λ−1s ≤ C3 + C ≤ s′ + 2C3 + C.

Since|u′′y − p′| − |u′′z − p′| = s′ < 0, we may assume thatu′′y ∈ α′′[p′, u′′z ]. We may also
assume that|s′| > C2. Then (3.22) gives

|u′z − p′| ≥ |u′′z − p′| − C2 > |u′′z − p′| − |s′| = |u′′y − p′|.

Hence there is a pointv ∈ α[p, uz] with |v′ − p′| = |u′′y − p′|. Sinceα′ ⊂ B̄(α′′,M), we can
choose a pointv′′ ∈ α′′ with |v′′ − v′| ≤M . We show that

(3.24) |v′′ − u′′y| ≤M + h.

If v′′ ∈ α′′[u′′y, x′], theh-shortness ofα′′ gives

|v′′ − u′′y|+ |u′′y − p′| ≤ |v′′ − p′|+ h ≤ |v′′ − v′|+ |v′ − p′|+ h

≤M + |u′′y − p′|+ h,

which implies (3.24). Ifv′′ ∈ α′′[p′, u′′y], we similarly get|u′′y − v′′|+ |v′′ − p′| ≤ |u′′y − p′|+ h.
Here|v′′ − p′| ≥ |v′ − p′| − |v′ − v′′| ≥ |u′′y − p′| −M , and (3.24) follows.

By (3.24) we have|v′ − u′′y| ≤ 2M + h. Thus (3.21) gives

|v′ − u′y| ≤ |v′ − u′′y|+ |u′′y − u′y| ≤ 2M + h+ C2 = C4,

whence
|v − uz| ≤ |v − uy|+ h ≤ λC4 + λµ+ h.

By (3.22) we obtain

λ|v − uz|+ µ ≥ |v′ − u′z| ≥ |u′′y − u′′z | − |v′ − u′′y| − |u′z − u′′z |
≥ |s′| − 2M − h = |s′| − C4.

These estimates imply (3.23) withC3 = C4 + λ(λC4 + λµ+ h) + µ. �.

3.25. Notes.This section is mainly based on [Bo] and [BS]. The simple proof of 3.12 seems
to be new. A related but deeper result was proved by Bonk [Bo]. He considers the following
weaker form of geodesic stability: For eachλ ≥ 1 there isM > 0 such that for eachλ-
quasigeodesicα : x y y there is a geodesicγ : x y y such thatα ⊂ B(γ,M). This does not
mean thatα ⊂ B(β,M) for every geodesicβ : x y y. He shows that this condition implies
that a geodesic space is Gromov hyperbolic.
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4 Quasisymmetric and quasim̈obius maps

4.1. Summary.We give the theory of quasisymmetric and quasimöbius maps needed in Section
5. These maps are also considered in the relative setting and in metametric spaces.

4.2. Metametric spaces.LetM be a set. A functiond : M ×M → [0,∞) is ametametricif
(1) d(a, b) = d(b, a) for all a, b ∈M ,
(2) d(a, c) ≤ d(a, b) + d(b, c) for all a, b, c ∈M ,
(3) d(a, b) = 0 implies thata = b.

In other words,d satisfies the axioms of a metric except that the possibilityd(a, a) > 0 is
allowed. The pair(M,d) is ametametric space. In the subsetmetM = {x ∈M : d(x, x) = 0},
d defines a metric.

It is possible that this concept has been considered (probably with another name) in the
literature, but the author has not been able to find it. A trivial example of a metametric is the
constant functiond(x, y) = 1 for all x, y ∈M .

We say that a pointa ∈M is smallor largeaccording asd(a, a) = 0 or d(a, a) > 0.
A metametricd ofM induces a Hausdorff topology in the usual way: WriteB(a, r) = {x ∈

M : d(x, a) < r} and observe thatB(a, r) = ∅ if r ≤ d(a, a)/2, because ifd(a, x) < d(a, a)/2,
thend(a, a) ≤ d(a, x) + d(x, a) < d(a, a). A setU ⊂ M is open if for eacha ∈ U there is
r > 0 such thatB(a, r) ⊂ U . We see that each large point ofM is isolated in this topology.
A basis for this topology is given by ballsB(a, r) for small pointsa and by singletons{b} for
large pointsb.

A metametric space is metrizable. In fact, a metametricd can be changed to a metricd1

simply by settingd1(x, x) = 0 andd1(x, y) = d(x, y) for x 6= y. Thend andd1 define the same
topology. By this trick one could avoid the use of metametrics, but this would be artifical and
unnatural, for example, with the metametricdp,ε, to be considered in Section 5.

Some familiar results on metric spaces fail to be true for metametric spaces. For example,
if a is a large point, then the constant sequence(xi) with xi = a converges toa (because all
pointsxi lie in each neighborhood ofa), but d(xi, a) does not tend to 0. A map satisfying the
(ε, δ)-condition is continuous, but the converse is only true at small points.

Let (M ′, d′) be another metametric space. We say that a mapf : M → M ′ is positiveif
d′(fx, fy) > 0 wheneverd(x, y) > 0. In other words, the inverse imagef−1{y} of each small
pointy ∈ fX consists of a single small point ofX. A map between metric spaces is positive iff
it is injective. A mapf : M →M ′ is λ-bilipschitzif

λ−1d(x, y) ≤ d′(fx, fy) ≤ λd(x, y)

for all x, y ∈ M . A bilipschitz map is always positive and continuous, but it need not be injec-
tive.

4.3. Quasisymmetry.Let (M,d) be a metametric space. We say that a tripleT = (x, y, z) of
points inM is positiveif d(x, z) > 0. Theratio of a positive tripleT = (x, y, z) is the number

|T | = d(x, y)/d(x, z) ≥ 0.

Suppose that(M ′, d′) is another metametric space. A positive mapf : M → M ′ maps
every positive tripleT = (x, y, z) in M to a positive triplefT = (fx, fy, fz) in M ′. Let
η : [0,∞) → [0,∞) be a homeomorphism. We say thatf is η-quasisymmetricif
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(1) f is positive,
(2) |fT | ≤ η(|T |) for each positive tripleT .
A λ-bilipschitz map isη-quasisymmetric withη(t) = λ2t.
We next consider relative quasisymmetry. LetM andM ′ be as above and letA ⊂ M .

We say that a tripleT = (x, y, z) in M is a triple in (M,A) if x ∈ A or {y, z} ⊂ A. A
mapf : M → M ′ is positive relA if d(fx, fy) > 0 wheneverd(x, y) > 0 andx ∈ A. This
implies thatf maps every positive triple in(M,A) to a positive triple inM ′. We say thatf is
η-quasisymmetric relA if

(1) f is positive relA,
(2) |fT | ≤ η(|T |) for each positive tripleT in (M,A).
We see that a mapf : M → M ′ is η-quasisymmetric ifff is η-quasisymmetric relM . If f

is η-quasisymmetric relA, the restrictionf |A is η-quasisymmetric.
We next show that in order thatf be quasisymmetric relA it suffices to verify (2) for each

triple T = (x, y, z) with x ∈ A. However,η must be replaced by another function.

4.4. Lemma. Let η : [0,∞) → [0,∞) be a homeomorphism, let(M,d) and (M ′, d′) be
metametric spaces, and letA ⊂ M . Suppose thatf : M → M ′ is positive relA and that
|fT | ≤ η(|T |) for each tripleT = (x, y, z) in (M,A) with x ∈ A. Thenf is η1-quasisymmetric
rel A with η1 depending only onη.

Proof. Let T = (x, y, z) be a positive triple inM with {y, z} ⊂ A. ForT1 = (z, y, x) we
have

|T1| =
d(z, y)

d(z, x)
≤ d(z, x) + d(x, y)

d(z, x)
= 1 + |T |,

and similarly|fT | ≤ 1 + |fT1|. Hence|fT | ≤ η0(|T |) with η0(t) = 1 + η(1 + t).
To complete the proof we show that|fT | ≤ 2η(2|T |) for small|T |. Assume that

|T | ≤ 1
2
∧ (1 + η−1(1

2
)−1)−1.

ThenT2 = (y, x, z) is positive, and

|T2| =
d(y, x)

d(y, z)
≤ d(y, x)

d(z, x)− d(y, x)
=

1

1/|T | − 1
≤ η−1(1

2
) ∧ 2|T |.

Hence|fT2| ≤ 1/2, and

|fT | ≤ d′(fx, fy)

d′(fy, fz)− d′(fx, fy)
=

|fT2|
1− |fT2|

≤ 2|fT2| ≤ 2η(|T2|) ≤ 2η(2|T |). �

4.5. Cross differences and cross ratios.Let Q = (x, y, z, w) be a quadruple of points in a
metametric space(M,d). Thecross differenceof Q is the real number

cdQ = cd (Q, d) = d(x, y) + d(z, w)− d(x, z)− d(y, w).

The quadrupleQ is positiveif d(x, z) > 0 andd(y, w) > 0, and then thecross ratioof Q is the
number

crQ = cr (Q, d) =
d(x, y)d(z, w)

d(x, z)d(y, w)
≥ 0.
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Permutating the pointsx, y, z, w we get at most 6 different numbers forcrQ (three numbers
and their reciprocals). The reader should be warned that in the literature, at least 5 of them are
called the cross ratio of(x, y, z, w).

In a metric space, the cross difference (or half of it) can be considered as a four-point version
of the Gromov product, because we have

cd (x, p, y, p) = 2(x|y)p

for all x, y, p ∈M . It is easy to see that a metric spaceX is δ-hyperbolic iff

(4.6) cd (x, y, z, p) ∧ cd (x, y, p, z) ≤ 2δ

for all x, y, z, p ∈ X.
It is possible to consider the cross ratio also in the extended spaceṀ = M ∪ {∞}, but in

the present article we only consider quasimöbius maps between bounded spaces.
LetX be a metric space. A direct computation shows that

(4.7) 1
2
cd (x, y, z, w) = −(x|y)p − (z|w)p + (x|z)p + (y|w)p

for all x, y, z, w, p ∈ X. Consequently,the right-hand side is independent of the pointp. This
is the key fact behind the quantitative quasimöbius invariance of the metametricdp,ε of the
Gromov closureX∗ of a hyperbolic spaceX, to be considered in Section 5.

4.8. Quasim̈obius maps.Let (M,d) and(M ′, d′) be metametric spaces. Observe that a positive
mapf : M →M ′ maps every positive quadrupleQ inM to a positive quadruplefQ inM ′. Let
η : [0,∞) → [0,∞) be a homeomorphism. A mapf : M →M ′ is said to beη-quasim̈obiusif

(1) f is positive,
(2) cr fQ ≤ η(crQ) for each positive quadrupleQ in M .
LetA ⊂ M . A mapf : M → M ′ is η-quasim̈obius relA if f is positive relA and satisfies

(2) for each positive quadrupleQ = (x, y, z, w) with {x,w} ⊂ A. This implies that (2) also
holds for quadruplesQ with {y, z} ⊂ A, becausecr (x, y, z, w) = cr (y, x, w, z).

4.9. Properties.We list some properties of quasisymmetric an quasimöbius maps.
1. Let f : M → M ′ be bijective, letA ⊂ M , and assume thatf maps each small point of

A to a small point. Iff is η-quasisymmetric orη-quasim̈obius relA, thenf−1 : M ′ → M is
η′-quasisymmetric orη′-quasim̈obius relfA with η′ = η−1(t−1)−1.

The condition for small points is needed to guarantee thatf−1 is positive relfA, but it
holds automatically except in some trivial cases whereM andA contain just a few points. For
example, assume thatx ∈ A is small and that there are pointsy ∈ M andz ∈ A such that the
pointsx, y, z are all distinct. Then the quadrupleQ = (x, x, y, z) is positive andcrQ = 0. If f
is quasim̈obius relA, thencr fQ = 0, which implies thatd′(fx, fx) = 0.

2. If f : M →M ′ is η-quasisymmetric (relA), thenf is θ-quasim̈obius (relA) with θ = θη.
The proof in [V̈a4, 6.25] for metric spaces holds almost verbatim in the metametric case.

4.10. Notes.Quasisymmetric maps in metric spaces were introduced in [TV], quasimöbius
maps in [V̈a1], and the relative case in [Vä2]. Lemma 4.4 is from [V̈a4, 6.17], where its proof
contains misprints. The metametric case has not been previously considered. It will turn out to
be relevant in 5.35 and 5.38.
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5 The Gromov boundary and closure

5.1. Summary.We associate to eachδ-hyperbolic space a set∂X, called theGromov boundary
of X. For eachp ∈ X and for smallε > 0 we define a metametricdp,ε in theGromov closure
X∗ = X ∪ ∂X, anddp,ε|∂X is a metric of∂X. The space∂X with dp,ε is complete but, in
general, not compact as in the case of proper spaces. The identity map(X∗, dp,ε) → (X∗, dq,ε′)
is η-quasim̈obius withη depending only onε′/ε. Each quasi-isometryf : X → Y between
hyperbolic spaces extends to a mapf ∗ : X∗ → Y ∗, which is quasim̈obius in the metametrics
dp,ε anddq,ε.

5.2. Gromov sequences.LetX be a metric space. We fix a base pointp ∈ X; the pair(X, p) is
then apointed space. We shall write briefly

(x|y) = (x|y)p

for x, y ∈ X. For a sequence of points(xi) of points inX we use the notation

x̄ = (xi) = (xi)i∈N = (x1, x2, . . . ).

We say that a sequencex̄ inX is aGromov sequenceif (xi|xj) →∞ asi→∞ andj →∞.
This implies that|xi − p| = (xi|xi) → ∞. Since|(x|y)p − (x|y)q| ≤ |p − q|, this concept is
independent of the choice of the base point. In the literature, the Gromov sequences are usually
called sequences converging at infinity or tending to infinity.

Convention. In the rest of this section we assume that(X, p) is a pointedδ-hyperbolic space,
but nowX need not be intrinsic.

We say that two Gromov sequencesx̄ andȳ inX areequivalentand writex̄ ∼ ȳ if (xi|yi) →
∞ asi → ∞. Since(xi|zi) ≥ (xi|yi) ∧ (yi|zi) − δ, we see that this is indeed an equivalence
relation. The following observations are sometimes useful:

5.3. Lemma.(1) A Gromov sequence is equivalent to each of its subsequences.
(2) If x̄ ∼ ȳ, then(xi|yj) →∞ asi, j →∞.
(3) If x̄ ∼ ȳ, then the sequence(x1, y1, x2, y2, . . . ) is a Gromov sequence equivalent tox̄

and ȳ.
(4) If ū and v̄ are nonequivalent Gromov sequences, then the set of all numbers(ui|vj) is

bounded.
(5) If x̄ is a Gromov sequence and ifȳ is a sequence such that(xi|yi) → ∞, thenȳ is a

Gromov sequence equivalent tox̄.
(6) If x̄ is a Gromov sequence and ifȳ is a sequence such that

lim sup
i→∞

|xi − yi|
|xi − p|

< 1,

thenȳ is a Gromov sequence equivalent tox̄.

Proof. (1) is obvious, (2) follows from the inequality(xi|yj) ≥ (xi|yi) ∧ (yi|yj) − δ, and
(3) follows from (1) and (2). If (4) is false, there are subsequencesū′ of ū andv̄′ of v̄ such that
(u′i|v′i) →∞, and then̄u′ ∼ v̄′, which implies that̄u ∼ v̄.
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Part (5) follows from the inequality(yi|yj) ≥ (yi|xi)∧(xi|xj)∧(xj|yj)−2δ, and (6) follows
from (5) and from the estimate

2(xi|yi) = |xi − p|+ |yi − p| − |xi − yi|
≥ |xi − p|(1− |xi − yi|/|xi − p|) →∞. �

5.4. More definitions.We let x̂ denote the equivalence class containing the Gromov sequence
x̄. The set of all equivalence classes

∂X = {x̂ : x̄ is a Gromov sequence inX}

is theGromov boundaryof X, and the set

X∗ = X ∪ ∂X

is theGromov closureof X. We may use the notation∂∗X for the Gromov boundary if there is
a danger of misunderstanding.

5.5. Remark on rays.A geodesic rayin a spaceX is an isometric image of the half line[0,∞).
In the classical case (X geodesic and proper) one can alternatively define a boundary point as
an equivalence class of geodesic rays [GdH, p.119], and the geodesic rays are widely used as a
tool. In the general case, joining a point inx ∈ X to a pointa ∈ ∂X is somewhat problematic,
because (1) geodesics do not exist and (2) the Ascoli theorem is not available. We shall return
to this problem in 6.2.

We want to define the Gromov product(a|b) for all a, b ∈ X∗. Suppose thata, b ∈ ∂X and
choose Gromov sequencesx̄ ∈ a, ȳ ∈ b. The numbers(xi|yj) need not converge to a limit but
they converge to a rough limit in the following sense:

5.6. Lemma.Leta, b ∈ ∂X, a 6= b, and letx̄, x̄′ ∈ a, ȳ, ȳ′ ∈ b, z ∈ X. Then

lim sup
i,j→∞

(x′i|y′j) ≤ lim inf
i,j→∞

(xi|yj) + 2δ <∞,

lim sup
i→∞

(x′i|z) ≤ lim inf
i→∞

(xi|z) + δ <∞.

Proof. We prove the first part of the lemma; the proof of the second part is similar but
simpler. Sets = lim infi,j→∞(xi|yj). Thens < ∞, because otherwisēx ∼ ȳ and thusa = b.
Since(xi|x′k) → ∞ and(yj|y′l) → ∞ asi, j, k, l → ∞, there ism ∈ N such that(xi|x′k) ≥
s+ 3δ and(yj|y′l) ≥ s+ 3δ for all i, j, k, l ≥ m. For these indices we have

(xi|yj) + 2δ ≥ (xi|x′k) ∧ (x′k|y′l) ∧ (y′l|yj) ≥ (s+ 3δ) ∧ (x′k|y′l).

As i, j →∞, this implies thats+2δ ≥ (s+3δ)∧(x′k|y′l), whence(x′k|y′l) ≤ s+2δ for k, l ≥ m.
The lemma follows.�

5.7. Definitions.Given a, b ∈ ∂X, we could try four possible definitions for(a|b). Choose
Gromov sequences̄x ∈ a, ȳ ∈ b, form the liminf and the limsup of(xi|yj), and then the
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supremum and the infimum over all members ofa andb. By 5.6, these four numbers lie in an
interval of length2δ. We choose the smallest of these numbers and define

(5.8) (a|b) = inf {lim inf
i,j→∞

(xi|yj) : x̄ ∈ a, ȳ ∈ b}.

The same definition is used in [CDP] and [Sh], but [GdH] and [BH] have sup instead of inf.
However, with sup I cannot extend the basic inequality(a|c) ≥ (a|b) ∧ (b|c) − δ to points
a, b, c ∈ ∂X unlessδ is replaced by2δ.

Observe that fora ∈ ∂X we have(a|a) = ∞ and that(a|b) <∞ for a 6= b.
Fora ∈ ∂X andy ∈ X we set

(a|y) = (y|a) = inf {lim inf
i→∞

(xi|y) : x̄ ∈ a}.

Then(a|y) ≤ |y − p| <∞ by 2.8(2).

5.9. Notation.For sequences̄x andȳ in X and forz ∈ X we set

li (x̄|ȳ) = lim inf
i→∞

(xi|yi), ls (x̄|ȳ) = lim sup
i→∞

(xi|yi),

li (x̄|z) = lim inf
i→∞

(xi|z), ls (x̄|z) = lim sup
i→∞

(x̄|z).

5.10. Lemma.If a, b ∈ ∂X, then(a|b) = inf {li (x̄|ȳ) : x̄ ∈ a, ȳ ∈ b}.

Proof. Let s denote the right-hand side. Trivially(a|b) ≤ s. We may assume thata 6= b
and thus(a|b) < ∞. Chooset > (a|b). There are sequences̄x ∈ a and ȳ ∈ b with
lim infi,j→∞(xi|yj) < t. Hence there are increasing sequences of integers(ik) and(jk) such
that the sequencek 7→ (xik |yjk

) tends to a limitt′ ≤ t. Now the subsequence(xik) is in a and
similarly (yjk

) ∈ b by 5.3(1), whences ≤ t′ ≤ t, and the lemma follows.�.

5.11. Lemma.Suppose that̄x ∈ a ∈ ∂X, ȳ ∈ b ∈ ∂X, z ∈ X. Then

(a|b) ≤ li (x̄|ȳ) ≤ ls (x̄|ȳ) ≤ (a|b) + 2δ,

(a|z) ≤ li (x̄|z) ≤ ls (x̄|z) ≤ (a|z) + δ,

Proof. The casea = b is clear, and we may assume thata 6= b. The first inequality in both
cases follows from the definition of(a|b) and(a|z). The last inequalities follow from 5.6.�

5.12. Proposition.If a, b, c ∈ X∗, then(a|c) ≥ (a|b) ∧ (b|c)− δ.

Proof. We prove the casea, b, c ∈ ∂X. Let x̄ ∈ a, ȳ ∈ b, z̄ ∈ c. Then(xi|zi) ≥ (xi|yi) ∧
(yi|zi)− δ for eachi ∈ N, and hence

li (x̄|z̄) ≥ lim inf
i→∞

((xi|yi) ∧ (yi|zi))− δ = li (x̄|ȳ) ∧ li (ȳ|z̄)− δ ≥ (a|b) ∧ (b|c)− δ.

By 5.10 this implies the lemma.�
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5.13. The functions%ε anddε. Let 0 < ε ≤ 1. Fora, b ∈ X∗ we write

%ε(a, b) = %p,ε(a, b) = e−ε(a|b)

with the agreemente−∞ = 0. Then%ε(a, b) = %ε(b, a), and%ε(a, b) = 0 if and only if a = b ∈
∂X. Furthermore, fora, b, c ∈ X∗ we have

−(log %ε(a, c))/ε = (a|c) ≥ (a|b) ∧ (b|c)− δ,

and hence

(5.14) e−δε%ε(a, c) ≤ %ε(a, b) ∨ %ε(b, c).

We set

(5.15) dε(a, b) = dp,ε(a, b) = inf
n∑

j=1

%ε(aj−1, aj)

over all finite sequencesa = a0, . . . , an = b in X∗.

5.16. Proposition.Suppose thatεδ ≤ 1/5. Then the functiondε is a metametric inX∗, and the
corresponding metric spacemetX is ∂X. Moreover,

(5.17) %ε(a, b)/2 ≤ dε(a, b) ≤ %ε(a, b)

for all a, b ∈ X∗.

Proof. Clearlydε satisfies the conditions (1) and (2) of a metametric in 4.2 and the second
inequality of (5.17). Since%ε(a, b) = 0 iff a = b ∈ ∂X, it suffices to prove the first inequality
of (5.17). I follow [GdH, 7.10].

Sinceeεδ ≤ e1/5 < 5/4, (5.14) gives

(5.18) 4
5
%ε(a, c) ≤ %ε(a, b) ∨ %ε(b, c)

for all a, b, c ∈ X∗. Let a = a0, . . . , an = b ∈ X∗ and setR =
∑n

j=1 %ε(aj−1, aj). It suffices
to show that%ε(a, b)/2 ≤ R. This is trivially true if n = 1, and we proceed by induction on
n. Let k be the largest integer with

∑k
j=1 %ε(aj−1, aj) ≤ R/2. Then0 ≤ k ≤ n − 1 and∑n

j=k+2 %ε(aj−1, aj) ≤ R/2.
Case1. 1 ≤ k ≤ n− 2. By the induction hypothesis we have

%ε(a, ak) ≤ R, %ε(ak+1, b) ≤ R.

Moreover,%ε(ak, ak+1) ≤ R. Applying twice the estimate (5.18) we obtain

%ε(a, b)/2 ≤ 16
25
%ε(a, b) ≤ %ε(a, ak) ∨ %ε(ak, ak+1) ∨ %ε(ak+1, b) ≤ R.

Case2. k = 0. Arguing as in Case 1 we get

4
5
%ε(a, b) ≤ %ε(a, a1) ∨ %ε(a1, b) ≤ R.

Case3. k = n− 1 This case is similar to Case 2.�
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5.19. Convention.From now on I always assume thatε ≤ 1 ∧ (1/5δ). Then%ε/2 ≤ dε ≤ %ε.

5.20. Remarks.1. In the literature, the distancedε(a, b) is usually only considered for points
a, b ∈ ∂X. It is defined by the formula (5.15), where all pointsaj lie in ∂X. This gives a
numberd′ε(a, b), and we havedε ≤ d′ε ≤ %ε ≤ 2dε by 5.16.

2. The conditionε ≤ 1 is mainly for convenience; most considerations are valid whenever
εδ ≤ 1/5.

3. If a ∈ X, then(a|x) ≤ |a− p| = (a|a) for all x ∈ X∗. Hence%ε(a, x) ≥ %ε(a, a), which
implies thatdε(a, a) = %ε(a, a) = e−ε|a−p|.

4. The points ofX are large in the metametricdε and the points of∂X are small.
5. We havedε(p, a) = %ε(p, a) = 1 for all a ∈ X∗, whenceX∗ is boundedwith diameter

1 ≤ d(X∗) ≤ 2.
6. A sequence inX is Gromov iff it is Cauchy in the metametricdε. Hence we may consider

X∗ as the completion ofX. A proof for the completeness is given in 5.31.

5.21. Lemma.Let x̄ be a sequence in a hyperbolic spaceX and leta ∈ ∂X. Then the following
conditions are equivalent:

(1) (xi|a) →∞,
(2) dε(xi, a) → 0,
(3) x̄ is a Gromov sequence and̄x ∈ a.

Proof. Clearly (1) is equivalent to the condition%ε(xi, a) → 0, and the equivalence (1)⇔
(2) follows from (5.18).

(3) ⇒ (1): Let M > 0. Sincex̄ is a Gromov sequence, there is an integerm such that
(xi|xj) ≥M for i, j ≥ m. Fori ≥ m we thus havelim infj→∞(xi|xj) ≥M . By 5.11 this yields
M ≤ (xi|a) + δ, whence(xi|a) →∞.

(1) ⇒ (3): Since(xi|xj) ≥ (xi|a) ∧ (xj|a) − δ → ∞ by 5.12,x̄ is a Gromov sequence.
Settingb = x̂ we have(xi|b) → ∞ by the part (3)⇒ (1) of the lemma. It follows that(a|b) ≥
(a|xi) ∧ (b|xi)− δ →∞, whence(a|b) = ∞ and thusa = b. �

5.22. Corollary. If x̄ ∈ a ∈ ∂X and ȳ ∈ b ∈ ∂X, thendε(xi, yi) → dε(a, b). If z ∈ X, then
dε(xi, z) → dε(a, z). �

5.23. Remark.ConsideringX∗ as the completion ofX in the metametricdε, we could extend
dε fromX toX∗ without defining the Gromov product for boundary points.

We next give an improvement of Lemma 5.10. The result is not needed later in this article.

5.24. Lemma.If a, b ∈ ∂X, then there are sequencesx̄ ∈ a andȳ ∈ b such that(xi|yi) → (a|b).
If z ∈ X, there isx̄ ∈ a such that(xi|z) → (a|z).

Proof.We only prove the first part of the lemma. We may assume that(a|b) = t <∞. From
5.10 it follows that for eachn ∈ N there are sequencesx̄n ∈ a andȳn ∈ b such thatli (x̄n|ȳn) <
t + 1/n. Passing to subsequences and using 5.3(1) we may assume that(xn

i |yn
i ) < t + 1/n for

all i andn. By 5.21 we have(xn
i |a) → ∞ and(yn

i |b) → ∞ as i → ∞. For eachn we can
therefore choose an indexi(n) with (xn

i(n)|a) > n and(yn
i(n)|b) > n. Define sequences̄x′ andȳ′

by x′n = xn
i(n), y

′
n = yn

i(n). By 5.21 we havēx′ ∈ a, ȳ′ ∈ b. Moreover,(x′n|y′n) < t+ 1/n for all
n, whencels (x̄′|ȳ′) ≤ t. On the other hand,li (x̄′|ȳ′) ≥ (a|b) = t, and the lemma follows.�
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5.25. The role ofp andε. We study how the metametricdp,ε ofX∗ depends onp andε. Suppose
that0 < ε, ε′ ≤ 1 ∧ (1/5δ) and setα = ε′/ε. The definition of%p,ε gives%p,ε′ = %α

p,ε. By (5.17)
this yields

(5.26) dp,ε(x, y)
α/2 ≤ dp,ε′(x, y) ≤ 2αdp,ε(x, y)

α

for all x, y ∈ X∗. This means that the identity map(X, dp,ε) → (X, dp,ε′) is asnowflake mapin
the sense of [BS, p. 281]. In particular, this map isη-quasisymmetric withη(t) = 2α+1tα.

Next letp, q ∈ X and setr = |p− q|, λ = er. By 2.8(4) we have|(x|y)p − (x|y)q| ≤ r. As
ε ≤ 1, we obtain%p,ε/λ ≤ %q,ε ≤ λ%p,ε. By (5.17) this yields

(5.27) dp,ε(x, y)/2λ ≤ dq,ε(x, y) ≤ 2λdp,ε(x, y)

for all x, y ∈ X∗. In other words, the identity map(X∗, dp,ε) → (X∗, dq,ε) is 2λ-bilipschitz.
It follows that this identity map isη-quasisymmetric withη(t) = 4λ2t. The dependence

of η on |p − q| cannot be avoided. Similar estimates show that the identity map(X∗, dp,ε) →
(X∗, dq,ε′) is η-quasisymmetric withη(t) = 2α+3λ2tα. The family of metricsdp,ε|∂X has been
called the canonical quasisymmetric gauge; see [BHK, p. 18].

The quasim̈obius version is more quantitative:

5.28. Proposition.LetX be aδ-hyperbolic space, let0 < ε, ε′ ≤ 1 ∧ (1/5δ) and letp, q ∈ X.
Then the identity map(X∗, dp,ε) → (X∗, dq,ε) is η-quasim̈obius withη(t) = 16t, and the
identity map(X∗, dp,ε) → (X∗, dq,ε′) is θ-quasim̈obius withθ(t) = 4α+1tα whereα = ε′/ε.

Proof.LetQ = (x, y, z, w) be a quadruple inX. From (4.7) it follows that the number

%p,ε(x, y)%p,ε(z, w)

%p,ε(x, z)%p,ε(y, w)

is independent ofp. By (5.17) this implies thatcr (Q, dq,ε) ≤ 16cr (Q, dp,ε). By 5.22 this holds
for all quadruplesQ in X∗.

The second part follows similarly by the equality%q,ε′ = %α
q,ε. �

5.29. A topology ofX∗. Let T∗ be the topology ofX∗ induced by the metametricdε; see 4.2.
From (5.26) and (5.27) it follows thatT∗ is independent ofp andε. In this topology, every point
of X is isolated, and∂X is the topological boundary ofX in X∗.

It is possible (and perhaps more useful) to define a topologyT∗1 of X∗ that induces the
original topology ofX and the same topology of∂X asT∗; see [BH, p. 429], [KB, p. 6]. This
topology consists of allU ∈ T∗ such thatU ∩X is open in the original topology ofX.

5.30. Completeness.A Cauchy sequence in a metametric space(M,d) is defined as usual, but
a convergent sequence need not be Cauchy. Indeed, ifd(a, a) > 0, then the constant sequence
(a, a, . . . ) converges toa but it is not Cauchy.

A metametric space is said to becompleteif every Cauchy sequence is convergent. A closed
subset of a complete metametric space is complete.

5.31. Proposition. If X is hyperbolic, then(X∗, dε) is a complete metametric space and
(∂X, dε) is a complete metric space.
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Proof. Since∂X is closed inX∗, it suffices to show thatX∗ is complete. Assume that
ā = (ai) is a Cauchy sequence inX∗. We first consider the special case where the pointsai lie
in X. Since

−ε(ai|aj) = log %ε(ai, aj) ≤ log 2dε(ai, aj) → −∞

asi, j →∞, the sequencēa is Gromov. By 5.21 it converges tôa ∈ ∂X.
Next let ā be arbitrary. For eachi we can find a pointxi ∈ X with dε(xi, ai) < 1/i by 5.21.

For i < j we havedε(xi, xj) ≤ dε(ai, aj) + 2/i. Hencex̄ is a Gromov sequence. Settingb = x̂
we havedε(ai, b) ≤ 1/i+ dε(xi, b) → 0 by 5.21, whencēa converges tob. �

5.32. Boundary extension of quasi-isometries.In the previous results of this section, the spaces
are not assumed to be intrinsic. From now on, intrinsicness is required, because we want to
make use of Theorem 3.19 on the change of the Gromov product in a quasi-isometry.

Suppose thatX andY are intrinsicδ-hyperbolic spaces and thatf : X → Y is a (λ, µ)-
quasi-isometry. We first choose the base pointsp ∈ X andq ∈ Y so thatq = fp. Let 0 < ε ≤
1 ∧ (1/5δ). We considerX∗ andY ∗ with the metametricsdε = dp,ε andd′ε = dq,ε; see 5.13.

We want to extendf to a mapf ∗ : X∗ → Y ∗ between the Gromov closures. The following
considerations are essentially from [BS, Section 6]. Letx̄ be a Gromov sequence inX. Then
3.19(1) yields(fxi|fxj) ≥ λ−1(xi|xj)−C →∞ asi, j →∞, whencefx̄ = (fxi) is a Gromov
sequence. Furthermore, ifx̄ ∼ ȳ, thenfx̄ ∼ fȳ by 3.19(1). Consequently,f has an extension to
a mapf ∗ : X∗ → Y ∗, defined byf ∗x̂ = ẑ wherez̄ = fx̄, andf ∗ is continuous in the topologies
defined by the metametricsdε andd′ε. (But f need not be continuous in the original topologies
of X andY .) Moreover,f ∗ defines a continuous map∂f : ∂X → ∂Y between metric spaces.

The assignmentf 7→ f ∗ has clearly the functorial propertiesid∗ = id and(f ◦g)∗ = f ∗ ◦g∗.
We show that∂f is injective. Suppose thata, b ∈ ∂X with f ∗a = f ∗b. Choosing Gromov

sequences̄x ∈ a andȳ ∈ b we have(fxi|fyi) →∞. By 3.19(1), this implies that(xi|yi) →∞,
whencea = b.

It follows thatf ∗ is a positive map in the metametricsdε andd′ε.
We prove thatf ∗ is quasisymmetric in the metametricsdε andd′ε. Let (x, y, z) be a positive

triple inX∗ and sett = dε(x, y)/dε(x, z). Writing x′ = fx etc. we must find an estimate

(5.33) d′ε(x
′, y′) ≤ η(t)d′ε(x

′, z′)

whereη(t) → 0 ast→ 0. We may assume thatx, y, z ∈ X, because (5.33) can be extended to
X∗ by continuity.

We havet%ε(x, z)/2 ≤ %ε(x, y) ≤ 2t%ε(x, z), whence

(5.34) − log 2t ≤ ε(x|y)− ε(x|z) ≤ − log t
2
.

Case1. t ≤ 1/2. Now (x|y)− (x|z) ≥ 0, and 3.19(3) gives

ε(x′|y′)− ε(x′|z′) ≥ −λ−1 log 2t− εC

with C = C(δ, λ, µ). Sinceε ≤ 1, this and (5.17) imply (5.33) withη(t) = 4eCt1/λ.
Case2. t > 1/2. Now (5.34) gives

ε|(x|y)− (x|z)| ≤ (log 2t) ∨ | log t
2
|,
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and by 3.19(2) we get

ε(x′|z′)− ε(x′|y′) ≤ λ
(
(log 2t) ∨ | log t

2
|
)

+ εC.

Consequently, (5.33) holds with

η(t) =


4eCt1/λ for 0 < t ≤ 1/2,

22λ+1eC for 1/2 < t < 1,

2λ+1eCtλ for t ≥ 1.

We see thatf ∗ is in fact power quasisymmetric (η(t) of the formc(tα ∨ t1/α)). The functionη
depends on(δ, λ, µ) but not onε.

The map∂f : ∂X → ∂Y need not be surjective; see 5.37. It is known to be surjective iff
is roughly surjective [BS, 6.3(4)]. We prove that∂f is surjective iff is weakly surjective, by
which we mean that

lim sup
|y−q|→∞

d(y, fX)

|y − q|
< 1.

The definition is independent of the choice of the base pointq of Y . A roughly surjective map
is trivially weakly surjective.

Let ȳ ∈ b ∈ ∂Y . Writing ri = d(yi, fX)/|yi − q| we havelim supi→∞ ri = r < 1. Choose
a numbers with r < s < 1. Replacinḡy by a subsequence we may assume thatri < s for all i.
We can find pointsxi ∈ X with |yi − fxi| < s|yi − q| for all i. Thenfx̄ = (fxi) is a Gromov
sequence equivalent tōy by 5.3(6). Since

(fxi|fxj) ≤ λ(xi|xj) + C

by 3.19, alsōx is a Gromov sequence. Moreover,∂fx̂ = b, whence∂f is surjective. In fact,
∂f is a homeomorphism, which follows from quasisymmetry and can also be easily proved
directly.

We summarize these results in the following theorem. A more quantitative result is given in
5.38 in terms of quasim̈obius maps.

5.35. Theorem.Suppose thatX and Y are pointed intrinsicδ-hyperbolic spaces and that
f : X → Y is a base point preserving(λ, µ)-quasi-isometry. Thenf has an extension
f ∗ : X∗ → Y ∗, which is continuous in the metametricsdε andd′ε, where0 < ε ≤ 1 ∧ (1/5δ).
Moreover,f ∗ defines an injective map∂f : ∂X → ∂Y .

The mapf ∗ is η-quasisymmetric indε andd′ε and henceη-quasisymmetric rel∂X with η
depending only onδ, λ, µ. If f is weakly surjective, then∂f is a homeomorphism onto∂Y .

5.36. Remark.A quasi-isometryf : X → Y need not be injective. In the metametricsdε and
d′ε it is nevertheless quasisymmetric. This phenomenon cannot occur in metric spaces, where a
quasisymmetric map is injective by definition.

5.37. Examples.1. LetX be the Poincaré 2-disk with its hyperbolic metric and letY be the
3-disk. The natural embeddingf : X → Y is an isometry. The induced boundary map∂f is the
inclusion of the circle∂X into the sphere∂Y . It is not surjective.
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2. LetY be the Poincaré half plane and letX ⊂ Y be the half disk{x ∈ Y : |x| < 1} where
|x| is the euclidean norm, equipped with the metric inherited fromY . Then∂GY is the extended
real line,∂GX = [−1, 1], and the inclusionf : X → Y induces the inclusion∂f : ∂GX → ∂GY ,
which is not surjective.

In these examples,X andY are geodesic locally compact hyperbolic spaces. In the first
examplef is not open, and in the second exampleX is not proper. This is natural in view of the
following result, which can be proved by standard path lifting arguments.

Suppose thatf : X → Y is a locallyλ-bilipschitz open map between metric spaces, where
X is proper andY rectifiably connected. Thenf is surjective.

We next give a base point invariant quasimöbius version of Theorem 5.35.

5.38. Theorem.Suppose thatX andY are intrinsicδ-hyperbolic spaces and thatf : X → Y
is a (λ, µ)-quasi-isometry. Letp ∈ X and q ∈ Y . Thenf has an extensionf ∗ : X∗ → Y ∗,
which is continuous in the metametricsdp,ε anddq,ε, where0 < ε ≤ 1 ∧ (1/5δ). Moreover,f ∗

defines an injective map∂f : ∂X → ∂Y .
The mapf ∗ is η-quasim̈obius indp,ε anddq,ε and henceη-quasim̈obius rel∂X with η de-

pending onδ, λ, µ but not on the base pointsp andq and not onε. If f is weakly surjective, then
∂f is a homeomorphism onto∂Y .

Proof. Setq′ = fp. The mapf defines a base point preserving mapf1 : (X, p) → (Y, q′),
and the extensionf ∗1 is η-quasisymmetric withη = ηδ,λ,µ by 5.35. By 4.9.2, the mapf ∗1 is
θ-quasim̈obius withθ = θη in dp,ε anddq′,ε. From 5.28 it follows thatf ∗ is 16θ-quasim̈obius.
�

6 Roads and biroads

6.1. Summary.In a proper geodesic hyperbolic space, one can join a point of the space to a
boundary point by a geodesic ray, and two boundary points by a geodesic line. In an arbitrary
intrinsic hyperbolic space, geodesic rays will be replaced by certain sequences of arcs, called
roads, and geodesic lines by another kind of sequences of arcs, calledbiroads. Unfortunately,
this makes the theory more complicated than in the classical case.

6.2. Roads.In the theory of proper geodesic hyperbolic spaces,geodesic rayshave turned out
to be useful. For example, one can define a boundary point as an equivalence class of geodesic
rays. In a general intrinsic space they are no longer available. One can join points ofX to points
of ∂X by quasi-isometric rays; see [BS, 5.2], [KB, 2.16] and Remark 6.4 below. However, I
prefer to work with certain sequences ofh-short arcs, calledroads.

Similarly, geodesic lineswill be replaced by another kind of arc sequences, calledbiroads
and considered in 6.10.

LetX be a metric space and letµ ≥ 0, h ≥ 0. A (µ, h)-road in X is a sequencēα of arcs
αi : yi y ui with the following properties:

(1) Eachαi is h-short.
(2) The sequence of lengthsl(αi) is increasing and tends to∞.
(3) For i ≤ j, the length mapgij : αi → αj with gijyi = yj satisfies|gijx − x| ≤ µ for all

x ∈ αi.

30



Observe that(3) implies that|yi − yj| ≤ µ for all i andj. If yi = yj = y for all i andj, we
say that̄α is aroad fromy. Thelocus|ᾱ| of a roadᾱ is the union of all arcsαi.

In the caseµ = 0, h = 0 we have a geodesic ray. More precisely, the locus|ᾱ| is a geodesic
ray, and eachαi is an initial subarc.

The indexing set for a road is usuallyN, but occasionally it is convenient to use a subset
{i ∈ N : i ≥ k} for somek ≥ 1. For example, if̄α is a road indexed byN and ifz ∈ αk, we can
define asubroadβ̄ of ᾱ, βi : zi y ui, i ≥ k, by

zi = gkiz, βi = αi[zi, ui].

6.3. Lemma.Suppose that̄α is a (µ, h)-road,αi : yi y ui. Then(ui) is a Gromov sequence.

Proof.Let i ≤ j and letgij : αi → αj be the length map as above. By 2.8(6) we obtain

(gijui|uj)yj
≥ |gijui − yj| − h/2 ≥ l(αi)− 3h/2.

Since|yj−y1| ≤ µ and|gijui−ui| ≤ µ, this and 2.8 imply that(ui|uj)y1 ≥ l(αi)−3h/2−2µ→
∞ asi→∞. �

6.4. Remark.Let ᾱ be a(µ, h)-road,αi : yi y ui, and setLi = l(αi), L0 = 0. Letϕi : [0, Li] →
αi be the arclength parametrization ofαi with ϕi(0) = yi. Define a mapϕ : [0,∞) → X by
ϕ(t) = ϕi(t) for Li−1 ≤ t < Li.

Let 0 ≤ s ≤ t and choose indicesi ≤ j with Li−1 ≤ s < Li, Lj−1 ≤ j < Lj. Then

|s− t| − h ≤ |ϕj(s)− ϕj(t)| ≤ |s− t|.

Since|ϕi(s)− ϕj(s)| ≤ µ, we see thatϕ satisfies the rough isometry condition

|s− t| − µ− h ≤ |ϕ(s)− ϕ(t)| ≤ |s− t|+ µ

for all s, t ≥ 0.
However, it is usually easier to work with the sequenceᾱ than with the functionϕ.

6.5. Roads in a hyperbolic space.Suppose thatX is aδ-hyperbolic space and thatᾱ is a(µ, h)-
road inX, αi : yi y ui. By 6.3 the sequence(ui) is Gromov and thus defines an elementb = û
of the Gromov boundary∂X. We writeᾱ : ȳ y b and say that̄α joins the sequencēy = (yi) to
b. If yi = y for all i, we writeᾱ : y y b.

We show that ifX is intrinsic, then each pairy ∈ X, b ∈ ∂X can be joined by a road. This
result will be given in 6.7, and it follows immediately from the following more precise result.

6.6. Lemma.LetX be aδ-hyperbolic space, lety ∈ X, let ū be a Gromov sequence inX and
let αm : y y um be a sequence ofh-short arcs. Then there is a(4δ + 2h, h)-road β̄ : y y û
such that eachβi is a subarc of someαm(i) with l(βi) = i.

Proof. Since(uj|uk)y → ∞, we can choose for eachi ∈ N an integerm(i) such that
(uj|uk)y ≥ i for j, k ≥ m(i) and such thatm(1) < m(2) < . . . We have|y − um(i)| =
(um(i)|um(i))y ≥ i, which implies that there is a subarcβi = αm(i)[y, vi] of lengthi. We show
thatβ̄ is the desired road.
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By 2.8(6) we have

(vi|um(i))y ≥ |y − vi| − h/2 ≥ i− 3h/2.

This implies that̄v is a Gromov sequence equivalent toū; see 5.3(5). Leti ≤ j and letg : βi →
βj be the length map fixingy. Forx ∈ βi we have|x − y| ≤ i ≤ (um(i)|um(j))y. By 2.15 this
yields|gx− x| ≤ 4δ + 2h, whenceβ̄ is a(4δ + 2h, h)-road.�

6.7. Theorem.LetX be an intrinsicδ-hyperbolic space and lety ∈ X, a ∈ ∂X, h > 0. Then
there is a(4δ + 2h, h)-road β̄ : y y a. �

If α : y y b ∈ ∂X is a geodesic ray in a hyperbolic spaceX, then(x|b) → ∞ asx ∈ α
tends to the endb. We next give a version of this result for roads.

6.8. Lemma.Let ᾱ : ȳ y b ∈ ∂X be a(µ, h)-road in a hyperbolic pointed space(X, p) and
letM > 0. Then there is a subroad (see 6.2)β̄ of ᾱ such that(x|b) ≥M for all x ∈ |β̄|.

Proof. The result is clearly independent ofp, and we may assume thatp = y1. Write
αi : yi y ui. As ū is a Gromov sequence by 6.3, there isk such that(uk|uj) ≥M+δ+4µ+3h/2
for all j ≥ k. Let β̄ : z̄ y b be the subroad of̄α defined byβi = αi[gkiuk, ui], i > k. Suppose
thatx ∈ βi for somei > k. It suffices to show that(x|b) ≥M .

Let j ≥ i. Sinceαj is h-short, we have|gijx− yj| ≥ |gkjuk − yj| − h. By 2.8(6) this yields
(gijx|uj)yj

≥ (gkjuk|uj)yj
− 3h/2, which implies that

(x|uj) ≥ (uk|uj)− 4µ− 3h/2 ≥M + δ.

As j →∞, we obtain(x|b) ≥M by 5.11.�

If α andβ are geodesic rays in a geodesicδ-hyperbolic spaceX converging to the same point
b ∈ ∂X, thenα andβ run eventually close to each other. More precisely, there are subrays
α1 ⊂ α andβ1 ⊂ β such that the bijective length mapf : α1 → β1 satisfies|fx − x| ≤
16δ for all x ∈ α1; see [GdH, 7.2]. Similar results can be obtained for(µ, h)-roads in an
intrinsic hyperbolic space. We prove the following result, which seems to be sufficient in several
applications. See also 6.25.

6.9. Closeness lemma.LetX be an intrinsicδ-hyperbolic space and let̄α : ȳ y b andβ̄ : z̄ y
b be (µ, h)-roads inX converging to the same pointb ∈ ∂X. Then for eachx0 ∈ X there is
R > 0 such thatd(x, |β̄|) ≤ 7δ + µ+ 3h for all x ∈ |ᾱ| \B(x0, R).

Proof.The result is clearly independent ofx0, and we choosex0 = y1. Write αi : yi y ui,
βi : zi y vi and setK = |y1−z1|. We show that the lemma holds withR = K+1+7δ+4µ+4h.
Assume thatx ∈ |ᾱ| \B(y1, R) and choosei with x ∈ αi. Since(uj|vj)y1 →∞, there ism ≥ i
with (um|vm)y1 ≥ |x− y1|+ 3µ. Chooseh-short arcsγ : ym y vm andτ : ym y zm.

There is a pointx1 ∈ αm with |x1 − x| ≤ µ. We have

|x1 − ym| ≤ |x1 − x|+ |x− y1|+ |y1 − ym| ≤ (um|vm)y1 − µ ≤ (um|vm)ym .

By the tripod lemma 2.15 we can find a pointx2 ∈ γ with |x2 − x1| ≤ 4δ + h. As X is
(3δ, 3h/2)-Rips by 2.35, there is a pointx3 ∈ βm ∪ τ with |x3 − x2| ≤ 3δ + 3h/2 ≤ 3δ + 2h.
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We havel(τ) ≤ |ym − zm| + h ≤ K + 2µ + h, whenceτ lies in the ballB̄(y1, K + 3µ + h).
Since

|x2 − y1| ≥ |x− y1| − |x− x1| − |x1 − x2| ≥ R− 4δ − µ− h,

we obtain
d(x2, τ) ≥ R−K − 4δ − 4µ− 2h = 1 + 3δ + 2h.

Hencex3 ∈ βm. This implies the lemma, because|x3 − x| ≤ 7δ + µ+ 3h. �

6.10. Biroads.LetX be a metric space and letµ ≥ 0, h ≥ 0. By a(µ, h)-biroad in X we mean
a sequencēγ of arcsγi : ui y vi in X together with length mapsgij : γi → γj for i ≤ j with
the following properties:

(1) Eachγi is h-short.
(2) For some (and hence for all)x1 ∈ γ1 we have|ui − x1| → ∞, |vi − x1| → ∞.
(3) gii = id, gik = gjk ◦ gij for i ≤ j ≤ k.
(4) |gijx− x| ≤ µ for all i ≤ j andx ∈ γi.

The locus|γ̄| is again defined as the union of all arcsγi.
In the caseµ = 0, h = 0 we have a geodesic line. More precisely, the locus|γ̄| is a geodesic

line, and the mapsgij are inclusions.
Each pointy1 ∈ γ1 divides a(µ, h)-biroadγ̄ into two (µ, h)-roadsᾱ andβ̄, where

αi = γi[g1iy1, ui], βi = γi[g1iy1, vi].

6.11. Lemma.Suppose thatγ is a (µ, h)-biroad, γi : ui y vi. Then ū and v̄ are Gromov
sequences and(ui|vi)p ≤ µ+ h/2 for all p ∈ γ1 and for all i.

Proof.Dividing γ into two roads we see from 6.3 thatū andv̄ are Gromov sequences. The
inequality follows from 2.8(4) and (2.9).�

6.12. Biroads in a hyperbolic space.LetX be aδ-hyperbolic space and letγ be a(µ, h)-biroad
in X, γi : ui y vi. By 6.11, the sequences̄u andv̄ define distinct elementsa = û andb = v̂ of
the Gromov boundary∂X. We writeγ̄ : a y b and say that the biroad̄γ joinsa to b.

6.13. Lemma.LetX be an intrinsicδ-hyperbolic space and leta, b ∈ ∂X, a 6= b, h > 0. Then
there is a(µ, h)-biroad γ̄ : a y b with µ = 12δ + 10h.

Proof. Fix a base pointp ∈ X. By 6.3 there are(µ0, h)-roadsᾱ : p y a, αi : p y ui and
β̄ : p y b, βi : p y vi with µ0 = 4δ+2h. Observe thatµ = 3µ0+4h. Sincea 6= b, the sequence
of numbers(ui|vi) is bounded by 5.3(4). Passing to subsequences we may assume that

(6.14) |(ui|vi)− (uj|vj)| ≤ h

for all i andj. Moreover, we may assume that

(6.15) l(αi+1) ≥ l(αi) + 3h, l(βi+1) ≥ l(βi) + 3h

for all i. We chooseh-short arcsγi : ui y vi and show that the sequenceγ̄ with suitable length
mapsgij is the desired biroad.
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For eachi ∈ N, theh-short triangle∆i = (αi, βi, γi) induces the subdivisions

αi = α′i ∪ α∗i ∪ α′′i , βi = β′i ∪ β∗i ∪ β′′i , γi = γ′i ∪ γ∗i ∪ γ′′i

of the sides withp ∈ α′i∩β′i, ui ∈ γ′i; see 2.21. The lengths of the centersα∗i , β
∗
i , γ

∗
i are at most

h by 2.24. Moreover,

(6.16) l(α′i) = l(β′i) = (ui|vi), l(α
′′
i ) = l(γ′i), l(β

′′
i ) = l(γ′′i ).

We writeγ∗i = γi[yi, zi] with yi ∈ γ′i, zi ∈ γ′′i .
Let i < j. We show that

(6.17) l(γ′i) ≤ l(γ′j)− h.

By (6.16) we have

l(αi) ≥ l(α′i) + l(α′′i ) = (ui|vi) + l(γ′i),

l(αj) = l(α′j) + l(α∗j ) + l(α′′j ) ≤ (uj|vj) + h+ l(γ′j).

By (6.14) and (6.15) these inequalities imply (6.17).
Similarly l(γ′′i ) ≤ l(γ′′j )− h, whencel(γ∗i ) + l(γ′′i ) ≤ l(γ∗j ) + l(γ′′j ). It follows that there is

a well defined orientation preserving length mapg = gij : γi → γj with gyi = yj. It remains to
show that

(6.18) |gx− x| ≤ µ

for eachx ∈ γi. We consider three cases.
Case1. x ∈ γ′i. This case is rather similar to Case 2 but easier. We omit the proof, which

gives (6.18) in the improved form|gx− x| ≤ 3µ0 + 2h = µ− 2h.
Case2. x ∈ γ′′i . Sets = l(γi[zi, x]). There is a bijective length mapϕi : γ

′′
i → β′′i fixing

vi with |ϕix − x| ≤ µ0; see 2.15. Letf : βi → βj be the length map fixingp. Sinceβ̄ is a
(µ0, h)-road, we have|fϕix− ϕix| ≤ µ0. Furthermore,

(6.19) l(βj[p, fϕix]) = l(βi[p, ϕix]) = (ui|vi) + l(β∗i ) + s.

The pointw = ϕjzj is the common endpoint ofβ∗j andβ′′j .
Subcase2a.fϕix ∈ β′′j . Settingz = ϕ−1

j fϕix we have|x− z| ≤ 3µ0. By (6.19) we obtain

l(γj[yj, z]) = l(γ∗j ) + l(βj[w, fϕix])

= l(γ∗j ) + (ui|vi) + l(β∗i ) + s− (uj|vj)− l(β∗j ).

On the other hand,
l(γj[yj, gx]) = l(γi[yi, x]) = l(γ∗i ) + s.

Since the length of each center arc is at mosth, these estimates and (6.14) yield

|z − gx| ≤ |l(γ∗j ) + l(β∗i )− l(γ∗i )− l(β∗j )|+ |(ui|vi)− (uj|vj)| ≤ 3h,

whence|gx− x| ≤ 3µ0 + 3h = µ− h.

34



Subcase2b.fϕix /∈ β′′j . Sett = l(βj[fϕix,w]). By (6.19) we have

(uj|vj) + l(β∗j )− t = (ui|vi) + l(β∗i ) + s,

which yieldss+ t ≤ 2h. If gx ∈ γ∗j , then|gx− zj| ≤ h. If gx /∈ γ∗j , then

|gx− zj| ≤ l(γj[yj, gx]) = l(γi) + s ≤ h+ s,

which is thus valid in both cases. Asw = ϕjzj, we get

|gx− x| ≤ |gx− zj|+ |zj − w|+ |w − fϕix|+ |fϕix− x|
≤ h+ s+ µ0 + t+ 2µ0 = 3µ0 + 3h = µ− h.

Case3. x ∈ γ∗i . Now |x − yi| ≤ h and |gx − yj| ≤ h. By Case 1 we have|yi − yj| =
|yi − gyi| ≤ µ− 2h. These estimates yield|gx− x| ≤ µ, and the theorem is proved.�

We next give a version of the standard estimate 2.33 for biroads.

6.20. Extended standard estimate.LetX beδ-hyperbolic, letp ∈ X and letᾱ : a y b be a
(µ, h)-biroad. Then

d(p, |ᾱ|)− 4δ − h ≤ (a|b)p ≤ d(p, |ᾱ|) + µ+ h/2.

Proof.Write αi : ui y vi. Then 2.33 gives

d(p, αi)− 2δ − h ≤ (ui|vi)p ≤ d(p, αi) + h/2.

Sinced(p, |ᾱ|) ≤ d(p, αi) ≤ d(p, |ᾱ|) + µ for largei, the lemma follows from 5.11.�

6.21. Strings.Working with a road or a biroad̄α = (αi) is somewhat uncomfortable, because
one must often choose a particular memberαi and then go from one member to another with
the length mapsgij. It is sometimes easier to work with an object obtained by identifying the
members of̄α. This object is called the string of̄α, and it is defined as follows:

Let ᾱ : ȳ y b, αi : yi y ui be a(µ, h)-road in a domainG and letdu ᾱ be the disjoint union
of all αi, that is,

du ᾱ = {(x, i) : i ∈ N, x ∈ αi}.

Define an equivalence relation indu ᾱ by setting(x, i) ∼ (y, j) if either i ≤ j, y = gijx or
j ≤ i, x = gjiy. The setstr ᾱ of all equivalence classes is thestringof ᾱ. For eachi, we let

(6.22) πi : αi → str ᾱ

denote the natural map, defined by(x, i) ∈ πix.
If ξ, ζ ∈ str ᾱ, we can find representatives(x, i) ∈ ξ, (z, i) ∈ ζ with the same indexi. Since

the mapsgij are length maps, the number

l(ξ, ζ) = l(αi[x, z])

depends only onξ and ζ. The functionl is a metric instr ᾱ, and the mapsπi of (6.22) are
length maps in a natural sense. The initial pointsyi of αi define an initial pointy∗ of str ᾱ, and
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we obtain a bijective isometryω : str ᾱ → [0,∞) by settingω(ξ) = l(y∗, ξ). The mapω also
defines a linear order instr ᾱ; thenξ ≤ ζ iff there arei ∈ N and(x, i) ∈ ξ, (z, i) ∈ ζ such that
the pointsyi, x, z, ui are in this order onαi.

The locus|ξ| of an elementξ ∈ str ᾱ is the set of allx ∈ G such that(x, i) ∈ ξ for somei.
Then|ᾱ| =

⋃
{|ξ| : ξ ∈ str ᾱ}.

Thestring of a(µ, h)-biroad ᾱ : a y b, αi : ui y vi, inG is defined similarly. Now there is
a bijective order preserving isometryω : str ᾱ→ R, andω is unique up to an additive constant.
We shall use obvious notation like[ξ1, ξ2] and[−∞, ξ0] for intervals instrα.

6.23. Extended triangles.It is possible to extend parts of the theory ofh-short triangles (see
2.21) to the case where some of the vertices lie on the Gromov boundary∂X. Some sides of
such a generalized triangle will be(µ, h)-roads or(µ, h)-biroads with suitableµ andh. We
consider only the case where all vertices lie on the boundary and prove first the following
version of the Rips condition for such triangles:

6.24. Theorem.Let X be an intrinsicδ-hyperbolic space, leta, b, c ∈ ∂X, let ᾱ : b y
c, β̄ : c y a, γ̄ : a y b be(µ, h)-biroads and letx ∈ |ᾱ|. Thend(x, |β̄| ∪ |γ̄|) ≤ C(δ, µ, h) =
46δ + 11µ+ 22h.

Proof.Expressinḡα as a union of two(µ, h)-roads we find by 6.9 a memberαi : b1 y c1 of
ᾱ such that

d(x, αi) ≤ µ, d(b1, |γ̄|) ≤ C1, d(c1, |β̄|) ≤ C1

whereC1 = 7δ + µ+ 3h. Similarly we find an arcβj : c2 y a2 such that

d(a2, |γ̄|) ≤ C1, d(c1, βj) ≤ C1 + µ.

Chooseh-short arcsβ′ : c1 y a2 andγ′ : a2 y b1. There is a pointx1 ∈ αi with |x1 − x| ≤ µ.
SinceX is (3δ + 2h, h)-Rips by 2.35, we find a pointx2 ∈ β′ ∪ γ′ with |x2 − x1| ≤ 3δ + 2h.

If x2 ∈ β′, it follows from the second ribbon lemma 2.18 that there isy ∈ βj with |x2−y| ≤
C2 = 8δ + 5(C1 + µ) + 5h. Then|y − x| ≤ µ+ 3δ + 2h+ C2 = C.

If x2 ∈ γ′, we choosek ∈ N such thatd(a2, γk) ≤ C1 + µ andd(b1, γk) ≤ C1 + µ. By 2.18
we again find a pointy ∈ γk with |x2 − y| ≤ C2, and then|x− y| ≤ C. �

In order to prove a version of the tripod lemma 2.15 for extended triangles we make some
preparation. LetX be a hyperbolic space, leta, b, c be distinct points in∂X, and let

ᾱ : b y c, β̄ : c y a, γ̄ : a y b

be (µ, h)-biroads. Then(ᾱ, β̄, γ̄) is an extended(µ, h)-triangle. Fori ∈ N, we letπi denote
each of the natural mapsαi → str ᾱ, βi → str β̄, γi → str γ̄. Given an elementξα ∈ str ᾱ,
the intervals(−∞, ξα] and[ξα,∞) define two(µ, h)-roads converging tob andc, respectively.
If, in addition,ξβ ∈ str β̄ andξγ ∈ str γ̄, there are three natural (orientation reversing) bijective
length maps and their inverses between the corresponding intervals, for example,f : [ξβ,∞) →
(−∞, ξγ] with fξβ = ξγ.

6.25. Extended tripod lemma.LetX be an intrinsicδ-hyperbolic space and let(ᾱ, β̄, γ̄) be an
extended(µ, h)-triangle as above. Then there are elementsξα ∈ str ᾱ, ξβ ∈ str β̄, ξγ ∈ str γ̄
such that the corresponding length mapsf satify the inequality

d(|fξ|, |ξ|) ≤ C(δ, µ, h)

for all ξ in the domain off .
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Proof. By the closeness lemma 6.9 we find elementsζ(α, b), ζ(α, c) ∈ str ᾱ, ζ(β, c),
ζ(β, a) ∈ str β̄ andζ(γ, a), ζ(γ, b) ∈ str γ̄ such that

d(|ζ(γ, a)|, |ζ(β, a)|) ∨ d(|ζ(γ, b)|, |ζ(α, b)|) ∨ d(|ζ(α, c)|, |ζ(β, c)|) ≤ C1

with C1 = 7δ+2µ+3h. Choose an integeri such that the natural imageπiαi covers the interval
[ζ(α, b), ζ(α, c)] and such that the corresponding relations hold forπiβi andπiγi. Choose points
bα, cα ∈ αi, cβ, aβ ∈ βi, aγ, bγ ∈ γi such that, for example,bα is the unique point with
πibα = ζ(α, b). Then

(6.26) |aβ − aγ| ∨ |bγ − bα| ∨ |cα − cβ| ≤ C1 + 2µ.

aγ
γ
i

γ '

β
i

β'

α
i

aβ

cα

xα

xγ

x'γ

x'β

xβ

cβ

bα

bγ

Choosingh-short arcsβ′ : cα y aβ andγ′ : aβ y bα we obtain anh-short triangle with
sidesαi[bα, cα], β′, γ′. Choose pointsxα ∈ αi, x

′
β ∈ β′, x′γ ∈ γ′ in the center of this triangle;

see 2.21. By (6.26) and by the second ribbon lemma 2.18 we find pointsxβ ∈ βi andxγ ∈ γi

with |xβ − x′β| ∨ |xγ − x′γ| ≤ C2 = 8δ + 5(C1 + 2µ) + 5h. Since the diameter of the center is
at most4δ + 4h by 2.24, we have

(6.27) |xα − xβ| ∨ |xβ − xγ| ∨ |xγ − xα| ≤ C3 = 4δ + 4h+ 2C2.

We show that the lemma holds withξα = πixα, ξβ = πixβ, ξγ = πixγ.
Consider the intervals[ξβ,∞) ⊂ str β̄, (−∞, ξγ] ⊂ str γ̄, and letf : [ξβ,∞) → (−∞, ξγ]

be the length map withfξβ = ξγ. Let ξ > ξβ. It suffices to find an estimate

(6.28) d(|fξ|, |ξ|) ≤ C(δ, µ, h).

By the closeness lemma 6.9 we can find elementsζβ ∈ str β̄ andζγ ∈ str γ̄ such thatζβ >
ξ, ζγ < ξγ, d(|ζβ|, |ζγ|) ≤ C1 ≤ C3. Choose integersm andn such that writingγn : un y vn

we have
[ξβ, ζβ] ⊂ πmβm, [ζγ, ξγ] ⊂ πnγn, l(βm) ≤ l(πnun, ξγ).
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Let yβ, zβ ∈ βm, yγ, zγ ∈ γn be the unique points withπmyβ = ξβ, πmzβ = ζβ, πnyγ =
ξγ, πnzγ = ζγ. Then|yβ − yγ| ∨ |zβ − zγ| ≤ C3 + 2µ by (6.27). Letg : βm[yβ, zβ] → γn be the
orientation reversing length map withgyβ = yγ. There is a pointx ∈ βm[yβ, zβ] with πnx = ξ.
By the ribbon lemma 2.17 we have|gx− x| ≤ C4 = 8δ + 5(C3 + 2µ) + 5h. Sincex ∈ |ξ| and
gx ∈ |fξ|, this implies (6.28) withC = C4 = 458δ + 110µ+ 125h. �

6.29. Extended stability.We next extend the stability theory of Section 3 to the case where at
least one endpoint lies on the Gromov boundary, The main result is given in 6.32. We start with
the easy case of two roads or biroads with common endpoints.

6.30. Lemma.Suppose thatX is an intrinsic δ-hyperbolic space. If̄α, ᾱ′ are (µ, h)-roads
ȳ y b ∈ ∂X or (µ, h)-biroadsa y b, thendH(|ᾱ|, |ᾱ′|) ≤ 43δ + 11µ+ 20h.

Proof.We prove the case of biroads. Letx ∈ |ᾱ|. By 6.9 we can find membersαi : ui y vi

of ᾱ andα′j of ᾱ′ such that

d(ui, α
′
j) ≤ C, d(vi, α

′
j) ≤ C, d(x, αi) ≤ µ,

whereC = 7δ + 2µ + 3h. By Lemma 2.18 this yieldsαi ⊂ B̄(α′j, 8δ + 5C + 5h), whence
d(x, |ᾱ′|) ≤ 43δ + 11µ+ 20h. �

6.31. Lemma.Suppose thatX is an intrinsicδ-hyperbolic space and thatϕ : [0,∞) → X is a
(λ, µ)-quasi-isometry; see(3.3). Thenϕ(t) converges to a pointb ∈ ∂X ast→∞.

If ϕ : R → X is a(λ, µ)-quasi-isometry, thenϕ(t) converges to limitsa, b ∈ ∂X ast→ −∞
or t→∞.

We shall writea = ϕ(−∞) andb = ϕ(∞).

Proof. It suffices to prove the first part of the lemma. Let0 < s ≤ t. We must show that
(ϕ(s)|ϕ(t)) → ∞ ass → ∞. Let h = 1 and choose anh-short arcαst : ϕ(s) y ϕ(t). By 3.7
we havedH(αst, ϕ[s, t]) ≤M(δ, λ, µ). By the standard estimate 2.33 we get

(ϕ(s)|ϕ(t)) ≥ d(p, αst)− 2δ − h ≥ d(p, ϕ[s, t])−M − 2δ − h.

For eachu ∈ [s, t] we have

|p− ϕ(u)| ≥ |ϕ(0)− ϕ(u)| − |ϕ(0)− p| ≥ s/λ− µ− |ϕ(0)− p| → ∞

ass→∞, and the lemma follows.�

6.32. Theorem.(Extended stability) Suppose thatX is an intrinsicδ-hyperbolic space.
(1) Letϕ : [0,∞) → X be a(λ, µ)-quasi-isometry and let̄α : ϕ(0) y ϕ(∞) be a(µ, h)-

road. ThendH(|ᾱ|, imϕ) ≤M(δ, λ, µ, h).
(2) Let ϕ : R → X be a(λ, µ)-quasi-isometry and let̄α : ϕ(−∞) y ϕ(∞) be a(µ, h)-

biroad. ThendH(|ᾱ|, imϕ) ≤M(δ, λ, µ, h).

Proof.We prove part (2); the proof of (1) is rather similar. We may assume that0 < h ≤ µ.
Let M0 be the numberM(δ, λ, µ) given by the stability theorem 3.7. Define a sequence of
numbersR0 < R1 < . . . by

R0 = 0, Ri+1 = λ(λRi + 2M0 + 2µ+ h+ 1).
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Setui = ϕ(−Ri), vi = ϕ(Ri) and chooseh-short arcsβi : ui y vi. We show that the sequence
β̄ is a(µ1, h)-biroadβ̄ : ϕ(−∞) y ϕ(∞) with µ1 = µ1(δ, λ, µ, h).

We havedH(βi, ϕ[−Ri, Ri]) ≤M0. Hence we can choose pointsyi ∈ βi with |yi−ϕ(0)| ≤
M0. Settingsi = l(βi[yi, vi]) we have

si ≤ |yi − vi|+ h ≤ |yi − ϕ(0)|+ |ϕ(0)− ϕ(Ri)|+ h ≤M0 + λRi + µ+ h,

si+1 ≥ |yi+1 − vi+1| ≥ |ϕ(0)− ϕ(Ri+1)| − |ϕ(0)− yi+1| ≥ Ri+1/λ− µ−M0,

whencesi+1 ≥ si + 1. Similarly ti+1 ≥ ti + 1 for ti = l(βi[ui, yi]). Consequently, for each pair
i ≤ j there is a unique orientation preserving length mapgij : βi → βj with gijyi = yj. Since
d(ui, βj) ∨ d(vi, βj) ≤M0, it follows by the ribbon lemma 2.17 that

|gijx− x| ≤ 8δ + 5M0 + 5h = µ1(δ, λ, µ, h)

for all x ∈ βi. Henceβ̄ is a(µ1, h)-biroad fromϕ(−∞) to ϕ(∞).
SincedH(|β̄|, imϕ) ≤M0, the theorem follows from 6.30.�

6.33. Roughly starlike spaces.Let X be aδ-hyperbolic space and letK ≥ 0, µ ≥ 0, h ≥ 0.
We say thatX is (K,µ, h)-roughly starlikewith respect to a pointy ∈ X if for eachx ∈ X
there is a(µ, h)-roadᾱ : y y b ∈ ∂X with d(x, |ᾱ|) ≤ K.

In the caseµ = 0, h = 0, the condition is the same as in [BHK, p. 18].
The spaceX is said to be(K,µ, h)-roughly starlike with respect to aboundary pointa ∈

∂X if for eachx ∈ X there is a(µ, h)-biroadᾱ : a y b ∈ ∂X with d(x, |ᾱ|) ≤ K.
If X is (K,µ, h)-roughly starlike with respect toz ∈ X∗ for all h > 0, we say thatX is

(K,µ)-roughly starlikewith respect toz.
The essential parameter of rough starlikeness isK. In fact, in intrinsic spaces we can always

chooseh to be arbitrarily small andµ fairly small:

6.34. Lemma.Suppose thatX is an intrinsicδ-hyperbolic space.
(1) If X is (K0, µ0, h0)-roughly starlike with respect toy ∈ X, thenX is (K1, µ1, h)-roughly

starlike with respect toy for everyh > 0 and forµ1 = 4δ + 1, K1 = K1(K0, µ0, h0, δ).
(2) If X is (K0, µ0, h0)-roughly starlike with respect toa ∈ ∂X, thenX is (K2, µ2, h)-

roughly starlike with respect toa for everyh > 0 and forµ2 = 12δ+1, K2 = K2(K0, µ0, h0, δ).

Proof. (1) We may assume thath ≤ 1/2. Let x ∈ X and choose a(µ0, h0)-roadᾱ : y y b
with d(x, |ᾱ|) ≤ K0. By 6.7 there is a(µ1, h)-roadβ̄ : y y b. By 6.30 we have

dH(|ᾱ|, |β̄|) ≤ C = 43δ + 11(µ1 ∨ µ0) + 20(1 ∨ h0),

whenced(x, |β̄|) ≤ K0 + C.
Part (2) is proved similarly with the aid of Lemma 6.13.�

6.35. Lemma.(Two-point starlikeness) Suppose thatX is an intrinsicδ-hyperbolic space and
that X is (K,µ)-roughly starlike withµ = 12δ + 1 with respect toa0 ∈ ∂X. Let x1, x2 ∈
X, h > 0. Then there is a(µ, h)-biroad ᾱ : a1 y a2 such thatd(xi, |ᾱ|) ≤ K1(K, δ) for
i = 1, 2.
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Proof. We may assume thath ≤ 1/10. There are(µ, h)-biroadsᾱi : a0 y ai, i = 1, 2,
such thatd(xi, |ᾱi|) ≤ K. If a1 = a2, we can choosēα = ᾱ1 by 6.30. Assume thata1 6= a2

and setC = 46δ + 11µ + 3. Choose pointsyi ∈ |ᾱi| with |xi − yi| ≤ K + 1, i = 1, 2.
We may assume thatd(y2, |ᾱ1|) ∧ d(y1, |ᾱ2|) > C, since otherwise we may takēα = ᾱ1 or
ᾱ = ᾱ2. Choose a(µ, h)-biroadᾱ3 : a1 y a2. By the extended Rips condition 6.24 we have
d(yi, |ᾱ3|) ≤ C, i = 1, 2, and the lemma holds with̄α = ᾱ3, K1 = K + C + 1. �.

In [Vä5] we shall make use of roads and biroads to study hyperbolic domains with the quasi-
hyperbolic metric in Banach spaces. These domains are always roughly starlike with respect to
each point in the domain and in its boundary.
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in Math. 1441, Springer, 1990.

[BBI] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Graduate Studies Math 33,
AMS, 2001.

[GdH] E. Ghys and P. de la Harpe (eds), Sur les groupes hyperboliques d’après Mikhael Gromov,
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Gromov product, 4
Gromov product of boundary points, 24
Gromov sequence, 22

Hausdorff distance, 3
h-short arc, 3
h-short triangle, 7
hyperbolic space, 4

induced subdivision, 8
intrinsic space, 2

large point, 19
length map, 5
locus of a biroad, 33
locus of a road, 31

metametric, 19

pointed space, 22
positive map, 19
positive quadruple, 20
positive triple, 19
projection lemma, 13

quasi-isometric path, 11

quasi-isometry, 11, 16, 29
quasigeodesic, 11
quasim̈obius, 21
quasisymmetric map, 19

ratio of a triple, 19
ray, 30
relative positivity, 20
relative quasim̈obius, 21
relative quasisymmetry, 20
ribbon lemma, 6
Rips condition, extended, 36
Rips space, 9
road, 30
rough inverse, 15
roughly injective map, 15
roughly starlike space, 39
roughly surjective map, 15

slim triangle, 9
small point, 19
stability, 11, 13
stability, extended, 38
standard estimate, 10
standard estimate, extended, 35
string, 35
subroad, 31

triangle, 7
triangle, extended, 36
tripod lemma, 5
two-point starlikeness, 39

weakly surjective map, 29
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