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0. By a flat conformal structure (FCS) on n—manifold M we
i)

A PRl R S™ ) with conformal transition maps wjow;1 . If the

shall mean an equivalence class of atlases X= ( (s e

dimension n 2 3 then conformal maps are (in fact) mobius; hence
flat conformal structures are to be rather called mobius
structures. Flat conformal structures 1-1 correspond to conformal
classes of conformally- euclidean metrics on M (more on this
subject see in [Kull, [Kol, [Ku 1]). So we can speak about
"topological” and "Riemannian” nature of FCS. For example, manifolds
of constant curvature are conformally flat. Among 8 three—

: 3 &
dimensional geometries we have 5 conformally-euclidean: H, S,

3 H°xR, S°xR. The 3 other geometries Nil, Sol, SL,(R) are not
conformally euclidean (see [Sc 1] for details).

0.1. Hierarchy of structures. The best class of FCS consists of

uniformizable ones. They arise in the following way:

Let T be a discrete group of mobius transformations which
acts freely and discontinuously on a domain € c S™ . then the

standard FCS on @ canonically projects to the uniformizable

structure K- on the factor manifold @ /T = ¥ .

(t)
This paper is in final form and no version of it will be

submitted for publication elsewhere.
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Example 1. Let F be a fuchsian torsion free cocompact
subgroup of Isom(H”). Consider the Poincare extension F# of
the group F to Isom+(H4)= lob(ss) — the full group of orientation
preserving mobius transformations of 53 . The discontinuity domain
Q@ of F =G is the complement of the unit circle. The factor
manifold M =92 / ¢ 1is homeomorphic to ng s , Where Z is a

g
compact surface of genus g. The structure K is in fact a H°x R

-structure.

The second class: almost uniformizable structures.

Let (M, K) be a manifold with uniformizable FCS K . Let

Dg: Mg — M be a finite-sheeted covering and pal(K ) = K. be the

0O
preimage of structure. Next let p: (My , K;) — (M, , K,) be a
conformal finite-sheeted covering. Then the structure Kk, 1is said

to be almost uniformizable.

Example 2. Consider uniformizable FCS K, from Example 1. Let

py: s'— s' be the n-sheeted covering; p: s'x £ — S'x £ be the
product-map p,x id . Then the structure p_l(KG ) 1s almost
uniformizable but not uniformizable.

The third is the class of structures with nonsurjective

development maps (in [Ka 1] these structures are called relatively

complete since their development maps are coverings onto image). The
development map is a conformal map dev: (i, E)-—~ C.iSE. ean):
inducing the holonomy representation

hol: =, (M) — Hob(Sn), hol(g)<dev= deve g for every g e n, (M).
Here (M, k) 1is the universal covering over (M, K).

Example 3. Let I be a fuchsian torsion-free subgroup of

2
Isom( H" ) , h € R \ nQ . Consider the following action of
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r xZ on Hx R :

CORNITE) =V (8)iyb) , 5« H® i, t «Rey vapd
=<6 > ,0(z ,t)=(z, t+ h)

Then the natural FCS on the factor manifold H°x R / T x Z is
relatively complete but not almost uniformizable.

However, theorems of [Kaml, [KuP 11, [Ka 11, [G K]l state that
any relatively complete FCS on closed manifold is almost
uniformizable unless it is a Hzx R —structure of type given
by Example 3.

The worst class of FCS consists of those structures whose
development maps are surjective. Examples of such kind may be
constructed via "bending” or "grafting” [Go 3]. The structures of
this class are very irregular and mysterious. To my best knowledge
it is unknown whether there is a compact flat conformal manifold
(M, K) such that M admits no relatively complete FCS. The most
general fact about FCS whose development map can be surjective is
Decomposition Theorem of R.Kulkarni and U.Pinkall [KuP 2].

So we have the hierarchy of strong inclusions:

Uniformizable Structures < Almost Uniformizable FCS <
Relatively Complete FCS < FCS.

0.2. In this survey we shall discuss the following
questions concerning FCS :

1) Existence problem;

2) Problem of realization of automorphisms;

3) Global properties of deformation spaces of FCS.

The subjects that are concerned with FCS but missed in this paper:

(1) Relations between "Riemannian” and "topological” nature of
FCS (see [S Y1, [KuP 21);
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(11) twistor constructions [Lel, [A Gl, [B 0];

(1ii) description problem, i.e. description of development maps
of FCS under some conditions on the holonomy (or fundamental) groups
(see for example [Go 31, [Ka 4], [Ml, [F1);

(iv) infinitesimal and local deformations of FCS (see [A T],
LG GEy Flal'i (L] 2 [M J1 6Ka 51, 0Ka 73);

(v) Chern-Simons functional and »—invariant [CS], [APS].

Reader is also referred to the beautiful surveys [Go 4],
Pul 2%, LYl . [M)-.

1. Existence problem.

First let’s reformulate two well-known problems of
3—-dimensional topology in terms of FCS.

1.1. Poincare Conjecture.

£ is homotopy 3—-sphere = £ admits FCS. (1.1)

The equivalence of (1.1) to the classical Poincare Conjecture
is evident: development map d : £ — s® is a local
homeomorphism, hence it is a homeomorphism [Ku 1].

1.2. Generalized Smith Conjecture.

M 1is orientable manifold covered by 3—-sphere = M admits FCS.
The equivalence of (1.2) to the Smith Conjecture about free
finite group action on 3-sphere follows from the following:
any compact subgroup of SO(4, 1) is conjugate to a
subgroup of S0(4).
1.3. In fact the deepest existence theorem for FCS 1is
Thurston’s hyperbolization theorem:
Theorem 1. Let M be a compact Haken 3-manifold which

doesn’t contain incompressible tori. Then M admits a
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Riemannian metric of the curvature (-1).

1.4. Kulkarni's existence theorem [Kull.

Theorem 2. Let M, and M, be manifolds which admit

FCS. Then their connected sum M, # M, also admits FCS.

Really this theorem is a generalization of Klein’s
Combination to FCS.

1.5. Goldman's nonexistence theorem [Go 1].

Theorem 3. If M is closed Sol- or Nil-manifold then M does
not admit any FCS. Moreover, if flat conformal manifold (M, K) has
almost solvable holonomy group then =, (M) 1is almost abelian.

In particular, nontrivial s'- bundles over s'x s' does
not admit any FCS.

1.6. The following theorem is an answer to some question
of [Go 1] given independently by several people [G L TI,

[Ku 3], [Ka 2], [Ka 3]

Theorem 4. Let M = S(g, e) Dbe the total space of S'-bundle
(with Euler number e € Z ) over surface £ of genus g . Then M
admits uniformizable FCS under condition :

o¢<lel s |x (2 )|/ 22 [Ka 2], [Ka 3]

or more weakly, o < |e|] < |x (£ )|/ 3 [Ku 3]

Conjecture [GLT]. The inequality |e| < |x (£ )| 1is the

necessary condition for existence of uniformizable FCS on S(g, e).
For Seifert manifolds which are not circle bundles we
have the following existence theorem of F.Luo [Lul:
Theorem 5. Let p/qe Q n lo, 1[ \ {1/2}. Then for every
rational p’/q’ > p/q sufficiently close to p/q and every

positive integer g there is an uniformizable FCS on some Seifert

manifold M = M(g, p/q, p'/q’) such that:
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(1) the base-orbifold of M has genus g and 2 cone points ot
orders 1/p, 1/q’;
(11) the Euler number of M 1is equal to p/q - p’'/q’.

Remark. Pick arbitrary integer n 2 7 which isn’'t divided by
6 .. Liek Sz(p. q, r) be the 2-dimensional orbifold of genus O
with 3 cone points of orders p. q, r. Then it can be shown that all
Seifert manifolds with the base-orbifolds S°(2, 3, n), S%(3, 3. 4)
do not admit uniformizable FCS.

1.7. The following existence theorem 1s an attempt to
generalize Thurston’'s hyperbolization theorem to the wider class
of Haken manifolds [Ka 31, [Ka 2]

Theorem 6. Let M be a Haken manifold which is not Sol-
or Nil-manifold. Suppose that M 1is obtained by gluing geometric
components in such way that there are no pasting such as

hyperbolic - hyperbolic
and

hyperbolic - euclidean .

Then some finite-sheeted covering M, of M admits an
uniformizable FCS.

Remark. In fact Theorem 4 1s a special case of Theorem 6
and it was a starting point for its proof. In final section of
[G L T]1 there is also an attempt to use Theorem 4 for construction
of FCS on other Haken manifolds. Unfortunately their construction of
conformal assembling of (M, , X,) ,,, (M, , K,) leads to the
disjoint union of these flat conformal manifolds only.

Below we present two examples which clarify ideas of
Theorem’s 6 proof.

Example 4.

Let Z,= er Sl, J=1, 2 , where ZJ is the surface of genus
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g;* 0 and has connected boundary. The decomposition of Z, 1into
the direct product introduces in =, (3Z,) the natural meridian-
longitude basis. Suppose that the manifold M is obtained by
gluing z, via a homeomorphism f : 8Z,— 9Z, which is defined
(in the natural bases) by a matrix Ae GL(Z , 2) with a,,=1 . If
the numbers g, are sufficiently large with respect to |ajJ| then
there exist the groups H(g, , la,,|) , H(g, , |la;,|) uniformizing
the manifolds S(g, , lay,l), S(g, , la;,|) (Theorem 4). Next we
dispose the constructed groups in s® in such way that the
complements of their fundamental domains (that look like twisted
unknotted solid tori) define a link of index 1 1in s®. It is not
hard to see that the group G =H(g, , lay,|) * H(g, , la;,|)
uniformizes the manifold M . However it is impossible to avoid the
condition |321|=1 (for the circumscribed construction of the group
G ). Proving theorem 6 we find a finite-sheeted covering over M
such that the corresponding coefficients a,, are equal to 1.

Example 5.

Let G, be a torsion-free discrete subgroup of PSLA 20060,
p: Ho— H3/61= M, be the universal covering, the manifold M,
is compact and contains a simple closed geodesic ¥ . Suppose that
some component ; c p_l(w) has the hyperbolic stabilizer < g > 1n
G, (i.e. Tr(g)e R,). Then 7 has an open e-neighborhood U.(7)
which is homeomorphic to the solid torus. It isn’t hard to notice
that the manifold Mf= M,\ cl(U.(v)) 1is hyperbolic [Kojl. We shall
denote by ¢ the euctlidean circle that contains the arc ; :

Let Te Isom(Hz) be a free discrete group of rank 2r such
that H®/r is the surface with infinite area and one ideal boundary

component. Let Z_c H?/r be the Nielsen's core (i.e the minimal
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compact convex subsurface homotopy equivalent to Hz/r ). Assume that
(1.7) length(7 )= length(oz ); arccos(1/cosh(8))= arcsin(1/cosh(e))

and the s-neighborhood u,(9%,) of @Z_, is homeomorphic to the
analANS Put £ = N\ Ug(92)), G, be the extension of I to 53.
Without loss of generality we can suppose that:
(1) the circle ¢ is invariant under G, ,
(2) <g> < [G, , G,] corresponds to =, (9% ) c = (Z_).
Then the group G generated by G, , G, uniformizes a manifold ¥
which is obtained by gluing M: and = x S along the boundary
tori. The condition (1.7) guarantees that 3M: and o(X x §') are
Mobius—-equivalent

However only few sewings may be realized in such way and the
hyperbolicity of g 1is very restrictive condition. That is why we
have to waive of utilizing groups G, with invariant circles.
Instead of them we use discrete groups arising after some tiring
operations over H(g , e) that have been constructed in Theorem 4.

Conjecture [Ka 2] . Let u> be a connected sum of Haken

manifolds, where summunds do not admit Sol- or Nil-
structure. Then on some finite-sheeted covering of M there

is an uniformizable FCS.

1.8. Birational uniformization.

The class of Haken manifolds treated by Theorem 6 is
sufficiently wide. However according to Theorem 3 we have no hope
to construct FCS on any Haken 3—-manifold (even up to a
finite-sheeted covering).

Hence let’s remind that the group Mob(S%)= PSL(2 , C )

1s contained in the pseudogroup Conf(52) consisting of
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conformal injections defined on subdomains of S°. In R° there is
one analogy of this inclusion. Let Bir(ﬁa) be the pseudogroup of
birational transformations f : Dom(f ) € R <R3

(i.e. £1=(f; , £, , fy) such that

f;

As it was proved in [AK]l, [BM]l every closed 3-manifold M admits a

. Dom(ftl) — R are rational functions,(j =1, 2, 3 ).

real algebraic structure 4 such that (M, 4) 1s birationally
equivalent to SS; moreover, the exceptional set for the birational
equivalence is a smooth (typically disjoint) curve. It implies (as
A.Tyurin explained to me) that any closed 3-manifold admits a smooth
atlas with birational transition maps.

Definition. 3-manifold M admits a birational uniformization

if there exist a simply connected domain Q € R° and a group

F c Bir(ia) which acts freely and properly discontinuously on 2 |,
so that @ / r 1is homeomorphic to M .

Question (J.Hempel [He, Ch. 151).

Does any closed 3-manifold admit birational uniformization ?

Remark. Any 3-manifold modelled on some 3—-dimensional geometry
except of SL,(R) admits the natural birational uniformization.

Theorem 7. Any connected sum of Haken manifolds admits a
birational uniformization.

This theorem can be proved by analog of Maskit Combination

Process for discrete groups of birational transformations.

1.9. Flat conformal structures on open 3-manifolds.

As it was remarked by Whitehead [W] any open orientable
3-manifold admits an immersion into E° and, hence, admits FCS.

Thus the only sensible problem is existence of uniformizable FCS on
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these manifolds. Here we discuss only one aspect of this question :
can manifolds of infinite homotopy type admit uniformizable
mobius structures with finitely generated holonomy group ?
For the case of Riemannian surfaces the negative answer
1s given by Ahlfors’ finiteness theorem (see [Al, [Krl, [KS]) :
Let G be a discrete non-elementary finitely generated
subgroup of PSL(2, C ) acting freely on the domain of
discontinuity 9(G); then the factor space 9(G)/G consists

S each

of a finite number of Riemannian surfaces s, ,..., S,

having a finite hyperbolic area. In particular, the group
w,(s;) 1is finitely generated (j=1 ,..., n)

In the joint paper of author and L.Potyagailo [K P 1] the
affirmative answer for dimension 3 was given :

Theorem 8. There exists a finitely generated, discrete
group F c Hob(Ss) without torsion, with invariant component
@ of the domain of discontinuity such that the group =, (2 / F)
is not finitely generated.

The manifold M= @ / F 1is homeomorphic to double (along
part of boundary) of cube with infinitely many handles.

The example above was elaborated by author [Ka 6], [K P 2] as
follows :

Theorem 9. There exists a finitely generated free Kleinian
group K, < Mob( s® ) such as

(a) The number of conjugacy classes of maximal parabolic
subgroups of K, is infinite ;
(b) If Kk, c Mob( 8" ) is the conformal extension of K
ek prene) 4uklien

ranic( ot oy Calle Wdtrsie. ;. Qoldu=qes ]

O
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Thus the manifold M(k,)) = (K,) ~ K, has infinite homotopy type.

The manifold Q(X;) ~ K; 1is homeomorphic to an open handlebody
X, from which some ®-component link L is removed. Each component
of the link is an unknot presenting free generator of ROV

This theorem also demonstrates failure of Sullivan’s cusp’s
finiteness theorem [Sul for Kleinian groups in higher dimensions.

The group K, 1is interesting also from algebraic point of view:
small deformations of it produce a family of finitely generated
discrete subgroups of S0(4 , 1) each possessing infinitely many
conjugacy classes of finite order elements (see also [FM]).

Theorem 18. For each q € Z there exist :

1) an integer r = (rank of free group L < Xy seveey X >)

2) automorphism ¢ : F k6 — 1 such that the group

! g
Fr(r, q =< x (wn(xl))q=1,n=l,2,...>

X
has infinitelyimany congugacy classes of finite order elements
[y, = ¢"(x,)] and T(r, ¢ admits discrete faithful
représenatation e T(r ,. @) .—* Mob(SS) g

Remark. According to Selberg’s lemma [Sel eF(r , g) has a
torsion-free finite index subgroup T (r, q) (as finitely generated
linear group). The group T (r, q) can’'t be the fundamental group
of compact aspherical manifold (see [FM]). Underlying space of the
orbifold Q@(r , q) / el'(r , @ 1is homeomorphic bory 26 016 where the

singular set is L (see above). Generalizations and discussions of

Theorems 8, 9, 10 see in [P1]l, [P2], [Bo Ml .

2 Realization of automorphisms.

2.1. As a consequence of Thurston’s geometrization theorem for

orbifolds [KOS] and results of [MS] we have that:

for any 3-manifold M possessing one of 8 geometries (X, G)

4
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and for any finite group F c 2if{ (M) which acts nonfreely, there
exists a (X, G)-structure on ¥ which is F-invariant. Moreover, if
(X, G) is not H> nor 53 , then the restriction to orientation
preserving and nonfree actions may be dropped [Sc 2] . Conjecturally
these restrictions can be omitted for any geometry.

In contrast to these results we have the following
situation for flat conformal structures.

2.2. Nonfree actions

Theorem 11 [Ka 2] . There exists a manifold M= S(g , e)
(with o < e < (28 - 2)73 ) and finite group F c Diff ( M)
which acts nonfreely on M , such that F does not preserve
any FCS on M .

2.3. Free actions

Let © be the orbifold supported by S'x [0, 11 and
possessing one singular cone point of order 2 . Then we choose
a Seifert fibration N— 0 over O , such that H = n, (W) >
CaY Ay g E g et abk aol Fa-, (b 1 wiBb: at No=ibiyesThe
manifold N has two boundary tori T, and T, ; let i, : T,— N
be the inclusions, k = 1 , 2 . The fundamental groups of T, and
T, are generated by { a, , t, } and { b, , t, } , where
ij«(a, , ty) = (a, t) and iz.(b, , t;) = (b, t) . There exists
an orientation reversing homeomorphism f£: T, — T, such that
f.(a;) =t, , fu(t;) = b, . Let M be the manifold N / (x = f(x)) .

It is easy to see that M obeys the conditions of Theorem 6
(since there are no hyperbolic and euclidean components in the
canonical splitting of M ) . Then a finite-sheeted covering
p: M.~ M. exists, such bthat M, possesses a FCS .

Theorem 12. [Ka 2], [Ka 3]

The manifold M does not admit a FCS.
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The proof is based on investigation of representations of n, (M) 1in
Mob(S®). It can be shown that every such representation has almost
solvable image. Then we can apply Theorem 3.

So the finite group F= Aut ( p : My — M ) < Dif{ (M)

acts freely on M, , but there are no FCS which are F-invariant.

3. Deformations of FCS

3.1. Let M be a closed 3-manifold and C(M) be the space
of all FCS on M . Roughly speaking [Thl, the topology on C(M) is
given by small perturbations of charts defining FCS (precise
definition see in [CEGl, [Go 4] , [L]). Another way to introduce
this topology is to use Clwtopology on the space of conformally-
euclidean metrics on M.

Here we shall discuss only global properties of C(M)
and some speculations on this subject.

3.2. Theorem 13 ([Ka 21, [Ka 31, [Ka 35]).

Let M= S(g , e) , 0o <e S |2g - 2|73 . Then number of
connected components of C(M) 1is not less than

[(2¢g - 2)/ 3el=v(g , e)

Below we indicate those FCS which lie in the different

components of C(M). Consider the set of manifolds
6 =(S(ne, g :0<nsvie, g )

All manifolds of € admit uniformizable FCS K

n )

due to

Theorem 4. There exists a covering p: S(g , e) — S(g , en ) and

—~

hence the structures Kk, 1ift to structures K, on the manifold

~

S(g , e). Then the holonomy groups of the structures K 6 are
the groups H(g , ne) . The groups H(g , me) and H(g , ne)
can not be deformed one to other in the space of all pseudofuchsian

groups (if n * m ). Therefore, results of [Ka 11, [Ka 5] imply that
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-~

the structures Kk and Eh lie in different components ¥, and
U, of C(M) . Another way to see this is to calculate m—invariants
associated with conformally-euclidean metrics corresponding to ﬂn‘

It is known that for all n the set U  entirely consists of
almost uniformizable structures [Ka 1], [Ka 5] ; and these spaces
are manifolds of dimension 10(2¢g - 2) [Go 2] . Unfortunately we
don't know anything more about topology of these spaces.
Conjecturally c(M) consists only of almost uniformizable
structures and has only finitely many components ( M= S(g , e) and
e ®* o ). Last conjecture implies that given g there exists a
constant E(g) such that S(g , e) does not admit uniformizable
ECS: for all . e » E(EFItelf. conjeetures: of [GLT] and [Ku 81).

3.3. Here we present some table of speculations about analogy
between FCS on closed 3-manifolds and self-dual connections on

SU(2)-bundles over simply connected closed 4-manifolds.
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Self-dual connections

Moduli space M :

-+

Flat Conformal Structures

Moduli space C(M)

1. Finite dimensional

Finite dimensional

2. Subset of critical set

Set of critical points of

of Yang-Mills functional YM Chern-Simons functional CS
YN, = 172 J |FA|2dvol (or =m-invariant) CS, = I tr(
M M
A~ F, - 273 a° ) ., depstA)= 0
3. YM is locally constant n and CS are locally constant

4. Moduli space admits a
natural compactification

C(M= Sleg) has no compactification
as a finite CW-complex

5. Taubes’' connectedness
theorem ( M = S4 ) [Tau 1]

Conjecture: 2 ' (x) is connected

for any x € R

existence theorem
b_(M) [Tau 2]

6. Taubes’
1f =0, (P)e

? (Poincare Conjecture ?7?)

Unfortunately here there are much more questions than

answers on them.

REFERENCES

L.V.Ahlfors, Finitely generated Kleinian groups, Amer.

J. Math. 86 (1964) 413- 429 ; 87 (1965) 759 .

[A]

(A K]

[A G] D.Alekseevsky, M.Graev,
Preprint, 1991.

[ APS)

S.Akbulut, H.King, Rational Structures on 3-Manifolds

Twistors and G—structures,

M.Atiyah, V.Patodi, I.Singer, Spectral asymmetry and

Riemannian geometry: II, Math. Proc. Camb. Phil. Soc. 78

(1975) 405 - 432.



566

[ AT]

(B M

[ Bo MI]

[B O]

[ CS]

[ ECG]

[F]

[ FM]

[Go 1]

[Go 2]

[Go 3]

[Go 4]

M. E. KAPOVICH

B.Apanasov, A.Tetenov, On existence of nontrivial
quasiconformal deformations of Kleinian groups 1n space,
bokl -fSoviet Acad. Sei: 1918, ¥&-239, p. 1417
R.Bendetti, A.Martin, Dechrues de varites de dimension trois
et la conjecture de Nash de rationalite en dimension trois,
Ec. Norm. Sup. Lion, Preprint 1990.

B.Bowditch, G.Mess (to appear)

L. Berard Bergery , T.Ochiai, On some generalizaticn of
construction of twistor spaces, Glob. Riem. Geom., 1984,
ed. T.Willmore, N.Hitchin

S.Chern, J.Simons, Characteristic forms and geometric
invariants, Ann. of Math. 99 (1974) 48 - 69.

D. B. A. Epstein, R.Canary, P. Green, Notes on Notes of
Thurston. In: Analytical and geometric aspects of
hyperbolic space, London Math. Soc Lect. Notes, 111.-
Cambridge Univ. Press ( 1987 ), 3- 92.

D.Fried, Closed Similarity Manifolds, Comm. Math. Helv. 53
(1980) 576— 582.

M.Feighn, G.Mess, Conjugacy classes of finite subgroups
in Kleinian groups, Amer. J. Math. (to appear)

W. Goldman, Conformally flat manifolds with nilpotent'
holonomy and uniformization problem for 3-manifolds,
Trans . Amer. Math. S0C. ., 4f0: U1983)'S 573~ D863

W. Goldman, The symplectic nature of fundamental groups
of surfaces, Adv. in Math., 54 (1984) 200- 225

W. Goldman, Projective étructures with fuchsian

holonomy, J. Diff. Geom. 25 (1987) 297- 326

W. Goldman, Geometric structures on manifolds and varieties



(G G]

(G K]

[GLT]

[ Hel
[JM]

[Ka 1]

[Ka 2]

[Ka 3]

[Ka 4]

[Ka 5]

[Ka 6]

[Ka 7)

FLAT CONFORMAL STRUCTURES ON 3-MANIFOLDS (SURVEY) 567

of representations, Contemporary Mathematics, vol 74, 1987.
J.Gasqui, H.Goldshmidt, Deformations infinitesimales des
structures conformes plates, Progress in Mathematics 52, 1984
N.A. Gusevskii, M. Kapovich, conformal structures on

3- manifolds, Soviet Math. Dokl. 34 (1987) 314- 318.

M. Gromov, H.B. Lawson, W. Thurston, Hyperbolic

4-manifolds and conformally flat 3-manifolds, Math.

Publ . aof ' THES, Vol'. 68 (19889 27~ 45"

J. Hempel, 3- manifolds, Princeton Univ. Press, 1976.
D.Johnson, J.Millson, Deformation spaces associated to
compact hyperbolic manifolds, In:"Discrete groups in geometg;
and analysis”. Progress in Math. 67 (1987) 48— 106.

M. Kapovich, Some properties of developments of

conformal structures on 3-manifolds, Soviet. Math.

Dokl. '35 (1987), 146- 149.

M. Kapovich, Flat conformal structures on 3-manifolds,
Siberian Branch of USSR Acad. of Sci., Institute of
mathematics, Novosibirsk, 1987, preprint 17 (in russian).

M. Kapovich, Flat conformal structures on 3-manifolds, I-IV
(Journal of Diff. Geometry, to appear)

M.Kapovich, On Conformal Structures with Fuchsian Holonomy,
Soviet Math. Doklady, 1989 , Vel. 33, N 1

M. Kapovich, Deformation spaces of flat conformal
structures, Answers and Questions in General Topology

1990, vol 8, N1, p. 253- 264

M.Kapovich, On absence of Sullivan’s cusp finiteness
theorem in higher dimensions, Preprint, IHES 1990.

M.Kapovich, Deformations of representations of discrete



568

[KP 1]

LKP: 2]

[ Kam]

[ Kol

[Kojl

[K]

[Kr]

[Ku 1]

[Ku 2]

[Ku 3]

[Kul 1]

[Kul 2]

M. E. KAPOVICH

subgroup of S0(3,1). Preprint, IHES 1990.

M.Kapovich, L.Potyagailo, On absence of Ahlfors'’
finiteness theorem for Kleinian groups in

dimension 3, Topology and its Applications, 1991
M.Kapovich, L.Potyagailo, On absence of Ahlfors' and
Sullivan’s finiteness theorems for Kleinian groups 1n
higher dimensions, Siberian Math. Journ. 1991, N 2.

Y. Kamishima, Conformally flat manifolds whose
development maps are not surjective, Trans. Amer. Math.
Sqc.5. 294, L1986 b 607= 621 .

S. Kobayashi, Transformation Groups in Differential
Geometry, Springer Verlag, 1972

S. Kojima, Isometry groups of hyperbolic manifolds,
Topology and its Appl., 29 (1988) 297- 307
C.Korouniotis, Deformations of hyperbolic manifolds, Matl
Proc, ;Camb:Phil .. Soc. 98. (1985) 247- 261.

I.Kra, Automorphic forms and Kleinian groups, Benjamin
Reading, Massachusetts (1972)

N. Kuiper, On conformally— flat spaces in the large,
Ann. of Math. 50 (1949), 916- 924.

N. Kuiper, On compact conformally euclidean spaces of
dimension > 2, Ann. of Math., 52 (1950), 478- 490.

N. Kuiper, Hyperbolic 4- manifolds and tessellations,
Math. Publ. IHES , vol. 68 (1988) 47- 76 .

R. Kulkarni, On principle of uniformization, J. Diff.
Geom., 13 (1978), 109- 138.

R.Kulkarni, cConformal Structures and Mobius Structures,

1-39, In: Conformal Geometry, Aspects of Mathematics, vol



[ KuP 1]

[ KuP 2]

[ KS]

[K 0 S)

[L]

[Lal

[Lel

[ Lul

(M)

(M S)

(P 1]

FLAT CONFORMAL STRUCTURES ON 3-MANIFOLDS (SURVEY) 569

12, ed. by R.Kulkarni, U.Pinkall, Vieweg 1988.
R.Kulkarni, U.Pinkall, Uniformization of Geometric
Structures witn Applications to Conformal Geometry,
Lecture Notes in Math. 1209, 1986, p. 190- 209.
R.Kulkarni, U.Pinkall, A canonical Metric for Mobius
Structures and Its Applications, Preprint of Mittag
Laffler Institute, 1990

R.Kulkarni, P.Shalen, On Ahlfors’' finiiveness thorem,
Adv. Math. (2) 76 (1989) 155-169.

S. Kojima, K. Ohshika, T. Soma, Towards a proof of
Thurston's geometrization conjecture for orbifolds,
Kokyuroku RIMS # 568 (1985) 1-72.

L. Lok, Deformations of locally homogeneous spaces,
Thesis, Columbia Univ., 1984.

J.Lafontane, Module de structure conformes plates et
cohomologie de groupes discretes, C.R.Ac. Scl. Paris, 297
(1983) 655-658

C. Le Brun, Twistor CR — manifolds and 3—-dimensional
conformal geometry, TAMS, 284 (1984), p. 601-616.

F.Luo, Constructing flat conformal structures on some
Seifert fibered 3-manifolds, (J. Diff. Geom., to appear)
S.Matsumoto, Foundations of Flat Conformal Structure,
Preprint, 1990

W.Meeks, P.Scott, Finite group actions on 3-manifolds,
Inv. Math. 86 (1986), 287- 346.

L.Potyagailo, Finitely generated Kleinian groups in 3-space
and 3-manifolds of infinite homotopy type, Preprint of
Tel-Aviv Univ., 1991



570

LR @l

i1Sc 1]

[Sc 2]

[ Sel

(S Y]

[ Sul

[Ta 1]

[Ta 2]

[ Thi

[ W]

(Y]

M. E. KAPOVICH

L.Potyagailo, The problem of finiteness for Kleinian groups
in 3-space, Proceedings of International Conference
"Knots-90”, Osaka 1990 (to appear)

P.Scott, The geometries of 3- manifolds, Bull. London
Math. Soc., 15 (1983), 401- 478.

P. Scott, There are no fake Seifert fibre spaces with
midnite ', TRTANN ) of "Matil. 11Pc(1983)); +85= 40
A.Selberg, On discontinuous groups in higher-dimensional
symmetric spaces,— In : Contributions to function theory.
Bombey, Tata Inst. of Fund. Res., 1960, p. 147- 164
R.Schoen, S.T.Yau, Conformally Flat Manifolds, Kleinian
Groups and Scalar Curvatures, Inv. Math. 92 (1988) 47-71.
D.Sullivan, On finiteness theorem for cusps, Acta

Math 947" "3~'4 (1981) 2808 299;.

C. Taubes, Path-connected Yang-Mills moduli spaces, J.
Diff. Geom., 19 (1984) 337- 392 .

C. Taubes, Self-dual connections on 4-manifolds with
indefinite intersection matrix, J. Diff. Geom. 19
(198491517 560",

W. Thurston, Geometry and topology of 3- manifolds,
Princeton Univ. Lecture Notes, 1978.

J.H.C.Whitehead, The immersion of an open 3-manifold

in euclidean space, Proc. Lond. Math. Soc. 11 (1961) 81-90
S.-T. Yau, Uniformization of Geometric Structures, In
"Mathematical Heritage of Hermann Weyl”, Proc. Symp.

Pure Math., 48, ed. R.Wells (AMS, 1988)



