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Annals of Mathematics, 151 (2000), 625-704 

The monodromy groups of Schwarzian 
equations on closed Riemann surfaces 

By DANIEL GALLO, MICHAEL KAPOVICH, and ALBERT MARDEN 

To the memory of Lars V. Ahlfors 

Abstract 

Let 0: 7 (R) -* PSL(2, C) be a homomorphism of the fundamental group 
of an oriented, closed surface R of genus exceeding one. We will establish the 

following theorem. 

THEOREM. Necessary and sufficient for 0 to be the monodromy represen- 
tation associated with a complex projective stucture on R, either unbranched 
or with a single branch point of order 2, is that 0(7ri(R)) be nonelementary. 
A branch point is required if and only if the representation 0 does not lift to 

SL(2, C). 
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1. Introduction and background 

1.1. Introduction. The goal of this paper is to present a complete, self- 
contained proof of the following result: 

THEOREM 1.1.1. Let R be an oriented closed surface1 of genus exceeding 
one, and 

0 : 7(R; O) - r c PSL(2, C) 

a homomorphism of its fundamental group onto a nonelementary group F of 
Mobius transformations. Then: 

(i) 0 is induced by a complex projective structure for some complex structure 
on R if and only if 0 lifts to a homomorphism 

0* : r(R;O) SL(2,C). 

(ii) 0 is induced by a branched complex projective structure with a single 
branch point of order two for some complex structure on R if and only if 
0 does not lift to a homomorphism into SL(2, C). 

The terms will be explained in ??1.2-1.4. 
Theorem 1.1.1 characterizes the class of groups arising as monodromy 

groups of Schwarzian differential equations or equivalently, of the projectivized 
monodromy groups for the associated linear second-order differential equa- 
tions. Poincare himself explicitly raised the question by noting (for punctured 
spheres) second-order equations depend on the same number of parameters 
as their monodromy groups (the position of the singularities-the conformal 
structure-is allowed to change) and from this observation boldly concluded, 
"On peut en general trouver une equation du 2d ordre, sans points a ap- 
parence singuliere qui admette un groupe donne" [P, p. 218]. In our own time, 
the question was raised in [Gu3] and [Hel]; in fact Gunning conjectured Part 

(i) of our theorem and Tan [Tan] conjectured Part (ii). 
Schwarzian equations themselves have long been an important tool in the 

study of Riemann surfaces and their uniformization. Their relation with al- 
gebraic geometry was established by Gunning in [Gul]: For a fixed complex 
structure on R, the linear monodromy representations of the complex pro- 
jective structures correspond to flat maximally unstable rank 2 holomorphic 
vector bundles over R. A similar relation for branched structures was later 
studied by Mandelbaum; see e.g. [Man 2, 3] (see also ?11). 

1In this paper, all surfaces are assumed to be connected. A closed surface is one which is compact, 
without boundary. 
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In ?11, we will present an analogue Theorem 11.3.3 of our main theorem in 
the context of holomorphic vector bundles over Riemann surfaces. Namely, let 
S be an oriented closed surface of genus exceeding one and p: rl (S) -+ SL(2, C) 
a nonelementary representation. Then p is the monodromy of a holomorphic 
flat connection on a maximally unstable holomorphic vector bundle of rank two 
over a Riemann surface R, where R is diffeomorphic to S via an orientation 

preserving diffeomorphism R -- S. 
Besides the fuchsian groups of uniformization, the class of monodromy 

groups includes the discrete, isomorphic groups of quasifuchsian deformations 

(Bers slices which model Teichmiiller spaces and their boundaries), and discrete 

groups such as Schottky groups which are covered by fuchsian surface groups. 
See [Mas2] for a wide array of possibilities. 

Theorem 1.1.1 further implies that the image in PSL(2,C) of "almost" 

every homomorphism of the fundamental group has a geometric structure. This 
is quite astonishing, especially so as the image groups are often not discrete 
and not even finitely presentable. 

R. Rubinsztein [R] observed that if Go C G = ri (R) is any index two 

subgroup, the restriction of 0 to Go can be lifted from PSL(2, C) to SL(2, C) 
in 229 ways. Consequently by Theorem 1.1.1, a homomorphism whose restric- 
tion to an index two subgroup is nonelementary is always associated with a 

complex projective structure for some complex structure on the corresponding 
two sheeted cover. One such index two subgroup is constructed in ?8.6. 

Special cases of Theorem 1.1.1(i) were proved in [Hel] and the case of 

homomorphisms into PSL(2, R) was investigated in [Ga], [Go], [Por] and [Tan]. 
Proofs of Theorem 1.1.1(i) have been announced before. Gallo's research 

announcement [Gal] proposed an innovative strategy for a proof, but the 

promised details have not been published or confirmed. Gallo's strategy had 
been developed in consultation with W. Goldman and W. P. Thurston, and 
was particularly inspired by Thurston's approach to the deformation of fuch- 
sian groups by bending. Goldman's paper [Gol] is an exemplar of this strategy 
applied in the interesting special case where 0 is an isomorphism onto a fuch- 
sian group; it deals with the problem of determining all complex projective 
structures with the prescribed monodromy. This question is discussed further 
in ?12. 

The recent paper [Ka] proposed a proof confirming Theorem 1.1.1(i). Al- 

though the argument presented is incomplete (Lemmas 1 is incorrect and a 
condition is omitted in Lemma 4; they are corrected in the present paper, 
and some details are missing in the proofs of Propositions 1 and 2), the paper 
contains new ideas and directly motivated a fresh examination of the whole 
issue. 

The present work was begun by Marden with the goal of settling the va- 

lidity of the claims. In a general sense, Gallo's and Kapovich's strategy is 

627 

This content downloaded  on Fri, 15 Feb 2013 18:57:11 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDEN 

followed, although the details, especially in Part B, are quite different from 
those suggested in [Gal] or [Ka]. In the latter phase of the investigation, 
a collaboration with Kapovich began. Almost immediately this produced a 

breakthrough in understanding the connection between a certain construction 
invariant and the lifting obstruction (??9-10). Instead of using the difficult 

continuity arguments proposed in [Ka], we use branched structures. Moti- 
vated by Tan's work [Tan] on real branched structures, we found a technique 
for constructing branched projective structures complementing that developed 
earlier for joining pants. This approach exhibits clearly the connection. It also 
clarifies the role of the 2nd Stiefel-Whitney class and degree of instability of 

holomorphic bundles which is discussed by Kapovich in ?11. In fact, one of 
our discoveries is that it is easier to prove Theorem 1.1.1 simultaneously for 
branched and unbranched structures than to establish the unbranched case by 
itself. 

Part C of our paper brings together additional results that fill out the 

picture presented by our main theorem. These are developed in the con- 
text of holomorphic bundles over Riemann surfaces. For example, in some 

respects Theorem 1.1.1 is more clearly seen in the context of a more gen- 
eral existence theorem for branched complex projective structures with a pre- 
scribed branching divisor and monodromy representation. This refinement, 
Theorem 11.2.4, is expressed in terms of the 2nd Stiefel-Whitney class. In 

addition, we present the full proof of the divergence theorem briefly outlined 
in [Ka]. This Theorem 11.4.1 deals with sequences of monodromy homomor- 

phisms On : r1(R) -- PSL(2,C) associated with divergent Schwarzian equa- 
tions on a fixed Riemann surface. Such a sequence of homomorphisms cannot 

converge algebraically to a homomorphism, either nonelementary or elemen- 

tary. In terminology of Teichmiiller theory, the extension of a Bers slice to 
the full representation variety is properly embedded. In ?12 we list and briefly 
discuss a number of open problems arising from our work. 

We three authors decided to join together to pool the fruits of a decade 
of our individual and collaborative research relating to the main result. By 
doing so we have arrived at a rather larger understanding of the fundamental 
existence problem for the monodromy of projective structures. 

Our topic falls under the ancient and revered subject heading of linear 

ordinary differential equations on Riemann surfaces, a subject introduced by 
Poincare. The problem we consider fits comfortably with those associated 
with "the Riemann-Hilbert Problem" (Hilbert's 21st problem) for first-order 
fuchsian systems and n-th order fuchsian equations. Yet our approach is quite 
different than that associated with this theory [A-B], [I-K-Sh-Y], [Sib], [Y], 
[He2]. For one thing, our approach is special to second order equations. Then 
we work primarily with projectivized monodromy in PSL(2, C). This turns the 

problem into one largely involving the geometry of surfaces and MSbius groups. 
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Another difference is that here we are mainly dealing with equations without 

singularities. Finally we do not prescribe the complex structure in advance, 
rather it is determined as part of the solution: the number of parameters in the 

equations matches the number in the representations. The need to introduce 
a branch point to handle part (ii) of our theorem is however reminiscent of the 
need for "apparent singularities" in that theory. 

Except for a particular case, we have left aside the general existence prob- 
lem for surfaces with punctures and branch points. However, we believe that 
the foundation laid here will stimulate (further) exploration of these and other 

important aspects of the subject, including a characterization of the nonunique- 
ness, that are not now well understood. 

Acknowledgments. Marden would like to thank the Mathematics Institute 
of the University of Warwick, the Forschungsinstitut fur Mathematik at ETH, 

Zurich, and the Mathematical Sciences Research Institute in Berkeley, for the 

privilege of participating in their programs while his research was carried out. 
In addition he thanks David Epstein, Dennis Hejhal, Yasutaka Sibuya, and 
Kurt Strebel for helpful discussions. David in particular provided insightful 
suggestions for some of the proofs. 

This research additionally received support from the NSF grants DMS- 
9306140 and DMS-96-26633 (Kapovich) and DMS-9022140 at MSRI (Kapovich 
and Marden). 

All us authors thank Silvio Levy for providing invaluable editorial and 

ITTEX assistance and the referee for many helpful comments and suggestions. 

1.2. Mobius transformations. Mobius transformations correspond to ele- 
ments of PSL(2, C) according to 

az +b (a b\ 
ka(z)J= c +d ( ? d withad-bc=1. 

cz + d c d 

They extend from their action on the extended plane CUoo to upper half-three- 

space or, via stereographic projection, from the 2-sphere S2 to the 
3-ball. The extensions form the group of orientation-preserving isometries 
of hyperbolic three-space, which we denote by IH3 (in either the ball model or 
the upper half-space model) with 90.3 denoting the "sphere at infinity," that 

is, the extended plane or S2, depending on the model. Throughout our paper, 
we will identify the extended plane with S2. 

We recall the standard classification: 

* A transformation a is parabolic if it has exactly one fixed point on 9H3, 
or, equivalently, if it is not the identity and its trace satisfies tr2a = 

(a + d)2 = 4. Parabolic transformations are those conjugate to z -4 z +1. 
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* An elliptic transformation has two fixed points in 0H3 and also fixes 
pointwise its axis of rotation, that is, the hyperbolic line in H3 joining 
the fixed points. Its trace satisfies 0 < tr2a < 4, and it is conjugate to 
an element of the form z - e2iz, for 0 < 0 < 7r. 

* A loxodromic transformation a likewise has two fixed points in 0II3, one 
repulsive and the other attractive; it preserves the line in IH[3 between 
them which is called the axis. The trace of a satisfies tr2ca [0, 4], and a 
is conjugate to z i- A2z, where A satisfies JAI > 1 and tr2 =- (A + A-1)2. 
The transformation a acts on its axis by by moving each point hyperbolic 
distance 2 log IA| toward the attractive fixed point. 

The identity is not part of this classification. 
A group r is elementary if there is a single point on 0EI3, or a pair of 

points on dH3, or a single point in H3, which is invariant under all elements 
ofr. 

The generic group r with two or more generators is nonelementary, and is 

likely to be nondiscrete as well. For example, any two loxodromic transforma- 
tions o and /3 without a common fixed point generate a nonelementary group 
r = (a, 3). The group F is the homomorphic image, in many ways, of any 
surface group of genus g > 2. 

The most important class of groups ruled out by the condition that F be 

nonelementary are groups of rotations of the two-sphere and groups conjugate 
to them (unitary groups). We recall that a group, discrete or not, that is 
composed solely of elliptic transformations is conjugate to a group of rotations 
of the 2-sphere. 

In anticipation of our later work, we also recall the definition of a two- 
generator classical Schottky group G = (a, /). There are four mutually dis- 
joint circles with mutually disjoint interiors, arranged as two pairs (cl, cj) and 
(c2, c'). The generator a sends the exterior of cl onto the interior of c], and / 
does the same for (c2, c'). The common exterior of all four circles serves as a 
fundamental region for its action on its regular set Q2. 

Let 7r : Qf - S := Q/G denote the natural projection. The surface S has 

genus two, and 7r(cl) and 7r(c2) are disjoint, nondividing simple loops on S. If 
d c S is a simple loop with an a-invariant lift d* C ?2, the free homotopy class 
of d in S is uniquely determined up to Dehn twists about 7r(cl) (see ?1.8). 

The group G extends to act on Q2 U H13; the quotient is a handlebody of 
genus two in which 7r(cl) and 7r(c2) are compressing loops that bound mutually 
disjoint compressing disks in the interior. 

If, instead of circles, the pairs (cl, cj) and (c2, c[) are Jordan curves (which 
can always be assumed to be smooth), the resulting group is called more gener- 
ally a (rank-two) Schottky group. According to [Chu], or [Z] in the handlebody 
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interpretation, every set of free generators of a Schottky group (of the general 
kind!) corresponds to pairs of Jordan curves as described above. 

Our method of construction in this paper will always yield classical Schot- 
tky groups in terms of designated generators. The extra knowledge that, for 
the designated generators, the loops can be taken as round circles is pleasing 
and convenient, but it is not really necessary for the proofs. 

1.3. Projective structures. Let R be a closed Riemann surface of genus at 
least two, and let R = IHI2/G be its representation in the universal covering 
surface IH[2 (the two-dimensional hyperbolic plane) by a fuchsian covering group 
G. We will describe a projective structure first in the universal cover H2 and 
then intrinsically in R. 

A complex projective structure with respect to G is a meromorphic, lo- 
cally univalent (i.e. locally injective) function f : H2 --> f(H2) C S2, for 
which there corresponds a homomorphism 0 : G - I C PSL(2, C) such that 

f(-(t)) = 0(y)f(t) for any t E H[2 and any y E G. It follows that f descends 
to a multivalued function f. on R, called the (multivalued) developing map; it 
"unrolls" R onto the sphere. The Schwarzian derivative of f, 

(1) St(f) = -) 1 (f()2 =?>t, 

satisfies (-y(t))y'2(t) = q(t), and therefore descends to a holomorphic quadratic 
differential on R. 

Conversely, given any holomorphic +(t) in H2 with this invariance under 
G, there is a solution f(t) of (1), uniquely determined up to post composition 
by M6bius transformations, which is a locally univalent meromorphic function 
that induces a homomorphism 0 of G. 

The Schwarzian equation is related to the second-order linear differential 

equation 

(2) u"(t)+ 0(t)u(t) - 0 

as follows. The ratio f(t) = ul(t)/u2(t) of any two linearly independent so- 
lutions ul and u2 in H2 gives a solution f of the Schwarzian; conversely, any 
solution f of the Schwarzian can be so expressed, indeed 

1 
(3) 2 = (f)-2, ul = fu2, 

if the Wronskian A(ul,u2), which is necessarily a constant, is normalized as 
A = 1. Another pair aul +bu2, cul + du2 of independent solutions corresponds 
to the solution Bf of the Schwarzian, where B(z) = (az + b)/(cz + d). 

On the Riemann surface R = IHI2/G, a form of (2) that is invariant under 
change of local coordinates z is, 

v"(z) + I{q(z) + Sz(i-1)}v(z) = 0, 
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where ir denotes the projection from H2. In interpreting this equation, the 
Schwarzian transforms as a connection under change of local coordinate z F-* 

= ((z) and v transforms as a half-order differential (see [Ha-Sch]), specifically 

V(((Z)'(xZ) 
' 2 = V(). 

The monodromy group and monodromy representation are computed 
as follows. Fix 7r1(R;O) with basepoint O c R, and a solution f,(z) (or 
vl(z)/v2(z)) near 0. Let c E 7rl(R;O) be a simple loop based at 0. Ana- 

lytically continue f, (or vl/v2) around c, arriving back at a solution 7yf (or 
y(vl/v2)), for 7y PSL(2, C). Set 0(c) = 7y. In this manner the local solutions 

f, (or v1/v2) determine a monodromy epimorphism 

0: 7(R; O) - r C PSL(2, C), 

where r is a monodromy group for the equation. A different local solution 

Bf, (or B(v1/v2)), coming possibly from a different choice of basepoint, de- 
termines a conjugate homomorphism c B-* B0(c)B-1. Thus, the equation itself 
determines a conjugacy class of homomorphisms into PSL(2, C). 

If T is a fundamental polygon for G in H2, we can regard f(?) as spread 
over the Riemann sphere, a membrane in Hejhal's terminology [Hel]. The 

0-image of the edge pairing transformations of T will be edge-pairing trans- 
formations of the membrane f (P), which therefore serves as an organizing 
principle for F. 

From the topological point of view, a projective structure is defined by an 
orientation preserving local homeomorphism, called the (multivalued) develop- 
ing map, of R into S2 or, the (single valued) developing map of the universal 
cover R into S2 which is equivariant with respect to the given homeomorphism 
0. From this perspective, the group F is called the holonomy (or, more classi- 
cally, monodromy) group. There is a unique complex structure on R for which 
the local homeomorphism becomes conformal. 

The fact that the Schwarzian equation can be replaced by the linear dif- 
ferential equation implies the following: 

LEMMA 1.3.1. If the homomorphism 0 : rl(R; O) -- F C PSL(2, C) is 
induced by a projective structure on R, it can be lifted to a homomorphism 
0* : -i(R; O) -r* c SL(2, C). 

Proof. Consider an action of G 7r1 (R, O) on H2 given by the uniformiza- 
tion of the surface R, take an element h E G. Then the solution pair (3) changes 
under analytic continuation from t to T = h(t) according to (see [Ha-Sch]) 

(5}) 
f / T/r )(T h(a b 

I/vTf7)( (5Vf/^7)( )- W c d f /vTf)(t), 

632 

This content downloaded  on Fri, 15 Feb 2013 18:57:11 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MONODROMY GROUPS 

where 
(a b\ r ,,,, a az+ b 
( E SL(2,C), 0(h) = - . c d c'z '"; R" + d 

There are 22g possible choices for V/h'(t over a set of canonical generators {h} 
of G. After we make a choice we get the homomorphism 

0*:G - SL(2,C), 0*(h)= ( d) cSL(2,C). 

Note however that 0* is not canonically determined by the differential equation 
(2). D 

We emphasize that our notion of lifting does not require that the image 
r of 0 be isomorphic to the image of the lift 0*. For example, a lift to SL(2, C) 
of a half-rotation in PSL(2, C) has order four, not two. 

We will refer to 0* as a linear monodromy representation of the projective 
structure. 

Remark 1.3.2. The projective structure associated with the equation 
Sz(f) = q can be joined to the identity by means of solutions of S,(f) = to, 
for t E C. 

1.4. Branched projective structures. A branched projective structure on a 

hyperbolic Riemann surface R is a holomorphic mapping f : Eli2 -+ S2 which 
is locally univalent except in a discrete subset of IHI2 and which is equivariant 
with respect to a homomorphism 0: G -- PSL(2, C). We will say that such a 
structure is singly branched if f'(z) has at most simple zeroes and the projection 
of the set {z : f'(z) = O} to R is exactly one point q. These are the structures 
which appear in Theorem 1.1.1 and we will restrict our comments here to 
this special case. The more general case will be discussed separately in ?11. 
Near such point q (which we will identify with zero in local coordinates), the 
quadratic differential 0 = Sz(f) has a Laurent expansion of the form, 

-3 b 00 
(6) (>z)= +-+Eaiz, b2 +2ao=0. 

i=0 

Conversely, if +(z) has such an expression near z = 0, a solution of the 
Schwarzian will be of the form f(z) =az2(1 + o(l)) near z = 0. With b 

given by (6), the equation (2) has the two linearly independent solutions with 
expansions near z - 0 of the form 

V,(Z) = z3/ (1 +o1()), 

V2(Z) = Z-1/2 (1 + (1)) 
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A circuit about z- 0 generates the monodromy 

Ul Ul -I 0 
u2) 

J() where J 0 -1 

The projectivized monodromy in PSL(2, C) is just the identity. 
Therefore the branched structure determines the homomorphism 

0: 7r (R; O) - PSL(2, C) 

as in the unbranched case. However, 0 cannot be lifted to a homomorphism 
into SL(2, C). Indeed, given a standard presentation 

(al,bi,..., ,a9 bg I [bi, a] = 1) 

for 7rl (R; 0), and matrix representations Ai and Bi for 0(ai) and 0(bi), we have 

0* (f[bi, ai]) = [[Bi, Ai] J, 

where 0*(ai) = Ai and 0*(bi) = Bi. 
We will discuss this matter further in ??11.5, 11.6. 

1.5. Parameter count. The vector bundle Qg of quadratic differentials 
over Teichmiiller space ig has complex dimension 6g - 6. Likewise, the rep- 
resentation variety Vg of homomorphisms 0 : 7r(R; O) -+ PSL(2, C), modulo 
conjugacy, has complex dimension 6g- 6. Let Vg c Vg denote the subset 
of nonelementary representations, i.e. equivalence classes of homomorphisms 
whose images are nonelementary subgroups of PSL(2, C). Theorem 1.1.1 as- 
serts that the map Pg of projective structures Qg -+ Vg is surjective onto the 
component of Vg consisting of representations liftable to SL(2, C). In fact, the 
image space Vg is itself a complex analytic manifold [Gu3], [Hel]. According 
to [Go2], or as a consequence of Theorem 1.1.1, it has two components (one 
corresponds to liftable representations and the other one to unliftable repre- 
sentations). See [Ben-C-R] and [Li] for more information about representation 
varieties of surface groups. 

According to Hejhal's holonomy theorem [Hel] the map Pg is a local home- 
omorphism which is shown in [E] to be locally biholomorphic. In particular, 
the set of points with a given monodromy 0 is discrete. According to (1) in 
?1.6 below, there is at most one representative in the fiber over a particular 
Riemann surface. However Pg is not a covering map [Hel]. 

In Theorem 11.5.2 we will prove an analogue of Hejhal's holonomy theorem 
for singly branched projective structures; we prove that the holonomy mapping 
from the space of singly branched projective structures to Vg is locally a fiber 
bundle with fiber of complex dimension 1. 
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1.6. The global structure. Recorded below are basic facts about projective 
structures. For the unbranched case, proofs are in [Gul] and [Kral, 2]. Other 
useful references are [Gu3] and [Hel]; the latter includes extensive historical 

background. 
Here is a brief proof that (in the unbranched case) the holonomy group 

r = 0(G) cannot be a unitary group, that is, cannot be conjugate to a group of 
isometries of S2. Assume otherwise. Then F preserves the spherical metric p. 
Its pullback f*p is a G-invariant metric on IH[2 which is locally isometric to 
the sphere. Consequently f*p has constant curvature +1, in violation of the 
Gauss-Bonnet theorem. 

For the case of a singly branched structures, property (1) below is a special 
case of [Hel, Theorem 15], (2) will be established as Theorem 11.6.1, and (3) 
will be established as Corollary 11.6.1. 

Below we consider projective structures a on R = E2/G which have the 
holomorphic developing mapping f : H2 -- S2 and monodromy representation 
0 : G -> PSL(2, C). Assume that a is either unbranched (i.e. f is locally univa- 

lent) or is singly branched. Let 0(G) = F C PSL(2, C) denote the monodromy 
group. The following three properties hold: 

(1) If two developing mappings fi and f2 determine the same homomorphism 
0, then fl = f2. 

(2) r is a nonelementary group. 

(3) The following statements are equivalent provided that, when a is branched, 
f(H2) is not a round disk in S2: 

(i) f(H2) H 2; 

(ii) H2 -+ f(H2) is a possibly branched cover; 

(iii) r acts discontinuously on f(H2). 

Property (1) does not rule out the possibility that the same target group 
r may arise from different projective structures on R. Property (2) shows 
that the requirement in Theorem 1.1.1 that F be nonelementary is necessary. 
The situation (3) has a rich structure as it is associated with the theory of 

covering surfaces; in particular it includes the theory of quasifuchsian groups 
and Schottky groups. In contrast, in the general case there is a bare minimum 
of structure because F need not be discrete. 

1.7. Strategy of the proof. Given a homomorphism 

0: ,ri(R; O) - F C PSL(2, C) 

such that r is nonelementary, the strategy consists of two parts. 
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Part A (??3-5). Find a pants decomposition {Pi} of R with the property 
that 0(7rl(Pi)), for 1 < i < 2g-2, is a two-generator (classical) Schottky group. 

We recall that a pants is a Riemann surface conformally equivalent to a 
three-holed sphere. A surface of genus g > 2 requires 3g - 3 simple loops 
to cut it into pants, and there results 2g- 2 pants. It has infinitely many 
homotopically distinct pants decompositions. 

Part B (??6-10). Find representations of the universal covers Pi in the 
regular sets (i.e. domains of discontinuity) of 0(7rl(Pi)) c S2. Glue them to- 

gether as dictated by the combinatorics of {Pi} in R, as relayed by 0. In general 
there is a Z/2-obstruction to such gluing. If there is no obstruction, we end up 
with a simply connected pants configuration S over S2 that models the univer- 
sal cover of a new Riemann surface S homeomorphic to R. The projection of 
S to S2 is a 0-equivariant local homeomorphism. If there is an obstruction, in- 
troduce a single branch point of order 2 by applying a twist. This removes the 
obstruction to the construction and a new Riemann S surface homeomorphic 
to R can be assembled as before. The result is either unbranched or singly 
branched projective structure on S with the monodromy representation 0. Ac- 

cording to Theorem 11.2.2 if 0 lifts to SL(2, C) then the structure has to be 
unbranched, if 0 does not lift then the structure has to be singly branched; in 
other words, the Z/2-obstruction to gluing is the 2nd Stiefel-Whitney class of 
the representation 0. This proves Theorem 1.1.1. 

The method used to assemble the pants configuration is a form of "graft- 
ing," first applied to kleinian groups in [Masl]. 

1.8. Terminology and notation. Throughout this paper we will work on 
closed surface R, of genus g > 2. When convenient, we will assume that R is 
a Riemann surface R = IH2/G in terms of its universal cover (which may be 
taken as the hyperbolic plane IH2) and fuchsian cover group G. Fix O c R as 
the basepoint for its fundamental group 7ri (R; ). Let 

0: 7r (R; O) - r C PSL(2, C) 

be the designated homomorphism with a nonelementary image F. 
Throughout we will use lower case Latin letters a, b, c,... to denote ele- 

ments of 7rl(R; 0), and the corresponding Greek letters a,/3, 7,... to denote 
their 0-images in F. A nontrivial loop is one not homotopic to a point. 

We will write the compositions of both curves and transformations (and 
their associated matrices) starting at the right. Thus, b follows a in both ba 
and 0(b)O(a) = pa. 

By a standard set of generators {ai, bi} of 7rl(R; O), where 1 < i < 2g, 
we mean a set of oriented simple loops that generate the fundamental group 
and have the following properties. For each i, the loop bi crosses ai at 0, from 
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the right side of ai to the left, and is otherwise disjoint. For j =A i, the simple 
loops (aj, bj) are freely homotopic to simple loops disjoint from (ai,bi). The 
product of the commutators 

17 bi- aibiai 
i 

bounds a simply connected region lying to its left. 
We will refer to a product ba as a simple loop if it is homotopic to one 

(with fixed basepoint). Thus, for any k c Z, the loop blao is simple, and so 
are a2b-lla and a2blal, but not a-lbla, or, for k =~ 1, the loop a2blak. The 
curve b-lalbl is simple, but not a2bi-lalbl. 

Often we will modify a simple loop c C R by applying a Dehn twist, 
which can be described as follows. Let A be an annular neighborhood about 
a (nontrivial) simple loop a. Orient OA so that A lies to its left. Hold one 
component of OA fixed and rotate the other Inl-times in the positive or negative 
direction according to whether n > 1 or n < -1. This action extends to an 
orientation preserving homeomorphism 6n of A, and then to all R, by setting 
6n = id outside A. En, or more precisely its homotopy class on R, is called the 
Dehn twist of order n about a: If c is not freely homotopic to a curve disjoint 
from a, then 6n(c) is not freely homotopic to c. 

2. Fixed points of Mobius transformations 

In this section we will collect the lemmas needed to control the type of 
composed transformations. 

2.1. Basic lemmas. 

LEMMA 2.1.1. 

(i) Suppose a is loxodromic and / sends neither fixed point of a to the other. 
Given M > 0 there exists N > 0 such that Itr oanl > M and /3an is 
loxodromic for all Inl > N. 

(ii) Suppose a is loxodromic and / sends exactly one fixed point of a to the 
other. Given M > 0 there exists N > 0 such that Itr /pnl > M and /3ae 
is loxodromic for all n > N (if /3 sends repulsive to attractive) or for all 
n < -N (if 3 sends attractive to repulsive). 

(iii) Suppose a is parabolic and 3 does not share a fixed point with a. Given 
M > 0 there exists N > 0 such that Itr O/anl > M and /an is loxodromic 

for all Inl > N. 
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Proof. For (i) and (ii) we may assume 

t~ - 0A- with [[> 1, fi- c db a = A-, with JAI > 1, =(a b with ad- bc = 1. 

Then tr pa' = Ana + A-nd. Not both a and d can vanish, because 3 does not 

interchange the fixed points of a. The assertions now follow directly. 
For (iii), we may assume 

a-( 1) 
)( d) with ad-bc= . 

Then tr /an = (a + d) + nc, where c 7: 0. Again, the desired conclusion follows. 
D 

LEMMA 2.1.2. Assume a is loxodromic with attractive fixed point p* 
and repulsive fixed point p,. 

(i) For any sequence k -+ +oo, the fixed points of/ ak converge to /(p*) and 

p,. The fixed points of ak/3 converge to p* and /-l(p*). 

(ii) For any sequence k -- -oo, the fixed points of 3ak converge to 3p(p*) and 
p*. The fixed points of ak/ converge to p* and /3-l(p*). 

Proof. Part (ii) follows from (i) upon replacing a by a-1. The computa- 
tional proof is instructive. Set 

a=( X-1) and /3(a d) 

where |A > 1 and ad - bc = 1. If ac 7 0, the two fixed points of ak/ are 

A2ka(1 ?+ v)/2c - d/2c, where 

2d d2 4 
A 1 + a2k + a2 4k -a2A2k' 

The "+" fixed point approaches oo with k. The "-" fixed point has the form 

2 d d2 d 

ac c 2ac2k( 
+ 

-2c 

This one approaches -b/a = /-1(0). 
If c = 0, one fixed point of akf3 is oo. The other one is b/(dA-2 - a). 

This too approaches -b/a - -l1(0) with k. 
If a = 0 the two fixed points are (-d +/ Vd2 - 4A2k)/2c. Both approach 

oo with k. Here '-l(0) = oo. 
The fixed points of p3ak -= (aC/)/3 converge to P(p*) and /3(P-lp,) = p*. 

D 
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LEMMA 2.1.3. Suppose -y is loxodromic with attractive fixed point p*, 
repulsive fixed point p,. 

(i) Suppose a(p*) =7 p* and /(p*) 7 p*. Given M > 0 there exists N > 0 
such that Itr-y-naynP/3 > M and 7-nayT/3 is loxodromic and does not 
share a fixed point with a or /3 for all n > N. 

(ii) Suppose a(p*) 7 p* and P(p*) /7 p*. Given M > 0 there exists N > 0 
such that Itr -n/a-ynP3 > M and --na7n/3 is loxodromic and does not 
share a fixed point with a or 3 for all n < -N. 

Proof. We may assume 

/A 0 a b\ u v 

= X-1)A- ' a= c d)' b=(w x 

with IAX > 1, ad - bc = 1, and ux - vw = 1. We find that tr?y-nayn/3 = 
A2ncv + A-2nbw + (au + dx). 

In case (i) we have c =4 0 (since a(p*) - p*), and v 0 (since /(p,) 74 p*); 
thus cv 7 0 and 7-na-yn/ is loxodromic for all large n. Moreover, if q is a 
fixed point of /3, then q 4 p* but limn+oo 7y-nayn/3(q) = p,. 

Suppose instead that q is a fixed point of a, and of 7-na7n/3 for all large 
n. First q 7 p* since 7-na7n/3(p*) = p* implies /(p*) = p*. Then /3(q) 7 p* 
for 7-~a(p*) = q holds for all large n only if q = p, or q = p*. Thus once 

again, limn,+oo 7-nayn/3(q) = p, 7 q. 
In case (ii), b : 0 (since a(p*) = p*), and w 7 0 (since /3(p*) : p*); hence 

7-na-y7n is loxodromic for all small n. Moreover if q is a fixed point of /3, we 
have q 7: p*, but limn,+oo -na-/yn/(q) = p*. 

Suppose instead that q is a fixed point of a, and of 7-nayn/3 for all small 
n. Again q - p* and then 3(q) : p*. As above, q cannot be a fixed point of 

7-noan/3 for all small n. D 

LEMMA 2.1.4. Suppose a is a loxodromic transformation with fixed 
points u and v. 

(i) Given p* 7 u,v and T > 2, there exists e > 0 such that if /3 is any 
loxodromic transformation with fixed points p, q satisfying d(p, p*) < e, 
d(q,p*) < ?, and with trace satisfying Itr/3 > T, then a and / generate 
a classical Schottky group. 

(ii) Given p, q f u, v, there exists T > 2 such that if /3 is any loxodromic 

transformation with fixed points p, q and satisfying Itr/31 > T, and if a 
also satisfies Itr al > T, then a and / generate a classical Schottky group. 
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Proof. A loxodromic transformation P acts in H3 U 9IH3. If P C H3 is 
a plane orthogonal to its axis, so is /3(P). The two circles OP and 0/3(P) in 
oIH3 that separate the fixed points p and q of 3 bound what we will refer to 
as an annular region A for f3. Given any point q* $4 p, q, u, v in 01HI3, there are 
annular regions for /3 that contain q* in their interior. 

Fix p* C dIH[3 distinct from q*,p, q, u, v. Let (Pn, qn) be a sequence with 

Pn $ qn and limpn = limqn = p*. Let Tn be the transformation with fixed 

point q* such that Tn(p) = pn, Tn(q) = qn. Ultimately Tn is loxodromic, its 
attractive fixed point converges to p*, and ItrTnI -- oo. Consider an annular 
domain A for /3 containing q* in its interior. TnA is an annular region for 

Tn/3T-1, all containing q*. The sequence of bounding circles of TnA converge 
to the point p*; that is, TnA converges to OIHI3 \ {p*}. The analysis would be 

equally applicable to a family of transformations {/3}, each with fixed points 
p, q, so long as they all satisfied Itr /3 > T for some T > 2 (uniformly loxo- 

dromic). 
Now let A' be an annular domain for a containing p* in its interior. Ul- 

timately the bounding circles of TnA also lie in the interior of A'. For such 
indices n, a and TP3Tn-1 generate a classical Schottky group. Part (i) follows 
at once. 

To establish part (ii), note that both a and 3 have annular domains whose 
boundaries are circles arbitrarily close to their fixed points, if T is large enough. 

LI 

COROLLARY 2.1.5. Suppose -y is loxodromic with attractive fixed point 
p*, repulsive fixed point p,, and a, p are loxodromic as well. 

(i) If a(p*) 7 p* and /(p,) t p* there exists N > 0 such that 7-ny~an and 
p generate a classical Schottky group for all n > N. 

(ii) If a(p*) # p* and /(p*) f p* there exists N > 0 such that y-nayn and 
f generate a classical Schottky group for all n < -N. 

Proof. This is a corollary also of Lemma 2.1.3. In case (i), the fixed points 
of 7-na7n are arbitrarily close to p, for large n, since p* is not fixed by a, where 

p, is not fixed by /3. In case (ii), the fixed points of --nra-/ are arbitrarily 
close to p*, for small n. CI 

2.2. Lemmas regarding half-rotations. 

LEMMA 2.2.1. Suppose a and P each have two fixed points and /3 sends 
one of the fixed points of a to the other. Then a likewise sends one of the fixed 
points of 3 to the other if and only if 

tr2a = tr2/3. 
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Proof. We may assume that 

a=( 0 )-1 and /3=( d' 

where A 7 ?11 and bc =-1. The fixed points of / are (-d + vd2- 4)/2c. 
Suppose a sends one to the other. Each case implies and is implied by one of 
the relations 

d(A2 _ 1) = ?Vd2((\2 + 1). 

Squaring, we get d2A2 = (A2 + 1)2, or 

tr/ = d = (A + A-1) = ?tra. E 

LEMMA 2.2.2. An element J of order two interchanges the fixed points 
of an elliptic or loxodromic transformation y if and only if 

J-/J _ -1, 

and fixes them if and only if 
J-yJ = . 

It fixes the fixed point of a parabolic transformation y if and only if 

J^yJ _ =-1 

Proof. For the first part we may assume that 

=(o A-1') and J= _b_1 0' 

while for the second, 

Ib\ and 
_ 

(i 0O 
Y=(o and =(o -i) 

The conclusion is verified by computation. D 

LEMMA 2.2.3. Suppose a and /3 are loxodromic without both fixed points 
in common. J is an element of order two. 

(i) If J interchanges the fixed points of both a and /3, J neither interchanges 
nor fixes the fixed points of /3a. 

(ii) If J interchanges the fixed points of / but not of /ak for some k y 0, 
then J/3 does not interchange the fixed points of a. 

(iii) If J interchanges the fixed points of both p3ak and pak+l for some k, then 
J interchanges the fixed points of /3ak for all k, but neither interchanges 
nor fixes the fixed points of a, and does not interchange the fixed points 
of amo for m # O. 
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Proof. For (i), J3aJ = 3-l7-1 = a-lp-l, /3a. 
For (ii), J1 = J/ has order two, J1 7 id. If JliakJ = a-k, then JPakJ = 

-k/-l, a contradiction. 
For (iii), the hypotheses J/akJ = a-k/-1 and Jp/ak+lJ = a-k/3-aJ 

imply in turn that 

ak/-1JaJ = a-k-1/-1, 

or 

JaJ = /3a-l-l, ( a-1 a). 

Then 

a-kP-1 = JPakJ = JPJ/a-k/-1 

or J/J = P3-1. Now, for any k, 

Jf3akJ = 3-1 /3a-k- = a-k/3-1l 

Finally, for any m 7 0, 

JaOpJ = 3ea-m/33-1 = /3ao-m3-2 1 3-1a-m 

(Note the proof holds as well if some p3ak is parabolic, under appropriate 
interpretation; see Lemma 2.2.2.) EZ 

LEMMA 2.2.4. Suppose a has two fixed points but a2 - id, while J is 
an element of order two that does not interchange the fixed points of a. Then 

(aJ)2 ~ id and (Ja)2 : id. 

Proof. We may assume that 

(A O a b \ 
ac - and J - , 

0 A-' c -a 

with A2 k ?1, a2 + bc = -1. Then 

ac 
_ I 2a2 + 

bc A2ab 
ab 

ac - A-2ac be + A-2a2 

(aJ)2=(aA2:c A2abab) 
If (aJ)2 = id, then 

ab(A2- 1) = 0, 

ac(l - A-2) = 0. 

Either a = 0 or b = c = O.The former case is impossible by hypothesis. If 
b = c = 0, then since a2 = -1, we get A2 = A-2 = 1. This is again a 
contradiction. D1 
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LEMMA 2.2.5. Suppose both J and J1J interchange the fixed points of 
the loxodromic or elliptic transformation y. Then J1 fixes the fixed points of /y. 

Proof. Under the hypothesis, if p, q denote the fixed points of 7y, we have 

J(p) = JiJ(p) and J(q) = J1J(q). Hence J(p) = q and J(q) = p are fixed by 
J1. L 

Remark 2.2.6. Suppose a and / are loxodromic without a common fixed 
point and p does not send one fixed point of a to the other. If -y/ fixes or 

interchanges the fixed points of a, then y/3-1 has neither of these properties. 
In the latter case, -ya3a-1 does not send one fixed point of a to the other. 
What will prevent us from making use of such facts as these is that if /yp, for 
example, is the 0-image of a simple loop, then in general y/3-1 and -ya/3a- 
are not. 

A. The Pants decomposition 

3. Finding a handle 

3.1. Handles. By a handle H = (a, b) we mean two simple loops a, b E 

7rl(R; O), crossing at O but otherwise disjoint, and such that a = 0(a) and 
/ = 0(b) are loxodromic and generate a nonelementary subgroup (a, /3) of F. 

PROPOSITION 3.1.1. There exists a handle in R. 

Proof. The proof will occupy the remainder of this chapter. 

3.2. Case 1. There exists a simple, nondividing loop a c 7rl(R;0) for 
which 0(a) = a is loxodromic. Choose b E 7rl(R; O) such that b is a simple 
loop crossing a exactly at 0, and set/3 = 0(b). 

Suppose first that /3 neither interchanges the fixed points of a nor shares 
a fixed point with a. Then, by Lemma 2.1.1, 3ak is loxodroric for some 
k. Moreover, (a,/ak) is nonelementary. We can consequently choose H = 

(a, ba). 
Next suppose that / shares exactly one fixed point p with a. Because F 

is not elementary, there is a simple loop y E 7rl(R; O) that does not cross a or 
b and such that 0(y) = rj does not fix p. Take y with the orientation such that 

ay is homotopic to a simple loop. For any k, the loop ay is homotopic to a 

simple loop that crosses bak exactly at O (Figure 1). 
Now arq does not share the fixed point p of Pak. For at most one value of 

k, arl shares another fixed point q of /3ak. For if 

arn (q) = q = pak(q) = pak+m(q) 
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with m 4 0, we have a(q) = q, and then r'(q) = q = P(q), a contradiction 
since q = p. Nor can arc send the fixed point p of /3ak to another fixed point 
q ar (p) of cyak for more than one k. For 

aT(p) = q = pak(q) = pak+m(q) 

with m 7 0 implies that a(q) = q, and then 3(q) = q. This is impossible 
since q ~ p. Thus there exists k such that ar] neither interchanges the fixed 

points of p3ak, nor fixes any. By Lemma 2.1.1, we may also assume that P/ak 
is loxodromic. 

Consequently we can return to the case above with bak and ay. 

Figure 1. 

Finally, suppose that /3 either fixes both fixed points of a or interchanges 
them. Again find a simple loop y that does not cross a or b and such that 
r, = 0(y) neither fixes both fixed points of a nor interchanges them. Take the 
orientation of y so that yb is homotopic to a simple loop. Then r/3 neither fixes 
both fixed points of a nor interchanges them. Consequently we can return to 
one of the cases above with a and yb. 

3.3. Case 2. There is a simple, nondividing loop a E 7rl(R; O) such that 

0(a) - a is parabolic. Let b E 7ril(R; O) be a simple loop that crosses a exactly 
at 0. 

If = 0(b) does not fix the fixed point p of a, then P/ak is loxodromic for 
all large |k|, by Lemma 2.1.1. Thus we are back to Case 1. 

Suppose instead that f3(p) = p. There is a simple loop y E 71 (R; 0), not 
crossing a or b, and such that r = 0(y) does not fix p. We may take y with the 
orientation for which yb is homotopic to a simple loop, and hence also ybak 
is homotopic to a simple loop. Since r73(p) 4 p, we conclude that rTfak is 
loxodromic for some k, and ybak brings us, once again, back to Case 1. 
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3.4. Case 3. Let {ai, bi} be a canonical basis for 7rl(R; O), with 0(ai) = ai 
and 0(bi) = /i. Assume that all the elements ai, /i, cjai, /3j/di, and /3jai are 

elliptic or the identity. As the basis of our analysis of this case, we will find a 
simple dividing loop d for which 0(d) is loxodromic. 

In this section we will establish some useful lemmas. 

LEMMA 3.4.1. If a and 3 are elliptic, and their axes are not coplanar in 
H3, then /3a is loxodromic. 

Proof. Let P denote the plane in HI3 spanned by the axis of a and the 
common perpendicular 1 to that and the axis of /3. Form the "open book" 
for P with spine along the axis of a and angle half the rotation angle of a. 
Then a = RIRl,, where Rli and Rl are half-rotations (180?) about the lines 
orthogonal to the axis of a indicated in Figure 2. Similarly, 3 = Rl Rl, where 

1p is the line orthogonal to the axis of / at its intersection with l, and lies 
halfway between I and 3(l). 

Figure 2. Open book for plane P 

Consequently, 3a = RRi ,. Therefore /3a is elliptic if and only if the lines 
la and 1p intersect in HJ3: if instead they meet at 9HI3, then the composition o3a 
is parabolic, and if they do not meet at all in H3 U 8H3, then the composition 
is loxodromic. Since the axis of /3 does not lie in P, lp does not lie in the plane 
spanned by l1 and 1. Therefore lo and 1p cannot meet anywhere. D 

COROLLARY 3.4.2. Under the hypotheses of Case 3, the axes of the non- 
identity elements of {cai, j} either: 

(a) all pass through some point H E I3, or 

(b) all lie in a plane P C H3, or 

(c) are all orthogonal to a plane P C H3. 
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Proof. Apply Lemma 3.4.1 to the set {ai,p/j}. 

Note that, in case (c), the plane P contains all the lines l,I and l. This 
is the fuchsian case: all elements of r preserve P. 

Case (a) does -not arise for our situation since r is nonelementary. 

LEMMA 3.4.3. Suppose a and 3 are elliptic with distinct axes that lie in 
a plane P C H3. Assume p3a is also elliptic. Its axis cannot lie in P. 

Proof. The axes of /3a and a are different, so there is a fixed point x of 
/3a not lying in the axis of a. Set y = a(x); then 3(y) = x. Let the plane 
P' be the perpendicular bisector of the line segment [x, y]. By construction, x 
and y are equidistant from P'. But x and y are also equidistant from the axis 
of a, since a is a rotation about its axis. All points equidistant from x and y 
lie in P', so the axis of a is contained in P'. Since x and y are also equidistant 
from the axis of 3, this line, too, is contained in P'. We conclude that P' = P, 
so x C P. l 

In fact, the proof shows that if the axis of P3a meets P or OP, it does so 

at, and only at, a point of intersection or common endpoint of the axes of a 
and /3. 

LEMMA 3.4.4. Suppose a, /3, and y = /3a are elliptic with distinct axes, 
and that they preserve a plane P C H3. Then -la--/31a is loxodromic. 

Proof. Let a, b, c denote the fixed points in P of a, P and y. Replace a 
and p by the inverses, if necessary, so that they rotate counterclockwise about 
a and b. Let R1 = J, R2 and R3 denote the reflection in the lines through 
[a, b], [b, c] and [c, a], respectively. Then a = Ri1R3, / = R2R1, and = R2R3. 
The vertex angles of the triangle in Figure 3 represent the half-rotation angles. 
Then 

P-lo- pa = JJ 7. 

a 

pR '>R b * k~~~R 

c 

Figure 3. Reflection triangle for a, /, 3 * a 
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In order to better study J-yJy, we take the line 1 through a and b to be 
the real diameter in the disk model of P (Figure 4). J is reflection in 1; let 
R denote reflection in the vertical line through c and Jc. Let 0 denote the 
half-rotation angle of y. Let 11 denote the line through c subtending angle 
0 with the vertical, and set 12 = Rll. Let R denote reflection in li and R2 
reflection in 12. 

R19 

Figure 4. Reflection in Jll and 12 

Now we have -Y R[R = RR2 and 

JyJ = JR[JJRJ = R*R, 

where R'* = JR J is reflection in the line Jll. Consequently, 

JyJJ- = R'*RRR' = R'*R . 

The lines Jll and 12 cannot intersect in P U OP. Therefore the composition of 
reflections in them, R'*R*, is loxodromic (hyperbolic). C 

Note, however, that R'*R- = JyJ^y-l = (Pa2/3)-l can sometimes be 
elliptic. 

3.5. Case 3 (continued). Suppose that the elements {ci, /3i), which are all 
elliptic or the identity, preserve a plane P C IH3 (Case (c) of Corollary 3.4.2). 
We may assume that al #7 id. 

Consider first the case that P1 is elliptic and its fixed point in P differs 
from that of ai. Then the transformation 6 =- /3l lo1lcai, which corresponds 
to the simple loop d = bj a1lblal, is hyperbolic (Lemma 3.4.4). Because d 
divides R, there exists an element c of {a2, b2, . . , a, bg} with y = 0(c) 7 id. 

Apply the Dehn twist of order n about d to the simple loop cbl, to get cdnbld-n. 
Its image 'yn/P16-n is loxodromic for all large In by Lemma 2.1.3, since the 
fixed points on OP of the hyperbolic 6 are necessarily different from those of 
the elliptics -y and P1 in P. Since cdnbld-n is a simple, nondividing loop, we 
can return with it to Case 1 (?3.2). 
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Consider next the case where 3i has the same fixed point in P as ai, or 
is the identity. We can find c in {a2, b2,... , a, bg} such that - = 0(c) does 
not have the same fixed point in P as ai. If 0(cblal) is not elliptic, return 
with cblal to Case 1 or 2. Otherwise, set d = (cbi)-lall(cbl)al, and apply 
the Dehn twist about d to cal for a sufficiently high power. As above, return 
to Case 1 with the result. 

Next, suppose that the axes of the elliptic elements {ai, /3i}, which are all 

elliptic or the identity, lie in a plane P C H3 (Case (b) of Corollary 3.4.2). We 

may assume that ai 7 id. 
Assume first that the axes of al and pi differ. If they cross at p c P, 

or meet at p CE P, there is an element c of {a2, b2,.. ., ag, bg} such that the 
axis of y = 0(c) does not contain p. By Lemma 3.4.3, the axis of P/lcu does 
not lie in P, but it crosses P at p or meets OP at p. Consequently this axis is 
not coplanar with the axis of -, which lies in P. Now Lemma 3.4.1 says that 

'y/lal is loxodromic. Return to Case 1 with cblal. 
On the other hand, suppose that the axis 11 of al and the axis 12 of /3i 

are disjoint in P U OP. If the axis I of lial is not coplanar with 11 or 12, the 
situation is again as above. If 1 is coplanar with each of 11 and 12, it cannot meet 
P U OP. The plane P' orthogonal to I and to P is necessarily orthogonal to 11 
and 12. If the axes of all nonidentity elements of {al, /0i,..., } are orthogonal 
to P', we can return to the first subcase of this section. Otherwise the axis 
of some -y {a2,/2, .. .} is not orthogonal to P'. Then y13iai is loxodromic, 
since the axis of 7 is contained in P. 

Finally we need to consider the situation where /1 = id or the axes of ai 
and /3 coincide. Find 6 in {a2, 2, . .} distinct from the identity and having 
an axis distinct from that of ai. Replace /P by 6 in the analysis above. The 

triple of loops in 7r (R; O) giving rise to the loxodromic element found there 
also corresponds to a simple nondividing loop, and it is only this property that 
is needed. 

In light of Corollary 3.4.2, the analysis of Case 3 is complete. A handle 

exists, and Proposition 3.1.1 is proved. 

4. Cutting the handles 

4.1. We have found a special handle H as specified in ?3. The next step is 
to cut all the other (topological) handles, ending up with a (connected) surface 
of genus one with 2(g - 1) boundary components. In cutting the handles, we 
will require that the 0-image of each cutting loop is loxodromic. 

Although H, or rather the established properties of the 0-image of its 
fundamental group, serves to anchor the cutting process, in fact H itself will 
have to undergo successive changes. It will become more and more compli- 
cated in terms of an initial basis of 7r (R; O). Roughly speaking, we will be 
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applying Dehn twists of possibly high order to felicitous combinations of simple 
loops. The process will be governed by the applicability of the lemmas of ?2 
to yield loxodromic transformations, yet still arising under 0 from simple loops 
in 7r(R; O). 

4.2. Let H = (a, b) denote the special handle found in Chapter 3, and 
set a = 0(a), 3 = 0(b). We claim that after replacing H = (a, b) by another 
handle of the form (abq, b) or (b, abq), if necessary, we can assume that 3 does 
not send one fixed point of a to the other. 

For suppose / sends one fixed point of a to the other. Then, using 
Lemma 2.1.1(ii), find q so that a/3q is loxodromic and tr2a/3q t tr2/. Neces- 

sarily, a1/q does not share either of its fixed points with /. By Lemma 2.2.1, at 
least one of the following statements is true: /3 does not send one fixed point 
of a/q to the other, or a/3q does not send one fixed point of P to the other. 

4.3. Now suppose that (x, y) is another pair of loops in 71(R; O) of the 
form x = u-x'uU, y = u-1y'u, where x' and y' are simple loops disjoint from a 
and b, with one intersection point where they cross, and u is a simple arc from 
a n b = O to x' n y', otherwise disjoint from a, b, x', y' (see Figure 5). 

Figure 5. Connection to handle H 

Consider d = ybak and its 0-image 6 = rPak, for some k. Set O = O(x) 
and 71 = 0(y). The effect of a Dehn twist of order n about d is 

(0a,/Pk) - (6na,/ak), 

We claim that there exist k and n such that: 

(i) /pak is loxodromic; 

(ii) 6 = rt/ak is loxodromic; 

(iii) 6na is loxodromic without a common fixed point with 3ak; 

(iv) 6nc is loxodromic; 
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or that, after necessary relabeling and rearrangement to be spelled out below, 
analogous properties hold. This claim will be established in the four steps of 
?4.4. 

Once this is accomplished, we will replace the handle H = (a, b) by the 
handle (dna, bak), and cut R along dnx, represented by a freely homotopic sim- 
ple loop. This operation will also serve as the basis of an induction procedure. 

Note that it may well be that r = id, or = - id, or both. In the former case, 
property (ii) is satisfied with (i), and in the second, property (iv) is satisfied 
with (ii). 

4.4. Step (i). By ?4.2 and Lemma 2.1.1(i), there exists K > 0 such that 
f3ak is loxodromic for all Ik| > K. 

Step (ii). If r7/ does not interchange the fixed points of a, then by 
Lemma 2.1.1 we may take K in step (i) so large that 6 = 7/3ak is loxodromic 
for all k > K or for all k < -K. 

If, however, r/3 does interchange the fixed points of a but P/3 does not, 
interchange rl and ~ and return to the paragraph above. 

Finally, if both r77 = J and ~/3 = J1 interchange the fixed points of a, then 

rl-1 = JJ1 fixes them (and is either loxodromic or the identity). In this case 

replace (x, y) by (x, yx1-), and r by r77-~, and revert to the original notation. 
For this case, then, r/l3ak is loxodromic for all Ikl > K, for some K. 

Step (iii). First note that for no k E Z and no m 7= 0 can both 6na and 
6n+mCa have fixed points in common with /ock. For the relations 

<na(p) = p= ak(p), 

n+ma(p) = p -=n6ma(p) 

imply that a(p) is a fixed point of 6, then that p is a fixed point of a, and 
finally that p is a fixed point of /. The last consequence is impossible. 

For any sequence k -* +oo, according to Lemma 2.1.2 the fixed points of 
6 = r/3ak converge to p/3(q) and p, where q and p denote the attractive and 
repulsive fixed points of a, respectively. Thus, if a sends one fixed point of 6 to 
the other for this sequence, then p/3(q) = p. Similarly, for a sequence k -> -oo, 
the fixed points of 6 converge to r/3(p) and q. If, for this sequence, a sends one 
fixed point of 6 to the other, then r/3(p) = q. By our construction, r/3 does 
not interchange the fixed points of a, so a cannot interchange the fixed points 
of 6 = r7oak for both a sequence k -> +oo and a sequence k -+ -oo. 

Now if 713(p) = q, so that 6 is loxodromic for all k > K (step (ii)), then for 
sufficiently large K, a cannot send one fixed point of 6 = r/pak to the other. 
Likewise, if r/3(q) = p so that 6 is loxodromic for k < -K, again a cannot send 
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one fixed point of 6 to the other, for sufficiently large K. If r]3 sends neither 
fixed point of a to the other, a sends neither fixed point of 6 to the other, for 
all large k . 

We conclude that there exists K > 0 such that 6 = rfoeak is loxodromic 
for any k > K or any k < -K, or both. Furthermore, a does not send one 
fixed point of 6 to the other. Given k in the admissible range, there exists 
N = N(k) > 0 such that 8Ta, for all Inl > N, is loxodromic and does not have 
a fixed point in common with Pck. 

Step (iv). Consider ~ and 6 = r13ak for fixed k > K or k < -K, accord- 
ing to (iii). 

If ~ does not interchange the fixed points of 6, we can take N so large that 
either 6n5 or 6n-l is loxodromic for n > N = N(k). 

Suppose instead that ~ interchanges the fixed points of S but not of 
roPak+l = 6'. Then replace 6 by 6'. 

However, not both 5 and r17 (nor equivalently, J and r1-l') can interchange 
the fixed points of both r7Oak and rlopk+l. For, if so, we apply Lemma 2.2.5 
to J = J, J1 = -r (or r7-1) and to both rp/3ak and rP3ak+l. That implies that 
the fixed points of both r/3ak and r/Pcak+l coincide with fixed points p, q of r7. 
For this to occur, a fixes both p and q, and then r?/3 must do so as well. But 
since r itself fixes them, / must also fix them. This is impossible. 

We may assume one of yx or y- x is a simple loop. Depending on which, 
replace (x, y) by (yx, y) or (y-lx, y). Correspondingly, replace ~ by r/7 or rT-1'. 
This returns us to one of the previous cases for 6 = r1/3ak or rPqak+l. 

4.5. Cutting the surface. The loop dnx is freely homotopic to a simple, 
nondividing loop d', disjoint from dna and bak. Cutting R along d' results in a 
new surface R1 with a handle H = (dna, bak) and two boundary components 
freely homotopic to dn and yx-ld-ny-l (or y-1x-ld-ny). The corresponding 
transformations are 6n8 and rl-~16-nrlf- (or r1-l1-16-nrl), which have the 
same trace. The common trace, however, can be made as large as desired 

(Lemma 2.1.1). 
If the genus of R1 exceeds one, repeat the process using the new H, and 

so on. At the end, we will have a surface Rg-1 with a handle H = (a, b) (using 
again the original notation) and 2(g - 1) boundary components. 

Orient all the boundary components so that Rg-~ lies to their right. Let 
x, y,... denote simple loops from the basepoint O parallel to them but other- 
wise disjoint from each other and from a and b. Our construction allows us 
to assume that the 0-images 0(x), 0(y), ... are all loxodromic. Pairwise they 
have the same trace, but the traces of different pairs can be assumed to be 
different. 
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5. The pants decomposition 

5.1. We carry on from the situation left in ?4.5. To start, adjust the 
special handle H = (a, b) as in ?4.2 so that 3 = (b) does not send one fixed 
point of a = 0(a) to the other. Orient b so that it crosses a from the right side 
of a to the left; then the boundary of Rg-1 lies to the left of c = b-la-lba and 
we have oriented the boundary so that c lies to its right. 

Choose simple loops x, y C 7rl(Rg-l; 0), each parallel to a boundary com- 
ponent and disjoint from each other and a,b, except at O = a n b. The 
orientations are such that ybak and xbak (but not yb-lak or xb-lak for k = 1) 
are homotopic to simple loops for all k (see Figure 6). From ?4.5 we know that 

0 = (x) and r = 0(y) are loxodromic. 

Figure 6. Connection of boundary to handle H 

5.2. We begin by sorting out the following possibilities. 

(1) If exactly one of r1,3 and /3 interchanges the fixed points of a, assume 
that the one that does is f/3. In this case, we claim that, for all sufficiently 
large Iki, the composition 6 = rl/3ak does not fix either fixed point p, q of ?. 

For if r/3ak fixes p for two values of k, then p itself must be fixed by a, 
and then by r73 as well as by ?. On the other hand, since /3 interchanges 
the fixed points p and p' of a, we get S3(p') = p = g(p), so 0(p') = p. This 
contradiction to the known properties of the handle H establishes the claim. 

(2) If neither rP3 nor (3 interchanges the fixed points of a, then by in- 
terchanging ~ and r7 and relabeling if necessary, we may assume that for all 
sufficiently large klc, the composition 6 = r,/ak does not fix both fixed points 
p,q of . 

For suppose r/P3ak fixes p, q for two values of k, and, correspondingly, (/3ak 
fixes the two fixed points of r7 for two other values of k. The first supposition 
implies that p and q are fixed by a, then by rl/, and of course by 5. The second 
implies that p and q are fixed in addition by /3 and rl. But r7/(p) = p = rl(p) 
implies that 3 itself fixes p, a contradiction. 
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It is important to note that if, in addition, rl/ sends one fixed point of a 
to the other, then we may assume that 6 -= q/3ak, for Ikl large, does not fix 
even one fixed point of ~. This is another application of the reasoning of (1). 

(3) We defer consideration until ?5.5 of the remaining case that both r/l 
and /3 interchange the fixed points of a. 

5.3. In this section and the next we will work with cases (1) and (2) of 

?5.2. That is, r/l3 does not interchange the fixed points of a, and, for all large 
Ikl, the composition 6 = rfl3ak does not fix both fixed points of E, and if r71 
sends one fixed point of a to the other, rl3ak does not fix either fixed point 
of ~ . Consider d = ybak, for some k, and its 0-image 6. The effect of a Dehn 
twist of order n about d is 

(a,/3ak) (8na,3ak), 

(71) , {6-n, } 

We will find k and n such that: 

(i) O3ak is loxodromic; 

(ii) 6 = t/3ak is loxodromic; 

(iii) 6na is loxodromic and has no common fixed point with 3ak; 

(iv) 6-nJ^nr? is loxodromic and has no common fixed point with rl; 

(v) 6-n"^n and r generate a classical Schottky group. 

(vi) Itr6-n6Snrl? is unbounded in Inl. 

Once this is accomplished, we will replace the handle (a, b) with (dna, bak), 
then remove from Rg-1 the pants determined by 

(d-ndn, y, d-ndny), 

and repeat the process. 

5.4. Step (i). The properties of the special handle H (?5.1) and Lemma 

2.1.1(i) imply that there is K > 0 such that /3ak is loxodromic for all Ikl > K. 

Step (ii). Since r3P does not interchange the fixed points of a, we can 
choose K above so large that rt3ak is loxodromic for k > K, k < -K, or both. 
In addition, for the admissible range of k, the composition r1/3ak does not fix 
both fixed points of 5. 

Step (iii). This is identical with step (iii) of ?4.3. There exists K > 0 
such that 6 = TrO3ak is loxodromic for any k > K, or any k < -K, or both. 
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Given k in the admissible range, there exists N = N(k) > 0 such that, for 
all Inl > N, the element Sna is loxodromic and has no fixed point in common 
with ak. 

Step (iv). Note that we may assume that K is sufficiently large so that 
6 = roak has no fixed point in common with 7 for I k > K. For, if rP/3ak fixes 
a fixed point p of r7 for two values of k, then a itself must fix p, and then 3 
must as well. 

Case (1). r13 sends one fixed point of a to the other. In this case 8 has no fixed 

point in common with J (?5.3). Thus, by Lemma 2.1.3, the composition 
8-nSnT7 is loxodromic for all large Inl, while we must have Inj > N to 
ensure that 8nc is loxodromic. 

Case (2). r/3 does not send one fixed point of a to the other. Then 6na is 
loxodromic for all Inl > N, while S-n8nr is loxodromic either for n > N 
or for n < -N, for sufficiently large N. 

Finally, 6-nT6nrl and rj have a fixed point in common only if S-np5n and 
r, do. The fixed points of 5-nJ,n are 6-n(p) and 5-n(q), where p and q are 
the fixed points of J. If neither point is fixed by 6, then, for sufficiently large 
Inl, neither 8-n(p) nor 6-n(q) will be fixed by r7. On the other hand, if p, say, 
is fixed by 6, the same conclusion holds because 6 and 7 do not share a fixed 
point. 

Step (v). Since 6 and r have no fixed point in common, it follows from 
Lemma 2.1.3 and Corollary 2.1.5 that 6-nSn and r7 generate a classical Schot- 

tky group for sufficiently large N. Also the trace of S-nf5r can be made 

arbitrarily large, for sufficiently large N. 

5.5. Now we turn to the case, left aside in ?5.2, where both r/3 = J and 

/3 = J1 interchange the fixed points of a. Then r7 = JJ1, where JJ1 is 
loxodromic or the identity, and fixes the fixed points of a. 

At the start we arranged matters so that ybak is homotopic to a simple 
loop for all k. This is equally true of (bak)-ly(bak), and of x(bak)-ly(bak), 
which is homotopic to a simple loop bounding a triply connected region (pants) 
with boundary components corresponding to x and y. 

We claim that, in the present case, there exists K > 0 such that the 
corresponding transformation 

6 = (p/ak-)-ll(pak) = Ea-kp-1Jak 

is loxodromic for all Ikl > K. 
For J has no fixed point in common with a: Indeed, ~(p) = p = a(p) 

would imply that J1/3-1(p) = p, in other words that /(q) = p, where q is the 
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other fixed point of a. Similarly, 3-1J has no fixed point in common with a. 
Hence the assertion follows from Lemma 2.1.3. 

We can take K so large that, in addition, S does not have a fixed point p 
in common with 

(fak)-lr(/pak) = a-k3-lJak 

for lkl > K. For, since neither E nor P-1J has a fixed point in common with 
a, we have on the complement of q,, q*, 

lim a-k3-lJak q* and lim a-k/3-Jak = q* 
k-+oo k--oo 

where q*. # p and q* $ p denote the repulsive and attractive fixed points of a. 
For sufficiently large K as dictated by Corollary 2.1.5, t and (/3ak)-lr(p3ak) 

generate a classical Schottky group for all Ikl > K. 
As in ?5.4(v), the trace magnitude of the transformation (3ak)-lr(3pak) 

corresponding to the new boundary component of the pants can be made arbi- 
trarily large, in particular in comparison with that of J and 77, which correspond 
to the boundary components on which the new pants was built. 

Replace the handle (a, bak) by its conjugate ((bak)-la(bak), bak). The 
new pants is determined by (x, (bak)-ly(bak)). 

5.6. The pants decomposition. In ??5.3-5.4 we showed that, given any 
two boundary components of Rg-1, we could construct a pants with them 
as boundary components and such that the transformation corresponding to 
the third boundary component has trace of arbitrarily large magnitude. The 
surface remaining after this pants is removed is again of genus one, but with one 
fewer boundary components. Again choosing any two boundary components, 
we can construct another pants, and so on until all that remains is a surface 
of genus one with one boundary component: a handle. 

For later requirements, we will specify the initial steps of the decomposi- 
tion as follows: Group the 2(g - 1) boundary components of Rg-1 into pairs, 
where the two components of each pair arise from cutting a handle of R. Con- 
struct first (g - 1) pants, one corresponding to each pair, which then comprise 
two of its boundary components. After this is done, finish the construction 
with any possible succession of pairings. 

Each pair of boundaries of Rg-1 corresponds to transformations of the 
same trace, but we may assume from ?4.5 that different pairs correspond to 
transformations of different traces. When each new boundary component form- 
ing a new pants is inserted, we can ensure by ?5.4(v) and ?5.5 that the trace 
magnitude of its corresponding transformation exceeds that corresponding to 
all previously inserted boundaries. 

The combinatorics of the decomposition and a corresponding reorganiza- 
tion of the generating set for 7r1 (R; O) will be discussed in ?5.8 below. 
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5.7. The final cut. We are left with 2g-3 pants and a handle H. Yet more 
adjustment to H is necessary before gaining the assurance that one final cut 
will produce a pants decomposition {Ri} called for in ?1.7. Consider the handle 
H = (a, b) remaining at the end of the process. A simple loop c ~ b-la-lba 
bounds H on its right side (starting in ?5.1 we specifically assumed that b 
crosses a from the right side of a to the left). On the left side of c is a pants 
with boundary components oriented so that the pants is to their left. Also, 
c-1 ~ yx, where x and y are simple loops parallel to the boundary components, 
and are disjoint from c, b and a except for a shared basepoint. 

Set a = 0(a), 3 = 0(b), a = 0(c), , = O(x), rl - 0(y). We know that (, r7) 
is a Schottky group and that a and , are loxodromic without a common fixed 
point. As in ?4.2, we can assume that /3 does not send one fixed point of a to 
the other. 

By construction (see ?5.4(iv)-(v) and ?5.5), the trace magnitude of Tr 
exceeds that of r7 and 5. In particular, neither 1 nor Tr can be conjugate within 

PSL(2, C) to r77 = a-1/-l1a/ = a-1. 
We may assume that ~/3 = J does not interchange the fixed points of a, 

and is not the identity. Otherwise, replace 1 and r7 by their conjugates o0ma~-m 
and umr7c-m, where m is chosen so that (rm(a-~/3 = Jm neither interchanges 
the fixed points of a nor is the identity. To see that such an m exists, consider 
rmfac-m--l =- JmJ, which either has the same fixed points as a, or has order 

two. The latter case is impossible because (1, 77) is a Schottky group. Since 1 
and a == r1 have no fixed points in common, the former is impossible as well, 
except perhaps for a finite number of values of m. Consequently, replace (1, r7) 
by the conjugate group (am~ u-m, omr]a-m), and correspondingly (x, y) by the 
conjugate pants (cmxc-m, cmyc-m). Return again to the original notation. 

Now we are ready to cut the handle H. But first, apply a Dehn twist of 
order k about a. This changes H to (a, bak). 

Next, apply a Dehn twist of order n about a simple loop d ~ xbak. This 
results in the changes 

(a,bak) E- d (dna,bak). 

Finally, cut the resulting handle along a simple loop freely homotopic to 
bak. This results in a pants whose fundamental group is 

(bak, (dna)-l(bak)-l(dna)). 

We claim that k and n can be chosen so that the groups representing the 
adjacent pants are now both Schottky groups 

(y,(s6na)-lr-l(E6na)) and (, 6-n6n), 

where -y = /ak and 6 = <5y. 
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(i) There exists K > 0 such that 6 = /P3ak is loxodromic either for k > K 
or for k < -K; for definiteness assume the former is true. Indeed we have 

already arranged matters so that O/3 does not interchange the fixed points 
of a. 

(ii) For sufficiently large K and k > K the composition 6 = ^y has no 
fixed points in common with 6 or -y, and a^a-l1 has no fixed points in common 
with a3a-1/1-1-l1 +4 id. 

First note that neither pak nor a/ak-l can have the same fixed points 
for two values of k. For example, pak(p) = p = pfm(p) for m 4 k implies that 

a(p) = p, and then /(p) = p, which is impossible. Consequently, for sufficiently 
large K and k > K, the element - = aOpk does not share a fixed point with 

5 or 7q, nor cya-1 with ca/Oa-1/'-l-1, provided this latter is not the identity. 
It follows that neither ^y and y, nor -y and 6, can share fixed points either. 

Finally, aca-1/31-l-1 7= id because J is not conjugate to 7r7 = a-l1-lc1 
(because they have unequal traces, as we have seen earlier in ?5.7). 

(iii) We show that (6, 6-nrTn) is a Schottky group, either for all n > N 
or all n < -N, for some N > 0; for definiteness we will assume the former. 

For if 6 has both its fixed points in common with r7, then 6 and r1 commute 
and the group remains (/, r7). If 6 has one fixed point in common with rI, say its 

repulsive fixed point p, the fixed points of 6-nTr6n converge to p as n -> +oo. 
Since p is not also a fixed point of 6, the group is Schottky for large n. If 6 
has no fixed points in common with 7r, it is Schottky for all large Inl. 

(iv) We show that (y, (noa)-ly-1(noa)) is a Schottky group for all 

nl > N, for sufficiently large N in (iii) and fixed k > K from (i) and (ii). 
For the fixed points of (6na)-l~y-1(6na) are the images under a-16-n 

of the fixed points of 7. As n -- +oo or n -> -oo, these images converge to 
a-1 (p), where p is the repulsive or attractive fixed point of $, since 6 and y have 
no fixed points in common. If a-1(p) is not a fixed point of y, Corollary 2.1.5 

implies that the group is Schottky for large Inl. 
Suppose to the contrary that -ya-(p) = a-1(p), while -y(p) = p. Then 

cya-1(p) = p, while p = cya^c'-1-l'-l(p) = a/Oa-l-lf-l1(p). This does not 

occur, by (ii). 

Remark 5.7.1. Had we not been so concerned about the final cut forming 
two of the boundary components of a single pants corresponding to a Schottky 
group, we would have proceeded more simply, as follows. Cut H = (a, b) along 
a resulting in a pants (a, b-la-b). Pair boundary components of this with 
those of neighboring pants (x, y), to get two new pants (a, y) and (b-la-lb, x). 
Apply to these the Dehn twist of order m about c - b-la-lba. For all large 
Iml, the corresponding groups are easily seen to be Schottky. 
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5.8. The combinatorics of pants decomposition. We will systematically 
organize a generating set for the fundamental group of R in terms of the pants 
decomposition {Pi} 

Start by fixing points Oi, O', 0"' on each component of OPi, and disjoint 
simple auxiliary arcs from Oi to O' and 0'. In terms of these auxiliary arcs, 
there is a unique path in Pi between any two boundary components. Also, 
a component of OPi with an assigned orientation uniquely determines a loop 
from Oi, which we will take as the basepoint of 7rl(Pi; Oi). If ai and bi are 
two boundary components of Pi, an orientation of ai uniquely determines an 
orientation of bi such that biai is homotopic to a simple loop around the third 
(here making use of the auxiliary arcs). 

If the components a of oPi and a' of aPj correspond to the same simple 
loop on R, choose the points O c a and 0' E a' to correspond to the same 

point on R. 
Let T denote the trivalent graph of genus g corresponding to the pants 

decomposition {Pi}: each vertex of T corresponds to one of the pants Pi, and 
each edge corresponds to a pair (a, a') of boundary components, one on each 

pants corresponding to an endpoint. Two boundary components are paired 
(a, a') if and only if they correspond to the same simple loop on R. 

T has 2g - 2 vertices and 3g- 3 edges. Exactly g of the vertices have 

one-edge loops attached to them; this is a consequence of the particular com- 
binatorics of the decomposition. We call these vertices extreme. 

Remove from T those g one-edge loops; the result To is a maximal (con- 
nected) tree. The extreme vertices of T are those that are extreme in To in 
the sense that only one edge of To is attached to the vertex. 

Designate one of these extreme vertices as the root vo of To: for example, 
the vertex corresponding to the last handle we cut. There is a unique simple 
path in To from any vertex to the root. 

Denote the pants corresponding to the vertex v by P(v). Consider the 
vertices v' f7 v whose shortest path to vo contains v. Mark the boundary 
components of P(v) where these shortest paths first cross; we will use these 
shortest paths below. If v is not extreme, two of the three boundary compo- 
nents of P(v) will be marked. If v is extreme but v L= vo, none of the boundary 
components will be marked. Exactly one of the boundary components of P(vo) 
will be marked. 

Making use of the auxiliary arcs in the {Pi}, the simple edge-arc in To 
from the vertex vi = Pi to vj = Pj uniquely determines a simple arc in R from 
Oi to Oj. Likewise, a simple edge-loop in T uniquely determines a simple loop 
in R. 

Let Po be the pants corresponding to the root vo, and O = Oo the desig- 
nated basepoint for its fundamental group. Take also O as the basepoint of the 
fundamental group of R. As we have seen, To uniquely determines a simple arc 
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ci in R from O to each Oi. Thus, a simple loop ai E 7rl(Pi; Oi) can be uniquely 
associated with c- aici c 7rl (R; O). Suppose ei is one of the g edge-loops of 
T, with both end points on the same vertex vi. Likewise with the help of the 

auxiliary arcs in Pi = P(vi), the edge ei, with an assigned orientation, uniquely 
determines a loop c 'eicc E 7ri(R; 0). 

The totality of elements c -laici from oriented boundary components of 

pants {Pi} plus g elements c'-leic from edges e ? To generate 7rl(R; 0). 

B. Pants configurations from Schottky groups 

6. Joining overlapping plane regions 

6.1. In this section we will describe a method of using covering surfaces 
to separate two overlapping plane regions which are acted on by a common 
Mobius transformation. It is no restriction to describe the process with the 
loxodromic transformation a : z i- A2z, with |AI > 1 and fixed points 0 and 
oo. Let T or T(a) denote the quotient torus 

T = (C \ {0})/(a), 

and 7r the projection from C \ {0}. Denote the simple compressing loop 7r({z: 
\zl = 1}) in T by c. A noncontractible simple loop on T lifts to a closed curve 
in C \ {0} if and only if it is freely homotopic (or homologous) to Ic. 

If a simple loop a is not of this type, a* = r-l(a) is a simple a-invariant 
arc. If a is given the orientation dictated by a, the arc a* is directed toward 
the attractive fixed point. 

Conversely, if a* is a simple, a-invariant arc in C directed toward the 
attractive fixed point, al =- 7(a*) is a simple loop freely homotopic (or homol- 

ogous) to the result of applying to a the Dehn twist about c of some order n: 

namely, al ~ a + nc. 

6.2. Let SN denote the N-sheeted cover of the sphere S1 = S2, branched 
over the fixed points 0 and oo of a. Topologically, SN is again a sphere. The 

map z z1/N - w sends SN back to S1; it is conformal except at 0 and 
oo. The cyclic group of cover transformations is conjugated to the group of 
rotations (w -> e2ri/Nw). 

The transformation a lifts to an automorphism a* of SN, determined up 
to composition with cover transformations. It is conjugated to the loxodromic 
transformation w -> A2/Nw, which in turn is determined only up to composi- 
tion with cover transformations. 

Consider the torus TN = TN(a), defined by 

TN = (SN \ {0, o})/(a*) 
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It is the N-sheeted torus over T, uniquely determined by the properties that 
a lifts to exactly N mutually disjoint simple loops and cN lifts to one simple 
loop. 

For the following lemma a and c are simple loops on T as before: c is the 

projection of the unit circle and a is the projection of a simple, a-invariant arc 
a* C C, positively oriented by a. If the simple arc al crosses a transversely at 

every point of intersection, the geometric intersection number is defined as the 
number of points of intersection. We assume this number is finite. 

LEMMA 6.2.1. Suppose al is freely homotopic and transverse to a, with 

geometric intersection number n. Set N = 2n + 1. Then there is a lift a' of 
a and a lift a' of al that are disjoint, freely homotopic simple loops in TN. 
Correspondingly, there is a lift a* of a and a* of al to SN that are disjoint, 
a*-invariant simple arcs. 

Remark 6.2.2. A more precise measure of intersection would be to set 

n =max lm(T)l, 

where r C al is a segment whose endpoints don't lie on a, m(r) is the alge- 
braic intersection number of r and a, and the maximum is taken over all such 
connected segments r of al. 

Proof. Fix a lift a' of a to TN or a lift a* to SN. We can label the 
N = 2n + 1 sheets on TN or on SN over T \ {a} in cyclic order, starting to 
the left of a' or of a*. A point in the (n + l)-st sheet can be connected to 
one on a' or on a* only by crossing n other lifts of a. Fix p E al \ a, and the 

point p' or p* lying over p in the (n + l)-st sheet. The endpoint of the arc al 
lying one-to-one over al \ {p} and starting at p' or p* also lies in the (n + 1)-st 
sheet, because al is freely homotopic to a; in TN, the arc al closes up to form 
a simple loop. The conclusion is a direct consequence. C 

Note that without the condition that al, positively oriented by a, be freely 
homotopic to a, the conclusion of the lemma is false. Instead, the following is 
true. 

COROLLARY 6.2.3. Suppose, more generally, that the simple loop al c T, 
transverse to a, is the projection of an a-invariant arc in C \ {0}. There exists 
N = N(a, al) > 1 and m E Z such that 8mal and a have disjoint lifts on TN 
and SN, where 6 denotes the Dehn twist about c. 

6.3. 

LEMMA 6.3.1. Suppose a and al are a-invariant simple arcs in C \ {0}, 
the lifts of freely homotopic transverse loops in T(a) with geometric intersec- 
tion number n. Suppose a is contained in the boundary of a simply connected 
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region P C \ {0} lying to its left, while al is contained in the boundary of 
a simply connected region P1 lying to its right. Set N = 2n + 4. Then on 
SN \ {0, oo} there are disjoint lifts a* of a and a* of al with the property that 
the corresponding lifts P* of P and P* of P1 that contain a* and a* in their 
respective boundaries are disjoint as well. 

Proof. Fix a lift a* of a in SN \ {0, oo} and let E be the generator of the 
order-N cyclic group of cover transformations with the property that a* and 
Ea* bound to the left of a* a lift a* of C \ {a}, which we will refer to as the 
first sheet of the covering. In cyclic order to the left of a* the lifts of a are 
Ea*,..., EN-la*, and the corresponding sheets are a*, ErJ*, ..., EN-loT*. 

Denote by P* the lift of P adjacent to a* on its left side. Necessarily P* 
lies entirely in the first sheet a*. 

If al is disjoint from a, then N = 4 (although N = 3 will do). Let a* be 
the lift of al lying in the third sheet E2a*, and P1 the lift of P1 adjacent to 
a* on its right side. P* lies in the sector bounded by a* and E-la*, which lies 
in the second sheet Ea*. Hence P1* is disjoint from P* (see Figure 7). 

\At Ea , 

a 

Figure 7. Separation of regions when N = 4 

More generally, choose p E a1 n a and let p* denote the point over p on 
En+2a*. Let al denote the lift of a* through p*; then at does not intersect 
E2a* or E2a*. Consequently, E-la* does not intersect Ea*. Let P* be the 
lift of P1 adjacent to a* on its right side; P* lies in the sector between a* and 
E-la*. Therefore P1* is disjoint from P*. D 

Note that we have not optimized the choice of N, which can be done in 

particular cases. 

COROLLARY 6.3.2. In the hypotheses of Lemma 6.3.1, assume that not 
only a and al but also P and P1 are a-invariant in C \ {0}. There is a lift a* 

of a to SN that leaves P* and P* invariant. 
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Proof. Let a* be the lift of a that maps the first sheet a* onto itself, and 
hence P* onto itself. Necessarily a* maps every sheet Eku* onto itself, and 
hence P1 onto itself as well. D 

6.4. Joining overlapping regions. In this section we will build a prototype 
for the procedure that forms the basis of ?8. It is typical of tricks used in clas- 
sical function theory and is a generalization of a technique applied to M6bius 
groups called grafting [Masl], [Hel], [Gol]. 

Consider the hypotheses of Lemma 6.3.1: a and al are a-invariant simple 
arcs in C \ {0} directed toward oo, and one does not spiral around the other 

(an informal way of saying that they arise from freely homotopic loops in T). 
The region P lies to the left of a, and P1 to the right of al. Like a and al 
themselves, P and P1 can badly overlap each other. 

However, on SN, P* and P1 are disjoint. Let Q* be the region on SN that 
lies to the right of a* and to the left of a1: then P1* U a* U Q* U a* U P* is a 
simply connected region R* in SN \ {0, oo}. According to Corollary 6.3.2, if P 
and P1 are a-invariant, a* is a conformal automorphism of R*. 

Let g : IH2 -+ R* be a Riemann map, where the hyperbolic plane H2 is 
realized as the unit disk. Then g-lo*g is a hyperbolic M6bius transformation 
a~ in E2. Let r : SN -> S2 denote the projection. Then f = o g is a locally 
univalent meromorphic function on HI2 with the property that 

fac (z) = caf (z) 

for all z E H2. That is, f determines a complex projective structure on Hl2 
that induces the isomorphism between cyclic groups (oa) -> (a). 

We have joined together the annular regions P/(ac) = P*/(a*) and Pl/(a) 
= P/*/(a*) by means of the annulus Q*/(a*), which attaches to the boundary 
components a/(a) and al/(a). 

7. Pants within rank-two Schottky groups 

7.1. Suppose (al, a2) is a two-generator classical Schottky group acting 
on its regular set Q C S2. The quotient surface R = Q/(ai, c2) has genus two 

(and bounds the handlebody R+ = H3/(ai, a2) if the group is extended to 
hyperbolic three-space). 

There are round circles bt and b2, mutually disjoint in Q, with the following 
property: The two pairs of circles (bt, alb) and (b*, ao2b) are mutually disjoint 
with mutually disjoint interiors in S2, and ai maps the exterior of b* onto the 
interior of aib. The circles bt and b* are lifts of mutually disjoint, nondividing 
simple loops b1 and b2 in R. These bound disks in R+ and for that reason are 
called compressing loops. 
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Let al and a2 be simple, nondividing loops in R such that al n(a2Ub2) = 0 
and a2 n (al U bl) = 0, while ai crosses bi transversely at a single point. Then 
al and a2 have lifts at and a* to Q uniquely determined by the condition that 

they are al-invariant and a2-invariant simple arcs, respectively. Let 6i denote 
the Dehn twist about bi. Then, for example, 6'al can be used in place of al: it, 
too, can be taken to be a simple loop disjoint from a2 and b2, meeting and there 

crossing bl at a single point. It too has a uniquely determined al-invariant lift 

(6nal)* in Q. (More generally, the simple loop a' has an al-invariant lift if 
and only if al is freely homotopic to al within the handlebody R+.) 

7.2. Finding pants. Assign al and a2 their positive orientation, that is, 
the one that directs a* and a*, their al- and a2-invariant lifts, toward the 
attractive fixed points of al and a2. We can join al and a2 to a common 
basepoint 0 E R so that the resulting simple loops a' and a' have the property 
that a2a' is homotopic to a simple loop a'; this loop a3 is then freely homotopic 
to a simple loop a3 that, together with al and a2, divides R into two pants P 
and P'; also, a3 has an a2ol-invariant lift a* and an lia2-invariant lift ala* 
(Figure 8). 

Note that the free homotopy class of a3 on R is not uniquely determined 
by that of al and a2: we can change a3 by applying Dehn twists about a simple 
dividing loop homotopic to b1-la'1-b1a without affecting al or a2. We can 
also change a3 by applying Dehn twists about bl or b2, but that will change 
al or a2 as well. In any case there is an a2al-invariant lift of a3. 

Figure 8. Pants determined by Schottky group 
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Let P denote the pants lying to the right of al and a2, and to the left of 
a3. Of course we may assume that bi n P and b2 n P are simple arcs. There 
is a lift Po of P to Q that is an "octagon" bounded by connected segments of 
a*, a*, a*, cla3 and bb, b2 (see Figure 8, bottom). The orbit of PO (adding its 
boundary arcs on bl and b*) under (c01, 02) is a simply connected region P* 
that is the universal cover of P. 

7.3. Isomorphisms are geometric. We summarize the analysis of ?7.2 as 
follows. 

LEMMA 7.3.1. Let Q be a pants with oriented boundary components 
(d1,d2, d3), and choose generators d', d', d', dl ~ ddl, for 7ri(Q;O) such 
that d' is parallel to di, 0 Q. Suppose 0 is the isomorphism of 7r(Q; O) 
onto the Schottky group (c1, a2) determined by the correspondence 0(dl) = a1, 
0(d') = ao2. Then there is a pants P in R = Q/(ai, 02) bounded by simple 
loops (al, a2,a3), positively oriented by al, a2, o2al1, and a homeomorphism 
h : Q -> P taking di (with its orientation) to ai, i = 1, 2, 3, which induces 0: 
there is a point O* E P* C Q over h(O) c P such that the lift of h(di) from 
O* terminates at ai(0*), for i = 1, 2, 3. 

Proof. In ?7.2 we observed the following convention for finding pants P 
and P' in a Schottky group with designated generators a0 and a2. The three 

boundary components have al-, o2-, and a2oi-invariant lifts, positively ori- 
ented by ai, a2 and aljo2, respectively. If al and a2 are represented by gener- 
ators a1 and a/ in 7ri(P; O) or ri(P'; O'), then a/a/ is homotopic to a simple 
loop parallel to a3. The two pants P and P' are distinguished in that one lies 
to the right of al and a2, and to the left of a3, while the opposite holds for the 
other. 

The orientations of the di can temporarily be reversed as necessary so that 
Q lies to the right of di, d2 and left of d3. Make the corresponding temporary 
replacements of oai by -il. Now find a pants P meeting the requirements, and 
then return to the original designations. C 

7.4. Two groups with a common generator: Compatibility. Consider two 
Schottky groups (aci, 02) and (02, a3) with a common generator a2. Denote the 

regular sets in S2 by Q and Q', and set R = Q/(01,0c2) and R' = Q'/(a2, 03). 
Choose simple loops (ai, bi, a2, b2) in R and (a', b', a3, b3) in R' as in ?7.1; here 
aj and ai are taken with their positive orientations from aj and ci. Find, as 
in ?7.2, a pants P C R lying, say, to the right of a2, and then a pants P' C R' 
lying to the left of a2. 
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Definition 7.4.1. As above, suppose a2 and a' are simple loops on R and 
R', with a2-invariant lifts a* and a'* to Q and Q', respectively. The loops a2 
and a' are compatible (with respect to a2) if the projections of a* and a'* (that 
is, the embeddings of a2 and a') in the torus T(a2), are freely homotopic there. 

Recall that T(a2) = (2 \ {p, q})/(o2), where p and q are the fixed points 
of a2. Let 62 denote the Dehn twist about b' on R'. In general a' will not be 

compatible with a2. However, 

LEMMA 7.4.2. The loop a2 on R' can be made compatible with a2 on R: 
a2 is compatible with 6ma' for a unique value of m. 

Proof. Let 62 denote the Dehn twist about b2 on R'. Note that b' embeds 
as a simple loop on T(a2), so that 62 can be taken to act on T(a2) as well as 
on R'. For exactly one value of m, the loop 62ja2 will be compatible with a2. 

DO 

Remark 7.4.3. We emphasize that the process of making a2 and a' com- 
patible affects only one of the surfaces: say R'. And, on R', it affects only a2, 
not a'. However, the third boundary component c' of the pants P' is affected. 
Indeed, there is a lift c'* to Q' invariant under a3a2. The simple loop bw which 
crosses c' once also embeds in T(a3a2), and the twist 62 equally can be taken 
to act on the torus T(a3ca2). Thus, under the action of 61m on R', the loop c' 
changes to 62 c'; the pants 6 P'1 is bounded by 6ma', 62c', and a3. 

7.5. Compatibility conditions on one pants. Consider a Schottky group 
(o,/ ) and a pants P in Q/(o,/3 ), as in Figure 9. 

Denote the boundary components of P by a, b, c, with the orientation 
indicated. With respect to these curves, we can find compressing loops x and 

y (which lift to closed loops in Q), with the orientations and intersections 
indicated in the figure. 

Figure 9. Pants and compressing loops 
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A Dehn twist of order p about x composed with a twist of order q about 
y has the following effect on a, b, c: 

a -+ +qa, b 6-qb, c H- 6Sc. 

Here we use the notation 8kt to denote the effect on the simple oriented loop t 
of a twist of order k about an oriented simple compressing loop crossing t once, 
from its right side to its left; geometrically the result is realized and accounted 
for on the torus T(T) that is associated with t. 

Suppose b and c are to be paired with boundary components b' and c' 
on other pants, where 6mb is compatible with b' and 6nc is compatible with 
c'. This can be fulfilled simultaneously in P by setting p = n and q = -m. 
The effect on a is to replace it by 6n-ma. That is, compatibility for two 
boundary components of P can always be achieved, but then the state of the 
third boundary component is determined. 

Suppose instead that c is to be paired with c' on another pants, with 

compatibility requirement c' = 6nc, while b is to be paired with a with com- 

patibility requirement a = 8mb. In terms of ?7.4, this means that there is a 
transformation y with a = 7/3y-l, where a and b have been determined by a 
and /, respectively. That is, there is an a-invariant lift a* and a /-invariant 
lift b*, and the two can be compared in terms of the a-invariant arcs a* and 
yb*. 

Therefore p = n, while q is determined by the condition 

-q=n+q+m, or q=-(me+n). 

A solution q C Z exists if and only if m + n is even, that is, if m and n have 
the same parity. 

In other words, the algebraic sum [(p + q) - q +p] = 2p of the Dehn twists 
that can be applied effectively to the boundary components of a pants is even. 
Consequently, if the requirements for compatibility in a pants demand that the 
algebraic sum be odd, those requirements cannot be met. 

Remark 7.5.1. There is also a compressing loop u in Q/(a, ,/) that divides, 
separating a and b while crossing c twice. A Dehn twist about u leaves a and b 
unchanged, but changes the homotopy type of c and P on the surface Q/ (a, P). 
Yet it leaves unchanged the free homotopy type of the projection c* of c to its 
associated torus T(o3a). 

For on T(/3a), there are two representatives of u, u*1 and u*2. They are 
disjoint, parallel and oriented opposite one another: one crosses c, from right 
to left, the other from left to right. A Dehn twist about u is reflected by twists 
on T(/3a) about u*1 and U*2. But, because of their opposite orientations, these 
twists cancel, leaving the free homotopy class of c, unchanged. 

In short, twists about u have no effect on compatibility questions. 
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7.6. A compatibility condition on identical pants. For later application 
in ?8, consider the following augmentation to the second situation of ?7.5, 
where a = fypy-l. In the conjugate group -y(/a,/3)y-, consider the pants 
P1 that corresponds precisely to P, distinguishing corresponding elements by 
the subscript. Suppose, as before, that c and cl are to be paired with c' and 
cl on other pants P', Pi, but now with the same compatibility requirements: 
c' = 6nc and c' = 6ncl. Instead of pairing b with a as before, pair bl with a and 
b with al. Because the two groups are virtually identical, the compatibility 
requirements are a = 6mbi and al = 6mb. 

The result of Dehn twists of order p and q about x and y, and of order P1 
and ql about xl and Yi, is as calculated in ?7.5. We must have p = P1 = n. 
That leaves, for q and ql, the equation 

-q = n+q-+m, or q+ql =--(m+n). 

In this case there are always solutions: for example, q = -m and ql = -n. 

8. Building the pants configuration 

8.1. What remains to be done? In ?5.7 the combinatorics of the pants 
decomposition {Pi} of R found in Part A was described as a trivalent graph 
T arising from a tree To C T by the addition of g edges, one attached to each 
extreme vertex. The universal cover of T is reflected in the combinatorics of 
their lifts {Q } in the universal cover IH2 of R, that is, in how the lifts fit 

together. 
Corresponding to each lift Q* is the Schottky group 0(Stab Q), which 

in turn stabilizes the lift Pi* of a pants Pi in its quotient surface. Using the 
technique of ?6, our goal is to follow the information in T, or the combinatorics 
of {Q } in HI2, to build a simply connected Riemann surface d. This will be 
the universal cover of a surface obtained by joining together the pants {Pi} by 
attaching auxiliary cylinders. 

However, to join a boundary component a of Pi to a' of Pj (or perhaps 
to a' of Pi), it is necessary that a and a' be compatible in the sense of ?7.4. 
It is not necessarily true that the totality of compatibility conditions can be 
satisfied. 

In ??8.2-8.4, typical cases of joining pants will be described, before we 
draw the general conclusions in ??8.4-8.6. In ?9, we will show how to add 
branch points when needed. 

8.2. Joining pants. We continue with the situation of ?7.4. There, we 
found simple loops a3 - a2a on R and a4 l on R' such that (al, a2, a3) 
bound pants P C R lying to the right of al and a2, while (a2, a3, a4) bound 
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pants P' C R' lying to the left of a' and a3. Here (al, a2, a2, a3) are positively 
oriented by generators al, a2 and a3. According to Lemma 7.4.2, the loop a/ 
can be taken compatible with a2. We will now show how to join the pants P 
and P' by attaching a cylinder to the left side of a2 and the right side of a'. 

Let P* denote the region in Q over P and P'* the region over P' in 
Q'. Both P* and P'* are simply connected, as they represent the respective 
universal covers. 

We are in a position to apply Lemma 6.3.1 to P* and P'*. There exists an 
N-sheeted SN of S2, branched over the fixed points of a2, on which there are 
disjoint lifts a** and a'** of a* and a'* that border disjoint lifts P** and P'** of 
P* and P'*: the projections P** -- P* and P'** -> P'* are homeomorphisms. 
Equally well, P** and P'** represent the universal covers of P and P'. 

Next, take the sector Q** on SN lying between the left side of a** and the 
right side of a'**, and form 

** = p *** U aU U Q** U p,**** 

Then Q** is invariant under a lift Ca of 02 to SN. It comes with a conformal 
structure and a projection 7r* into S2 which is a locally injective meromorphic 
function. 

Construct the orbit of Q** under the group F** generated by the cover 
transformations of P** over P and P'** over P'; r** is the free product of these 
groups with amalgamation over (c*). This can be done as follows. Suppose, 
for example, that a* ? (c*) is a cover transformation of P** over P, so that 
a* is the lift of a cover transformation a of P* over P. In particular, a* sends 
the edge a** of P** to the edge ao*a*, which is invariant under the conjugate 
a*a*a*-l of a*. 

But the configuration Q** extends beyond P** at a**. We correspondingly 
attach a*(Q**) to extend beyond ao*a*. Moreover there is a projection 7r* of 
Q** into S2 which is a local homeomorphism, the extension of the restriction 
of 7r* to P**. Extend 7r* from P** to oa*(Q**) by 

7r*(z) = a7r*(zo), Z = * 
(Zo), ZC E Q* 

The cover transformation y* of P** or P'** over P or P' is conjugated to 
the cover transformation a*7*a*-1 of a*(P**) = P** or a*(P'**) over P or 
P'. The transformation a*y*a*-l itself is the lift of the cover transformation 
aya-1 of P* over P or of a(P'*) over P'. 

Q** and then Q** U a*(Q**) are simply connected Riemann surfaces that 
inherit their complex structure from S2 via 7r*. 

Continuing on, we construct a pants configuration 

a(P, a2;a', p) 

which is a simply connected Riemann surface with a group of conformal au- 
tomorphisms r**. It has a meromorphic projection 7r* into (usually onto) S2, 
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which is a local homeomorphism. The projection 7r* induces a homomorphism 
of r** onto the group generated by (al, a2) and (a2, a3). 

Consequently, with the group F**, the abstract configuration 

(P, a2; a2, P') 

is a model for the universal covering of the Riemann surface 

P Ua2 U **()) U U P'. 

It is a four-holed sphere; the pants P and P' have been connected by the 

cylinder Q**/(a2), which joins a2 and a2. 
The Riemann mapping 

g: H12 -+ (P, a2; a2, P') 

conjugates r** to a fuchsian group G in HE2. The function f = Tr*g : H12 -* S2 
is meromorphic and locally univalent in IHf2. It gives a projective structure on 
the four-holed sphere HE2/G with the associated homomorphism sending G to 
the group generated by (a1, a2) and (a2, 3). 

8.3. Adding to the join of two pants. At the level of the pants P in R and 
P' in R', the construction of ?8.2 only involved neighborhoods of the boundary 
components a2 of P and a' of P', and the sector of SN between their two lifts. 

Thus, suppose there is another Schottky group (a3, a4) sharing the gen- 
erator a3 with (a2, a3). We can join the boundary component a' of P' to a 

compatibly chosen boundary component a"3 of a pants P" in R" = 2Q"/(a3, a4), 
lying to the right of a3, by constructing the appropriate SN. A lift of P'* ap- 
pears in both configurations d(P', a'; a'3; P") and a(P, a2; a', P'), and these two 
lifts of P'* can be identified. 

Join together these two configurations by identifying the two lifts P'** and 

P{** of P'*. After that, further construct its orbit under Fr*. Now F** is the 
free product of F** and the corresponding group 1F* of d(P', a'; a/, P") with 

amalgamation over the common subgroup Stab(P'**) = Stab(PI**), which is 

just the lift of the covering group of P'* over P'. We end up with an abstract 

configuration 

J(P, a2; a, P', a; a', P') = a 
which is a simply connected Riemann surface with a group F* of conformal 

automorphisms. There is a meromorphic projection 7r* into S2 that is a local 

homeomorphism and induces a homomorphism of F** onto the group generated 
by (al, a2), (a2, a3) and (a3, a4). Also, 82 is a model of the universal cover 
for a five-holed sphere formed by connecting P to P' as in ?7.5, and the result 
to P" with an appropriate cylinder connecting a' and a3'. 
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8.4. Making handles. In ?8.2, suppose that instead of a second Schot- 
tky group, we are presented with a transformation 3 such that /3al3 -1 = a2. 
We can as well join the group (al,a2) to its conjugate 3(alc,a2)31 = 

(a2, /ao2/-1), to have the effect that the boundary component a2 of the pants 
P in R is joined to al. We must start by ensuring that a* is compatible with 
/3aL with respect to a2; this may require replacing a2 by the result of applying 
some power of a Dehn twist about b2. 

As before, we can find an SN that holds disjoint lifts of P* and PP*. Then 
a configuration a is constructed with a group of automorphisms F** isomorphic 
to the HNN extension of Stab(P*) by a suitable lift /* of 13. This a is a simply 
connected Riemann surface with a locally univalent meromorphic projection 
into S2. It is a model for the universal covering surface for the one-holed 
torus obtained by attaching the cylinder obtained from SN to the boundary 
components al and a2 of P. 

8.5. Recall from ?5.7 the trivalent graph T and the maximal tree Tlo C T. 
There, we chose one of the extreme vertices of To as the root. Let Tr, denote 
the graph resulting from T after removing the one-edge loop hanging from the 
root. Thus Tr represents a surface S C R of genus g - 1 with two boundary 
components. Let Er denote the subgroup of 7rl(R; O) that is the fundamental 
group of S. 

LEMMA 8.5.1. There exists a pants configuration ((T,r) modeled on Tr. 

It is a simply connected Riemann surface, the universal cover of a Riemann 
surface S of genus g - 1 with two boundary components. Let g : H 2 --> g(Tr) be 
a Riemann mapping, and 7r : a(Tr) -- S2 the meromorphic projection. Then 

f = 7rg is a projective structure for S for the homomorphism 0 : Zr -> 0(Zr) C 
r. 

Proof. First we check that the compatibility conditions can be satisfied. 
Denote by P(v) the pants corresponding to the vertex v, and by r(v) the 
Schottky group with regular set Q(v). 

In ?5.8 we marked the boundary components of P(v) according to the 
following rule. There is a unique path in Tr from any vertex v' to the root vo. 
The unmarked boundary component a of P(v) is the one on the path from v 
itself. If v is not an extreme point of To, it has two immediate predecessors vl 
and v2, and P(v) has two marked boundary components b and c, lying on their 
paths to vo. Following the notation of ?7.5, let x and y denote compressing 
loops (which lift to simple loops in Q(v)) such that x crosses c and a, and y 
crosses b and a. 

Now move down the tree To. Start at the extreme vertices v vo. Two 
of the boundary components b and c of P(v) are to be paired. Make them 
compatible by a twist about either x or y. 
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Continue down the tree. Do not go to a vertex before dealing with all its 

predecessors. Arriving at a vertex v and P(v) with marked borders b and c, 
replace them by the result of twists about x and y, so as to be compatible with 
the (unmarked) borders b' and c' associated with the immediate predecessors 
v1 and v2. When the root vo is reached, the one marked border of P(vo) is 
made compatible with its immediate predecessor. 

Finally, use the technique illustrated in ??8.2-8.4 to join the pants {Pi} 
together with auxiliary cylinders to build a Riemann surface of genus g - 1 
with two boundary components remaining from the pants P(vo). This is done 

by building a pants configuration a(Tr), which is its universal cover. D 

8.6 The final handle or the two-sheeted covering. Having constructed 

a(Tr), all attention is focused on P(vo), with its three boundary components 
a, b, c and compressing loops x,y as in ?7.5. Since P(vo) has been attached 
to its predecessor, say by establishing the compatibility of c with its partner 
c', no more twisting about x is possible. Can we make a compatible with b, 
allowing attachment of the final handle? As we have seen in ?7.5, this is pos- 
sible if and only if one can do the job with an even number of twists. If so, 
we can finish the construction of a(T), the pants configuration reflecting the 
full trivalent graph T, which will then be a simply connected Riemann surface 
with a group of conformal automorphisms making it the universal cover of a 
surface of genus g. 

If not, keeping in mind the alternate construction of ?7.6, we will construct 
instead a pants configuration a that models a two-sheeted unbranched covering 
of the reference surface R. 

Suppose a and b have arisen from cutting R along a curve b[, freely ho- 
motopic to the nondividing simple loop bo c il(R; O). Set Ro = R \ {bo}, 
and find the simple loop a0 E 7ri (R; 0) such that bo and aobO 1a1 give rise to 

,ri(P(vo); O). The group 
N - (aR, r(Ro;0),aori (Ro;0)ao-1) 

is a normal subgroup of index two in 7ri(R; O). It defines a two-sheeted un- 
branched covering R of R that is a compact surface of genus 2g - 1. 

The surface R is explicitly constructed as follows. Label the boundary 
components of Ro as b+ and bo, corresponding to the two sides of bo in R. 
Take another copy R' of Ro. Then R is the surface obtained by identifying b+ 
and bo on R' with bo and b+, respectively on Ro. The cover transformation 
is determined by ao. 

Let T2 denote the trivalent graph built likewise by taking two copies of Tl 
and attaching two new edges e1 and e2, as follows. The endpoints of the new 

edges are the two vertices corresponding to vo (and pants P(vo)), and they 
serve to pair the boundary components a and b on one copy of P(vo) with b 
and a, respectively, on the other. 
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Correspondingly, take two copies of a(Tr). Because of the compatibility 
established in ?7.6, they can be joined together following the combinatorics of 

T2 and the restriction of 0 to N. The resulting pants configuration 8(T2) is 

again a simply connected Riemann surface with a group of conformal automor- 

phisms isomorphic to N, making it the universal cover of a surface of genus 
2g - 1. 

Because of the asymmetry in satisfying the compatibility for the two copies 
of P(vo) (see ?7.6), 8J(T2) does not have conformal automorphisms that rep- 
resent the sheet interchange of R. If, however, a(T) can be constructed, and 
then aI(T2) constructed in addition, (TI2) will have that symmetry: it will 

represent the universal cover of the two-sheeted cover of the Riemann surface 

corresponding to ?(TP). 
A Riemann mapping g : Iq2 -> (T) or g2 : H2 -+ (Tl2) conjugates the 

cover transformations to a fuchsian group G isomorphic to 7rl(R; O) or to a 
fuchsian group G2 isomorphic to the index two subgroup N. Let 7r denote 
the projection of (T)1) or 8(T2) to $2. The meromorphic function f = rg 
or f2 = rg2 determines a projective structure that induces 0 : G -> F or 
0: G2 - 0(G2) c r. 

We cannot exclude the possibility that 0(G2) = r. Although the trans- 
formation in r that makes the conjugation corresponding to the pairing of the 

boundary components a, b of P(vo) is not the identity (because P(vo) arises 
from a two-generator Schottky group), it may already belong to 0(G2). In any 
case, if 0 : 7r(R) -4 F cannot be lifted to SL(2,C), 0 : N -> 0(N) can be so 
lifted. 

9. Attaching branched disks to pants 

9.1. One can attach a disk to any surface with boundary by introducing a 

single branch point. Explicitly for our situation, consider a pants P embedded 
in C and a boundary component a oriented so that P lies to its right. Suppose 
d is an oriented simple loop bounding a disk A lying to its right. Suppose that 
d crosses a at a point p, and that zl and z2 are points separated by both a 
and d, with zl E P n A. Assume that there exists a simple arc a between zl 
and z2 that crosses both loops at p and is otherwise disjoint from them. Set 
o = a- n P n A. 

Attach the A to P as follows. Denote the opposite sides of ao by ao+ and 
cro. Identify the side a+ of A \ ao with the side or of P \ or, and the side cr0 
of A \ ao with the side ar of P \ ao. This determines a new Riemann surface 
P' that is conformally equivalent to a new pants. Its boundary OP' consists of 
a U d (here d lies "over" P) and the remaining components of OP. The natural 

holomorphic projection r : P' -> P U A is a local homeomorphism except at 
the point over zl, where it behaves like z -> z2. See Figure 10. 
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Z2 

d 

Figure 10. Attachment of branched disk 

Note that the construction does not essentially depend on a choice for a. 
Instead we can work in the two-sheeted cover of S2, branched over zl and z2 

The same construction can be applied to attach an (n - l)-sheeted disk 
to P, for any n > 2. 

9.2. Application to pants in a Schottky group. Suppose that (a, 3) is a 

Schottky group acting on Q C C, and P c Q/(a, /3) is a pants with boundary 
components a, b, c oriented so that P lies to the right of a and b, which have 
a- and /-invariant lifts a* and b* in Q. Let d be a compressing curve on the 

handlebody surface Q/(ac, /) that crosses a exactly once, at a point p. 
Introduce a simple arc a in Q/({a,/3) that joins a point zl E P to z2 in its 

complement, and crosses the loops a and d at p, otherwise being disjoint from 
them. Set co = ar P. 

Let d* be a simple loop in Q lying over d, which crosses a* (necessarily 
once). Orient d and thus d* so that the disk A lying to its right contains the 
lift of or0 that is adjacent to d*. 

Attach A to P by means of the slit co. Neither the resulting pants P1 
is embedded in C nor A is embedded in Q/(a, /). Nevertheless, any annular 

neighborhood of d in Q/(a,/3) is conformally equivalent to its lift about d*. 
Thus the conformal structure of P1 is well defined. 
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Equivalently, the universal cover P of P is embedded in Q, and the uni- 
versal cover P1 of P1 arises from that by attaching A by means of the lift of co0 
that is adjacent to d*, and then taking the orbit under (a) of the attachment. 
We need to examine this construction more closely. 

The attachment of A to a* at p* E a* over p leads to the attachment of 
the loop d* to a* at p*: as we move along a* toward the attracting fixed point 
of a, when we reach p* we take a detour along d* in its positive direction, 
returning to p* and then continuing along a*. Since d* intersects a* only at 
p*, the resulting arc is essentially a simple arc, and so is its (a)-orbit, which 
covers the point set a* U ak(d*). 

The essentially simple, a-invariant arc a*Ucak(d*) can equally be described 
as follows. It is the lift of the result of applying to a on Q/(a,/3), or its 
representation in the torus T(a), a Dehn twist about d. 

9.3. Another alternative to the geometric obstruction of Section 8.6. In 

?8.6 we faced the question of adding the final handle to the pants configuration 
d(Tr). If that was not possible, we showed that we could instead construct a 
pants configuration corresponding to a two-sheeted, unbranched cover of the 
surface of genus g. 

Alternatively, using the construction of ?9.2, we can carry out the final 
construction after introducing a branch point of order two (or any even order). 
That is, we can construct a pants configuration gb(T) representing the universal 

covering of a Riemann surface of genus g. If g : H2 -> ab(T) is a Riemann map, 
and r: ab(T) -+ S2 is the natural projection, then f = 7r o g is a meromorphic 
function. It is locally injective except at the conjugacy class of branch points 
of order two, and still induces the homomorphism 0 : 7r (R; O) -- F. 

10. The obstructions 

10.1. The modulo 2 construction invariant. An admissible pants decom- 
position {Pi} for the homomorphism 0: 7rl(R; 0) -> F is one for which the 
restriction of 0 sends each 7rl(Pi) to a Schottky group. Its combinatorics are 
associated with a trivalent graph T. To each vertex v of T is associated a 
Schottky group S(v) = (av, v3) acting on Q(v) c S2. To each S(v) is asso- 
ciated a pants P(v) C Q(v)/S(v) with boundary components a, b, c that have 
av-, /v- and v/ov,-invariant lifts in Q(v). In terms of corresponding elements of 

7rl(P(v)), we have c' b'a' in Q(v)/S(v). The orientation of P(v) with respect 
to a and b, and hence c, has been dictated by that of the corresponding Pi 
with respect to its boundary components and carried over to T by 0. 

Each edge e of T corresponds to a common generator a of the two Schottky 
groups S(vl) and S(v2) if the endpoints of e lie on v2 7 vl. If v2 = vl, 
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then e is associated with a pair of boundary components of P(vl), which in 
turn correspond to generators a, and f3v related by fy =- Yvavl-v 1l for some 
element yv E F. In any case the pair of boundary components corresponding 
to a project to a pair of simple loops on the torus T(a). The two boundary 
components are called compatible if their projections, appropriately oriented, 
are freely homotopic on T(a). 

We will call T compatible if all pairs of boundary components of the asso- 
ciated pants {P(v)} are compatible. 

Recall that on each torus T(a) there is a free homotopy class of simple 
loops called compressing loops (?6.1), each of which lifts to a simple loop in S2. 

LEMMA 10.1.1. Suppose that on each T(a) one of the boundary projec- 
tions is freely homotopic to the result of a Dehn twist of order n(a) (about a 

compressing loop) applied to the other. Set n(T) = (E n(a)))mod2. There 
is a compatible pants decomposition {P(v)} corresponding to T if and only if 
n(T) = 0. 

Proof. To each pair of pants one can apply Dehn twists about compressing 
loops on Q(v)/S(v). The algebraic sum n(P(v)) of their effect on the three 
boundary components of P(v) is an even number. Thus 

n(P(v)) = 0 (mod 2). 

Hence the values of n(T) cannot be changed by repositioning the pants P(v) 
in the surfaces Q(v)/S(v). 

For the graph T of ?8.4 that represents the "localization" of the obstruction 
to the construction, the question of compatibility rested on the compatibility 
of the two paired boundary components in the root pants P(vo) (?8.6). This 
was precisely the question of whether or not n(T) = 0. That is, if n(T) = 0 we 
can distribute the twists so that T is compatible. 

For other graphs T, we refer to Corollary 10.5.1. 1 

10.2. Lifting Schottky groups. Lifting refers to the property that a given 
homomorphism 0: rl (R; O) -- PSL(2, C) lifts to a homomorphism 0*: 7r (R; 0) 
-> SL(2, C). The image groups are not necessarily isomorphic. 

It is helpful to recall the case where H = (a, /3) is a two-generator, purely 
loxodromic fuchsian group. As such it represents either a handle or a pants. 
Let A and B be matrix representations of a and /3. Then H is isomorphic 
to (A, B). The commutator matrix [A, B] is independent of the choice of lift 
of a and /. The two cases, handle or pants, can be distinguished according 
to whether [a, /] represents a simple loop or not, or whether no axis in its 
conjugacy class separates the axes of a and /3 or does, or whether tr[A, B] < -2 
or tr[A, B] > 2. Moreover, in the case of a handle, the free homotopy class 
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in the torus T([a, /3]) determined by a loop parallel to the handle boundary 
is uniquely determined, independent of Dehn twists about compressing loops 
when regarding (a, /3) as a Schottky group. 

More generally, any Schottky group (a, P) can be lifted to an isomorphic 
group in SL(2, C) by designating matrix representatives for a and 3. 

10.3. The modulo 2 lifting obstruction. Let T be a trivalent graph as in 

?10.1. Lift to SL(2, C) the Schottky groups corresponding to its vertices. 
Let e be an edge of T with endpoints vl and v2. If vl 4 v2, the edge e 

corresponds to a common generator a of S(vl) and S(v2). The lifting will be 
called compatible on e if the lifted a in S(vl) and lifted a in S(v2) have the 
same trace. If vl = v2, the compatibility condition is that the designated lifts 
of a and 7a7-1 from S(vl) have the same trace. The lifting of T will be called 
compatible if it is compatible on each edge. 

Suppose T is the graph of ?8.4 with its maximal tree To. Start at the 
extreme vertices of To and work down towards the root: Exactly in analogy to 
the construction of ?8.4, choose at each step a lift of a generator of a Schottky 
group to be compatible with the lifts previously chosen. We end up with a 
compatible lift of Tr. The lift of T1r is determined by the two choices made at 
the g - 1 extreme points of To other than the root, and one choice at the root. 

LEMMA 10.3.1. Suppose T is the trivalent graph corresponding to an 
admissible pants decomposition. Then T has a compatible lift to SL(2,C) if 
and only if the homomorphism 0 can be lifted to SL(2, C). 

Proof. The graph T corresponds to a presentation of 71 (R). CI 

10.4. Localization of the lifting obstruction. Denote by (a-l3a, 3-1) the 
Schottky group corresponding to the root. We recall from ?5.7 that the "handle 
group" H = (a, /) is nonelementary with a and / loxodromic, even though it 
may not be discrete. 

Applying the technique of ?8, we can build a pants configuration Oh on 
which H acts so that 8h/H is a handle. Likewise the graph Tl resulting from 
removing from T the root and attached edges determines a pants configuration 
a' acted on by a group H' so that SI/H' is a surface of genus g- 1 with one 
boundary component. 

Choose matrix representatives A and B for a and P; then [B, A] is a 
representative for [/3, a], which corresponds to the boundary component of the 
handle. 

The graph Th can be lifted to SL(2, C) as in ?10.4, which yields a matrix 
C representing [/, a] c H'. Therefore C = ?[B, A]. 
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LEMMA 10.4.1. The homomorphism 0 lifts to SL(2, C) if and only if 
C = [B, A]. In particular, 0 lifts if Oh and (8 can be joined to form a pants 
configuration for T. 

Proof. The first assertion follows from Lemma 10.3.1. The second follows 
as a consequence of the existence of a projective structure (see, for example, 
Lemma 1.3.1). D 

10.5. Equivalence of obstructions. 

PROPOSITION 10.5.1. The procedure of ?8 succeeds in constructing a 
projective structure associated with the given homomorphism 0 : 7r(R; ) - 

PSL(2, C) if and only if 0 can be lifted to a homomorphism into SL(2, C). 

Proof. From ?1.3 we already know lifting is a necessary condition. Now 
suppose 0 can be lifted, yet the construction cannot be completed. That is, in 
the notation of ?10.4, ah cannot be attached to ah. But then, as in ?9, we can 
introduce a single branch point of order two and construct instead a branched 

projective structure associated with 0. According to ?1.4, 0 cannot be then 
lifted to SL(2, C), in contradiction with the assumption. D 

COROLLARY 10.5.2. If the construction of a projective structure works 
for one admissible pants decomposition for 0, it works for any admissible de- 
composition. 

C. Ramifications 

11. Holomorphic bundles over Riemann surfaces, the 2nd 

Stiefel-Whitney class, and branched complex projective structures 

The purpose of this chapter is to place Theorem 1.1.1 in a more general 
setting, and to use that to clarify the role played by branched structures in 
Part B. We will also discuss relations between instability of holomorphic vector 
bundles over Riemann surfaces and branched complex projective structures. 
In ?11.5 we establish the local character of the map between singly branched 
structures over Teichmiiller space and the representation variety. In ?11.6, 
we again use holomorphic vector bundles to prove that for singly branched 
structures too the monodromy representation is necessarily nonelementary. 

11.1. The 2nd Stiefel-Whitney class of sphere bundles over Riemann sur- 

faces. Suppose that r : P -> R is a holomorphic CP1-bundle over a closed 
Riemann surface R. It is known (see for instance [Beau, Prop. III.7]) that 
P can be obtained as the projectivization of a holomorphic (rank 2) vector 
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bundle ~ : V -- R. Let det(V) denote the determinant bundle of V, this is 
a holomorphic line bundle over the surface R. The bundle V is not uniquely 
determined by the projective bundle P -- R, and to obtain an isomorphic pro- 
jective bundle, we can alter V by multiplying it by a holomorphic line bundle A 
over R. Then deg(det(V ? A)) = deg(det(V)) + 2deg(A). Thus we can always 
choose V so that det(V) has degree 0 or 1. 

Let p: V -- P(V) = P be the projectivization. We shall think of p as 
a holomorphic line bundle over the base P. It is well-known that there are 

exactly two topologically distinct orientable S2-bundles over the surface R (see 
[Mel]) and they are distinguished by the 2nd Stiefel-Whitney class w2(P) of 
the bundle P -+ R. 

Note that if deg(det(V)) = 0 then the determinant bundle det(V) is topo- 
logically trivial. In this case the bundle V is associated to an SL(2, C)-bundle 
over R which is henceforth topologically trivial. We conclude that w2(P) equals 
deg(det(V)) (mod 2). 

Let a : R -+ P(V) be a holomorphic section of P(V). It defines a holo- 

morphic line bundle L -+ R by pull-back r* (p) of the line bundle p. The line 
bundle L is canonically embedded as a holomorphic subbundle of the bundle 

: V -> R with the image p-l1(c(R)). 

LEMMA 11.1.1. (1) a2 = deg(det(V)) - 2deg(L), where the left-hand 
side is the self-intersection number of the cycle o(R) in P(V). (2) The number 
a2 (mod 2) equals the 2nd Stiefel- Whitney class w2(P) of the bundle r : P -f R. 

Proof. The first assertion is a particular case of a general result proven in 

[La, ?1]. Since w2(P) equals deg(det(V)) (mod 2), the second assertion follows. 
Nevertheless we will provide a elementary proof of the first assertion for 

the sake of completeness. We first consider the case deg(det(V)) = 0 and 
then we shall reduce the general case to this one. If deg(det(V)) = 0 then 
both bundles V and P are topologically trivial. Hence there is an orientation 
preserving diffeomorphism P(V) -+ R x F, where F = S2. By the Kiinneth 

formula, the homology class [a] can be written as 

[a] = n[F] + [R], 

and we get: a2 = 2n. There are two possible cases: n > 0 (if a2 > 0) and n < 0 
(if a2 < 0). We consider the former; the later case is analogous (one just has 
to work with anti-holomorphic functions instead of the holomorphic ones). We 
can think of a : R -+ R x F as a graph of a smooth function f : R -+ F = S2 
which has nonnegative degree n. The function f is not holomorphic, however 

(after deforming the section c within its homotopy class) we can assume that 

f-l(oo) = Z := {z1, ..., zn} C R and f is holomorphic near each point zj so 
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that f'(zj) 7 0, 1 < j < n. Now we realize F = C U {oo} as the complex 
projective line CIP1 so that the point oo has the homogeneous coordinates 

[1: 0]. Then we lift the function f to the meromorphic function 

f: R C2, f(z) = (f(z), 1) 

which does not have zeroes and is holomorphic in a punctured neighborhood 
of each point zj E Z and has a simple pole at each zj E Z. Thus f corresponds 
to a smooth meromorphic section of the line bundle L C V which has n simple 
poles and no zeroes. Hence deg(L) = -n = -a2/2. 

Now we consider the case when deg(det(V)) = 2k is an even number. Take 
a complex line bundle A over R so that deg(A) = -k, then deg(det(A(V)) = 0. 
The section a : R -* P defines complex line subbundle of A 0 V which is 
isomorphic to AOL. As we proved above, a2 = deg(det(A V)) -2 deg(A?L) 
which in turn equals to deg(det(V)) - 2 deg(L). This completes the proof in 
the case when deg(det(V)) is even. 

In the case when deg(det(V)) is odd take a 2-fold unramified covering 
-R R. Then the bundle V -* R pulls back to a bundle V -> R and 

deg(det(V)) = 2 deg(det(V)) is even. Similarly, the section a determines a 
section : R -* P(V) and a2 = 2a2. The pull-back of the line bundle L to 
Lc VC has degree equal to 2 deg(L). We get: 

2 = deg(det(V))- 2 deg(L) 
which implies 

a2 = deg(det(V)) - 2 deg(L). 

This concludes the proof in the general case. D 

11.2. Branched structures. Consider a Riemann surface R -= Q/7l(R) 
where Q is the universal cover R of R and is either the unit disk, or the complex 
plane, or the Riemann sphere and the group rl (R) of M6bius transformations 
acts freely and discontinuously on Q. 

Suppose that 0 : -r1(R) -> F C PSL(2,C) is a homomorphism, and 
f : Q - f (Q) C S2 is a meromorphic function (without essential singularities) 
which is 0-equivariant and defines a branched (complex) projective structure a 
on R as in ?1.4. Alternatively one can define a branched projective structure 
on R as a collection of locally defined holomorphic (but not necessarily uni- 

valent) mappings 0a from R to S2 so that different mappings are related by 
Mobius transformations 7a,,3: 

ac = 7o, p O? 

(see for instance [Manl]). 
The homomorphism 0 is the (projective) monodromy representation of the 

branched projective structure, and in the terminology of ?1.3 the projection 
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f : R -- S2 is the (multivalued) developing map. We define the branching 
divisor Df as follows. Consider the discrete set Df C R consisting of critical 

points of f. Thus (after holomorphic change of variables), near such a critical 

point zj the function f(z) can be written as 

f(z)=zk, 2 < k < oo. 

The number k is the order of branch point zj. Since the function f is 0- 

equivariant we conclude that for any 7y C 7r (R) the point 7(zj) is again a branch 

point with the same order k. Hence the projection of Df to the surface R is 
a finite collection of points, to each such point wj we have the associated the 
number ord(wj) = kj > 1 which is its order. Define the (additive) branching 
divisor D = Df of the structure a as 

E(kj - l)wj. 
Wj 

The number 
d= (kj - 1) = deg(Df) > 0 

Wj 

is the degree of this divisor. The number kj - 1 is the local degree degw. (D) of 
the divisor D at the point wj. The multiplicity IDI of the divisor D is just the 
number of points in it. If deg(D) = 0, the divisor D is empty and there is no 

branching. 
For reasons that we shall see later on, it is convenient to define the divisor 

D by subtracting 1 from the order of each branch point. In addition we will 
consider the branching divisor as a topological object, not an analytic one. 
Thus we will say that two branching divisors D, D' on R are equivalent if there 
exists a bijective order-preserving map D -> D' between them. This is the only 
meaningful equivalence relation in our situation since we will have to change 
the complex structure on R in order to find a branched projective structure 
with the prescribed monodromy. 

Next we review the relation between branched projective structures and 
Schwarzian differential equations as in ?1.4. Let D be a positive divisor on 
the Riemann surface R. Suppose that q(z)dz2 is a meromorphic quadratic 
differential on R which is holomorphic on R - D and near each point wj E D 
has a Laurent expansion of the form 

(7) ()=(1- k?2) b 00 
(7) O(z)-_ 

3 
+ 

- + 1: aizz. 2z2 z 
i=0 

Here we use local coordinates such that wj = 0 and kj - 1 = degwjD is 
the local degree of D. If 

f(z) = zkjh(z) 
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where h(z) is a holomorphic function such that h'(0) =7 0, then the Schwarzian 
derivative Sf (z) near zero has Laurent expansion of the form (7). Conversely, 
to have a solution in the form (8) the quadratic differential O(z)dz2 must satisfy 
an extra condition of integrability; see [Hel] or [Man2]. 

Let QD(R) denote the space of meromorphic quadratic differentials on R 
with at most simple poles at points of D. Suppose that 4o is a fixed quadratic 
differential of the form (7), then all other such quadratic differentials can be 
written as 0 = qo + 0, where Ec QD(R). Let n denote the multiplicity of D. 
There exists a collection of n polynomials Kj on the (3g - 3 + n)-dimensional 
complex vector space QD so that q is integrable if and only if the differential 
i belongs to the zero set of all the polynomials Kj. If deg(D) < 2g - 2 then 
the algebraic variety 

I(R,D) := {Kj() = 0, j = , n 

has generic dimension 3g - 3. In the case of a single-order two branch point 
at the orbit of z = 0 E H2, I(R, D) is given by the polynomial equation 

(9) u2 + 2bu + 2v = 0 

where u is the coefficient of the z-1 term and v is the constant term in the 
Laurent expansion of b at z = 0. The number b is given by ?1.4(6). We refer 
to [Manl, 2, 3] for more details. 

Now we go back to the linear differential equation 

(10) u" + 2u = 0 

expressed in a local coordinate system on the surface R. With q E QD (R) + qo 
and satisfying the integrability condition as above, the equation (9) has two 

linearly independent solutions. If zj is a singular point of X and we choose 
local coordinates so that zj = 0, near this point these solutions have the form 

U1 (Z) - Z(l+kj)/2(1 + o(l)) 
u2(z) = z(1kj)/2(1 + o(1)) 

A circuit about z = 0 generates the linear monodromy 

(ul) Jkj1( u), where J =( u2 Iu 0 -1 

The projectivization of this monodromy in PSL(2, C) is just the identity. 

LEMMA 11.2.1. On the surface R-D with a base-point 0, the differential 
equation (9) has a linear monodromy representation 

0* : 7r(R - D, ) - SL(2, C). 
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Proof. This is a consequence of the fact that the Wronskian of two solu- 
tions is a constant (see Corollary 1.3.1). C 

Let U C R be a closed disc which contains all the singular points zj E D 
and fix a base point O EE U = ?. The matrix 0* () that results from analytic 
continuation along f equals Jd where d = deg(D) is the degree of this divisor 
and J =-1. The representation 0* projects to a homomorphism 0 : 7r(R) -> 

PSL(2, C). We conclude that 0 can be lifted to a linear representation 

0:7lr(R) -SL(2, C) 

if and only if the number d is even, in particular if d = 0 as in Chapter 1. It 
is instructive to see a topological proof of this fact as well. 

Let P denote the S2-bundle over R associated with the monodromy rep- 
resentation 0 of a complex projective structure T on R. It carries a natural 
flat connection. Let w2(0) := w2(P). The developing map f of the structure 
T defines a holomorphic section a of the holomorphic bundle P --- R. We will 
treat a as a 2-cycle in P. 

PROPOSITION 11.2.2. Under the above conditions we have: 

(a(R), a(R)) = 2- 2g + deg(D), 

where (, .) is the intersection pairing on the 4-manifold P. 

Proof. Note that the polynomial zn admits arbitrarily small deformations 
p, in the space of polynomials of degree n so that p' (z) has only simple roots 
near zero. Thus, after perturbing the projective structure a little bit and 
keeping the homomorphism 0 the same, we assume that the order of each 
critical point of the meromorphic function f : Q -> S2 is 2. It is clear that this 

perturbation does not change (a(R), a(R)) and d = deg(D). The developing 
section a is transversal to the flat connection over all points of R except at the 
singular points 1, ..., (d of the structure. Let D be the divisor of this singular 
locus. There exists a smooth vector field X on R, which has n = 2g + 2 
nondegenerate zeros, where g is the genus of R: it has 1 sink, 1 source, and 2g 
saddle-type points. (For instance, take a Morse function ,u: R --> R which has 
one minimum, one maximum and 2g saddle points, then using a Riemannian 
metric on R let X := grad(/p).) Denote zeroes of X by 1, ..., (n where the last 
two points have index 1. We can choose X so that 

C1 * * * ,v.n}n{6, .., (d} 0= 0. 

Thus the vector field X is a section of the tangent bundle TR which is transver- 
sal to the zero section. Now using the developing section a : R -- P we 
lift the vector field X to a tangent vector field Y = -v,(X) along the sur- 
face E = o(R) c P. The vertical directions in P define the normal bundle 
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N(E) as in subsection 11.1. The flat connection on P defines the projection 
V : T(P) -> Vx(P) where Vx(P) is the distribution of vertical planes in P. 
The vector field Q = V(Y) is a section of the normal bundle N(E). The sec- 
tion a is transversal to the flat connection on P everywhere except at the set 

{(1,*.. , 5d}. Thus the set of zeros of the field Q is 

C{) * * * vid,, * * * C(,n} 

A direct computation shows that the section Q of the normal bundle N(E) 
is transversal to the zero section 0s. Moreover, the intersection Q(E) n OE 
is positive at the points {1l,... ,d,(Cn-l Cn} and is negative at the points 
{C1,... , (n-2}. Hence the algebraic intersection number (Q(E), O) (which is 

equal to (E, S)) equals 

d + 2 - (n-2) d + 2 - 2g 

which proves the proposition. E 

COROLLARY 11.2.3. The degree deg(D) = d is even if and only if the rep- 
resentation 0 lifts to SL(2, C). Equivalently, 0 is liftable if and only if the second 
Stiefel- Whitney class satisfies the equation w2(P) = deg(D) = 0(mod 2). 

Proof. The representation 0 lifts to SL(2, C) if and only if the bundle P 
is trivial (equivalently, w2(P) = 0); see [Go2]. As in the previous proposition 
we have the developing section a of the bundle P -- R. We proved that 
(a(R),a (R)) = 2 - 2g + deg(D); hence 

(a(R), a(R)) = deg(D) (mod 2). 

On the other hand, according to Lemma 11.1.1 we have: 

(a(R), a(R)) = W2(P) (mod 2) 

and the corollary follows. DC 

Now we are ready with the promised refinement of Theorem 1.1.1. 

THEOREM 11.2.4. Suppose the surface R and homomorphism 0 satisfy 
the hypothesis of Theorem 1.1.1. Suppose that D is a nonnegative divisor on R 
such that w2(0) = d (mod 2), where d = deg(D). Then there exists a complex 
projective structure on R that has the monodromy 0 and branching divisor 
equivalent to D. 

Proof. The proof is a straightforward generalization of the proof of Theo- 
rem 1.1.1. Let P denote the S2-bundle over the surface R associated with the 
homomorphism 0. We first construct a decomposition of the surface R into a 
union of pairs of pants so that the restriction of 0 to the fundamental group of 
each pair of pants is a Schottky representation. We use these representations 
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to build a complex projective structure on a pants configuration. But there is 
a "topological" Z/2-obstruction to forming the final handle. This obstruction 
is a Dehn twist along a compressing loop. Suppose first that w2(P) = 0. If 
the obstruction is nontrivial, then we can still construct a projective struc- 
ture for the pants configuration which has exactly one branch point of order 1 
and the monodromy 0. However the existence of such a structure contradicts 

Corollary 11.2.2. Thus the "topological" obstruction to the existence of an 
unbranched structure was trivial to begin with. In parallel, we conclude that 
if W2(P) # 0, then the pants configuration admits a branched structure with 
a single branch point of order 1. Now consider the general case assuming that 

W2(P) = 0. By adding to the pants configuration (for example to a single 
pants in the configuration) branch points equivalent to the divisor D, we do 
not change the "topological" Z/2-obstruction to completing the construction. 
Since deg(D) = 0 (mod 2), adding the branch points has the effect of twisting 
one of the boundary curves an even number of times. Hence for the result- 

ing branched pants configuration there is no obstruction to completing it to a 
closed surface. The construction in the case w2(P) 

- 0 is similar. D 

11.3. The algebro-geometric interpretation. Let R be a closed Riemann 
surface R of genus g > 2. In this section we shall consider holomorphic vector 
bundles W over R such that rank(W) = 2 and det(W) = 1 (i.e. the determi- 
nant bundle is trivial). Let V*(R) denote the collection of holomorphic vector 
bundles W over R such that W admits a holomorphic flat connection. Ac- 

cording to Weil's theorem (see [At], [Gu2], [W]), elements of V*(R) can be 
characterized intrinsically as follows: 

Suppose that W = DjWj is the holomorphic direct sum decomposition 
of W into (holomorphically) indecomposable vector bundles. Then the bundle 
W admits a holomorphic flat connection if and only if deg(det(Wj)) = 0 for 
all j. 

Let 

F*(R) := {(, V): E E V*(R), V is a holomorphic flat connection on S} 
be the space of local systems on R. We have the Riemann-Hilbert correspon- 
dence: 

RH : F*(R) - Y(7rl(R), SL(2, )) := Hom(7Tr(R), SL(2, ))/SL(2, C) 

given by the conjugacy class of the monodromy of the flat connection V. It is 
clear that the mapping RHA is bijective (since every flat bundle over R has 
a canonical complex structure). The space Y(7rl(R),SL(2,C)) has a natural 

(non-Hausdorff) topology, we topologize F*(R) so that RHH is a homeomor- 

phism. 
We also have the natural projection 

7 : F* (R) V*(R), tR' V):- R R C7 S 
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Recall that each holomorphic vector bundle W has the degree of instability 
u(W) defined as follows: 

u(W) = d is the maximal number such that W contains a holomorphic 
line subbundle L C W such that deg(L) = d. 

In general, u(W) = d - deg(det(W). 

For all bundles W E V*(R), 

-g < u(W) < g- 1 

(see for instance [Gu2]), and stable (resp. semistable) bundles W are defined by 
the condition u(W) < 0 (resp. u(W) < 0). Stable and semistable bundles and 
their moduli spaces have been extensively studied by algebraic geometers since 
the seminal paper of Narasimhan and Seshadri [N-S]. In contrast, our main 

objects are maximally unstable bundles W which are defined by the condition 

u(W) = g - 1. Gunning [Gul] proves that projectivizations of all maximally 
unstable bundles over R are holomorphically isomorphic to each other. We let 
MR denote the corresponding projective bundle over R. It gives rise to a finite 
subset MR of VR that consists of 229 vector bundles that can be described 
as follows. Let K denote the canonical bundle on R. Choose a holomorphic 
line bundle L on R such that L2 = K. Then deg(L) = g - 1. There are 229 

characters X : 7r(R) -- {1} c C . Each character gives rise to a holomorphic 
line bundle over R which we shall denote by the same letter X. Then the 
collection of square roots VK of the bundle K consists of 229 bundles X 0 L. 
For each A = X 0 L E v/K there is a unique holomorphically indecomposable 
bundle W = Wx for which there is a short exact sequence 

1 -* A -+ W A-1 -' 1 

of holomorphic morphisms of holomorphic bundles. Notice that Wx = X 0 W1 
where 1: Tri(R) -> {i1} is the trivial homomorphism. Then 

MR= {WX, X: 7r1(R) -+ {-1}}. 

Also in [Gul], Gunning establishes the basic relation between maximally 
unstable bundles and complex projective structures on the surface R. He 

proves that 

RHRh((TR)-l '(M)) C Y(7i (R), SL(2, C)) 

consists of (conjugacy classes of) linear monodromy representations of com- 

plex projective structures on the Riemann surface R. The relation between 

(branched) complex projective structures and instability of holomorphic vec- 
tor bundles is further explored in [Manl, 2, 3]. 

The results of the previous two sections imply the following: 
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COROLLARY 11.3.1. Suppose that 0 : 7ri(R) -* PSL(2,C) is the mon- 

odromy representation of a branched projective structure with branching di- 
visor D. Let P -> R denote the associated S2-bundle over R which is the 

projectivization of a holomorphic vector bundle V -* R. Then u(V) > g - 1 + 

[deg(det(V)) - deg(D)]/2. 

Proof. The developing map of the projective structure defines a section cr 
of the bundle P, let L C V be the corresponding line subbundle. Then Lemma 
11.1.1 and Proposition 11.2.2 imply that 

deg(L) g - 1 + [deg(det(V)) - deg(D)]/2. F 

From now on it will be convenient to projectivize all vector bundles, con- 
nections and representations. Let 

Y(Tri(R), PSL(2, C)):= {p(p),p E Hom(7ri(R),SL(2, C))}/PSL(2, C) C Vg, 

where p(p) is the projectivization of p. Denote the spaces of projectivized 
holomorphic bundles and local systems over R by V(R) and F(R) respectively. 
Let RHR: F(R) -+ Y(7ri(R),PSL(2, )) denote the induced Riemann-Hilbert 

correspondence. Similarly define the projection TrR by projectivizing the 

mapping wrR. 
Our next step is to allow the complex structure on the surface R to vary. 

We let S be the oriented smooth surface underlying R. Let T(S) denote the 
Teichmiiller space of S. Consider the spaces 

Vtop(S):= U V(R), 
RET(S) 

Ftop(S): U F(R), 
REc(S) 

and mappings, 

: Ftop(S) - Vtop(S) , RH : Ftop(S) -- Y(7r1(S),PSL(2,C)), 
whose restrictions to the fibers F(R) are 7rR: F(R) - V(R) and RHR. 

Remark 11.3.2. The space Ftop(S) is naturally identified with the product 

Ftop(S) = (S) x Y(7rl(S), PSL(2, C)). 

The projection Ftop(S) -> T(S) which maps F(R, q) to (R, q)) E T(S) is the 
projection of Ftop(S) to the first factor of the product decomposition. 

Indeed, suppose (R, 0) E T(S) is a marked Riemann surface with the 
marking : 7rl(S) -- 7r1(R) (which is an isomorphism defined up to an inner 
automorphism). Then X indices an natural isomorphism 

Y(7ri(R),PSL(2, C)) - Y(7ri(S), PSL(2, C)) 
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given by precomposition of representations with q. Note that we have to work 
with the Teichmiiller space of S rather than with the moduli space 91j(S), 
otherwise the natural projection to C9t(S) would be a nontrivial fibration (in 
the orbifold sense). 

The projection 

rI: Vtop(S) - T(S), n V(R) -. R 

has a section 
: R I MR E V(R)C Vtop(S), 

where MR is the projectivization of maximally unstable vector bundles over 
R. Let 

Yne(irl(S) ,PSL(2, C))c V 

denote the collection of conjugacy classes of all projectivized nonelementary 
representations into SL(2, C). We summarize this in the diagram below: 

-(S) / - Vtop (S) 

Tu? T? 

7r-1 (((S))) C Ftop(S) 

RH . RH 

Yne(i(S), PSL(2, C)) C Y(7ri(S),PSL(2, C)) 

In view of [Gul], the image RH(xr-l' (u((S)))) consists of (projective) mon- 
odromy representations of complex projective structures on the surface S. 
On the other hand, each holomorphic bundle in Mk is maximally unsta- 
ble. Let Vp be a maximally unstable bundle associated with a representation 
p : 7r(R) -- SL(2, C). Thus, for all characters X: 1 r(R) -* {+1}, the bundles 
X Vp = Vx.p are also maximally unstable. The inverse image of the subvariety 
7r-1(MR) in Y(Trl(R), SL(2, C)) has 229 components. Each component consists 
of holomorphically isomorphic vector bundles over R, but members of distinct 
components are not holomorphically isomorphic to each other. 

Therefore, by applying Theorem 1.1.1, we obtain, 

THEOREM 11.3.3. The map RH sends (r-1(/,(T(S))) onto Yne(7rl(S), 
PSL(2, C)). In other words, let p C Y(7rl(S),SL(2,C)) be a nonelementary 
representation. It is the monodromy of a holomorphic flat connection on a 
maximally unstable holomorphic vector bundle over a Riemann surface R; R 
is diffeomorphic to S via an orientation-preserving diffeomorphism. 
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11.4. Proper embeddings in the representation variety. In this section we 
will give a detailed proof of the "divergence" theorem. It was first suggested 
by Hejhal in [Hel] that such theorem could be true. This theorem shows that 
on a fixed Riemann surface, if any sequence of quadratic differentials diverge, 
so must the conjugacy classes of corresponding monodromy representations. A 
brief outline of the proof was given in [Ka, ?7.2].2 

As before, R denotes a closed Riemann surface of genus exceeding one 
and Q(R) its space of holomorphic quadratic differentials. Let hol denote the 
map that sends each q E Q(R) to the monodromy homomorphism determined 

by the corresponding Schwarzian equation S(f) = q. By Theorem 1.1.1, the 
image lies in the component of the representation variety Vg containing the 
identity (cf., ?1.5). That is, 

hol: Q(R) -y Y(7rl(R), PSL(2, )). 

THEOREM 11.4.1 (Divergence Theorem). The map hol is proper. 

Proof. Let Z c Hom(7Ti(R), SL(2, C)) denote the preimage of Z, where Z 
is the image of hol. 

Our first goal is to show that Z is a properly embedded complex analytic 
subvariety in Hom(7r(R), SL(2, C)). Indeed, if p: ?rl(R) -+ SL(2, C) is any 
representation, the associated vector bundle Vp -> R is maximally unstable if 
and only if p E Z. Equivalently, 

p E Z => H?(R, L* Vp) + 0 for some L E K. 

The set VK is finite. Thus, by the upper semicontinuity theorem for cohomol- 
ogy (see [B-S]), the subset Z is closed and is equal to a finite union of disjoint 
complex analytic subvarieties XL properly embedded in Hom(7ri (R), SL(2, C)) 
(these subvarieties are indexed by L E vK/). 

Recall that Z is contained in the open subset Homne (rl(R), SL(2, C)) of 
nonelementary representations, i.e. those whose projectivizations are nonele- 
mentary. The group SL(2, C) acts on Homne(Trl(R), SL(2, )) by conjugation 
and the quotient is Yne(rl(R), SL(2, C)). Hence the projection 

Homne(7rl(R), SL(2, C)) Yne(Tl(R),SL(2, C)) 
is a principal SL(2, C)-bundle. Since Z is invariant under this action, the 
projection Z* of Z to Yne (n (R), SL(2, C)) is again a closed properly embedded 
complex analytic subvariety. It consists of 22g components indexed by elements 
of VK. 

The restriction of the projection 

p: Yne(ri (R),SL(2, C)) 2 Yne(l (R), PSL(2, C)) 

2Note that the discussion in [Ka, ?7.2] does not distinguish linear and projective monodromy 
representations. 
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to each component of Z* is a bijection onto hol(Q(R)). Now p(Z*) = Z is 
closed, since p is a finite covering. It is disjoint from the collection of conjugacy 
classes of elementary representations because all elementary representations 
correspond to semistable bundles over R. Consequently we can restrict our 
study to the smooth (Hausdorff) manifold Yne(7il(R), PSL(2, C)). 

According to [Gu2], the partition of Yne(7rl (R), SL(2, C)) into holomorphic 
equivalence classes is a smooth foliation. The components of Z* are leaves of 
this foliation; hence they are complex submanifolds in Yne(7 l(R),SL(2, C)). 
This implies that Z C Yne(7r(R), PSL(2, C)) is a properly embedded complex 
submanifold. On the other hand, the mapping hol : Q(R) -- Z is a con- 
tinuous bijection, hence a homeomorphism. Therefore hol: Q(R) - Z C 
Yne(7r(R), PSL(2, C)) is proper. Hence the composition of 

hol: Q(R) -- Yne(7r (R), PSL(2, C)) 

with the inclusion 

Yne(7i(R), PSL(2, C)) - Y(7rl(R), PSL(2, C)) 

is a proper map Q(R) -- Y(7r(R), PSL(2, C)). - 

Remark 11.4.2. The above proof shows that elementary representations 
cannot be limits of sequences from hol(Q(R)). It was proven [Ka] only that 
the mapping hol :Q(R) -- Yne(7rl(R),PSL(2, C)) is proper. Tanigawa [Tani] 
recently gave a nice geometric proof of this statement in contrast to algebro- 
geometric proof presented here and in [Ka]. However Tanigawa's arguments 
do not seem to prove that Z = hol(Q(R)) is closed in Y(7ri(R),PSL(2,C)), 
only in the submanifold corresponding to nonelementary representations. See 
also ?12.4. 

11.5. An analogue of Hejhal's holonomy theorem for branched projective 
structures. The nonelementary representation variety Vg has two components 
[Go2]. These correspond to the representations that lift to SL(2, C), and those 
that do not. Each of these has dimension 6g-6. By a singly branched projective 
structure we mean one that has exactly one branch point and that is of order 
two. In the next section we will show that the monodromy of each singly 
branched projective structure is a nonelementary representation but we will 
use this fact in this section. 

Let R be a closed Riemann surface of genus g > 2 and p c R a given 
point. We will first parameterize singly branched structures on R with branch 
point at the designated point p. Let D be the divisor of p and QD(R) the 
space of holomorphic quadratic differentials on R which have at most a simple 
pole at p. 

Recall from ?1.4, equation (6), that the meromorphic quadratic differential 
4o generates a singly branched complex projective structure if its Laurent 
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expansion at the chosen branch point p has the form 

q5o -3/z2 + b/z +ao +alz +- , where b2 + 2o = 0, 

(here and below we choose local coordinates so that p is identified with zero). 
The side condition comes from the requirement that the solution of the 
Schwarzian equation has no logarithmic term. 

We note that there exists such a differential qo. First of all the Riemann- 
Roch theorem implies there is a quadratic differential with a double pole at 

any point p. Secondly it also implies that there is an abelian differential w 
which does not vanish at p. The holomorphic differential w2 can be employed 
to insure that the side condition is satisfied ([Manl]). Fix one such quadratic 
differential 0o. 

There is a meromorphic quadratic differential with a single pole at p with 
the Laurent expansion 

o= l/z + ao + dz + ... 

Adding w2, which does not vanish at p, to o0 if necessary, we may assume 
that ao + b 4 0. 

Let i, 1 < i < 3g -3 be a basis of the holomorphic quadratic differentials 
on R. Then 4i, 0 < i < 3g - 3 is a basis of the space QD(R). 

Let ai be the constant term in the Laurent expansion of Xi at p. Not all 

ai can vanish. 
The vector space QD(R) consists of the differentials b g = z3_ci/i. 

When is qo + b an admissible quadratic differential in the sense of ?1.4, equa- 
tion (6)? The answer is when u2 + 2bu + 2v = 0, where v is the constant term 
in in the Laurent expansion of / at p, and u is its residue. 

The constant term in / is v = o03 ciai. The residue term is just co. 
Hence the condition reads 

3g-3 

(11) 2 + 2bco + 2 ciai = 0. 
i=O 

Recall that ao + b y~ 0, thus the implicit function theorem implies that the 
collection of vectors c = (co, cl,..., C3g-3) satisfying the above equation is a 

complex manifold of dimension 3g- 3 provided that the norm ] cl is sufficiently 
small. (Actually it suffices to require that only Icol is sufficiently small.) 

Consequently we can choose a small neighborhood U of qo in the affine 
space of meromorphic quadratic differentials qo + QD(R) with the following 
property. 

The collection of differentials /o + Z_03 Ci4i E U satisfying (11) forms a 
(3g - 3)-dimensional complex manifold A containing 00. 

Let Bg denote the holomorphic variety which consists of singly branched 
complex projective structures on closed Riemann surfaces S of genus g > 2. 
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Let T(S - {q}) denote the Teichmiiller space of surfaces S with one marked 

point. There is a holomorphic mapping v : Bg -> T(S - {q}) whose fiber 
over a marked Riemann surface R with a marked point p is the space I(R, D) 
of singly branched complex projective structures with the underlying complex 
structure R and branching at D = p. It follows from the above discussion that 

Bg is a holomorphic variety of generic dimension 6g- 5: the Teichmiiller space 
of once punctured surfaces T(S - {q}) has complex dimension 3g - 2 and the 
fiber of v has complex dimension 3g- 3. There is an open and dense subset of 

Bg which is a complex manifold of dimension 6g - 5. We will use the notation 

(S, q, p) for elements of Bg, where S denotes the marked Riemann surface, q 
the branch point and p the meromorphic quadratic differential. 

We will need the following explicit description of the space Bg. Choose 
a point R as the "origin" in T(S) and write R = H[2/G where H[2 is the unit 
disk {lzl < 1} and G is a fuchsian group acting on H2. In the "Bers' slice" 
model, Teichmiiller space T(S) is identified with that subset of the space Q(R) 
of holomorphic quadratic differentials on R, lifted to IH2, such that the corre- 

sponding developing map h : IE2 -+ S2, T E Q(R), is a univalent holomorphic 
mapping with homeomorphic extension to {Izl = 1}. Thus h = hr solves 
the Schwarzian equation for r; we will normalize it by the requirement that 

h(O) = O, h'(O) = 1. Let p : G - > Gr denote the corresponding monodromy 
representation. As r -- 0, G7 converges algebraically back to G. 

The image p,(G) = Gr is a quasifuchsian group. Its set of discontinuity 
has two components. One is Q. = h-(H2). The other Qr represents the marked 
Riemann surface Rr := QI/Gr E T(S). The homotopy marking of this point 
in T(S) is given by the isomorphism p, : G = 7ri(R) -+ GT = 7ri(Rr). If we 
mark a point p E R, we get an element of T(S - {q}). 

Any given compact subset of Qo belongs to Qf for T sufficiently close to 

0; likewise any neighborhood of the closure of Qo contains Q, for r sufficiently 
close to 0. Here Qo = {z : zI > 1} U oo. 

LEMMA 11.5.1. There is a locally defined holomorphic map P: Bg -> S2 
that "records" the position of the branch points. 

Proof. We construct P in a small neighborhood A of a given point (R, q, (p) 
E Bg, where p is a quadratic differential on R, the surface R is the "origin" in 
the Teichmiiller space and q E R is the branch point. We will denote points 
a C A by (Rr,q, a,) where T = r(ca) CE (S) and q, E Rr is the branch- 

point. If T = 0, then a represents a change of branch point from q to q, on 
R itself. The point - = 0 is (R,q, p). Let fo :' Q0 -- $2 denote the (as yet 
unnormalized) developing map of (R, q, Tp) and 0: G = 7r1(R) -- PSL(2, C) the 
associated nonelementary monodromy representation (here we are applying 
Theorem 11.6.1 that will be proven in the next section). 
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Let fa: QT - S2 be the associated holomorphic developing map. We will 
show in the next paragraph how to fix a consistent normalization for fa given 
fo so that the restrictions of f, to compact domains in Qo depend holomor- 

phically on o. Each developing mapping f, corresponds to the monodromy 
representation 

' := 0, o p : G -- G -- Ha C PSL(2, C). 

At the origin, 0O = 00. 
Consider the projection Hom(ri (R), PSL(2, C)) -- Vg. We will construct 

a local cross section Vg near 0 as follows. We know from Part A that we can 
find in Ho three loxodromic elements h1 = 0(gi) h2 = 0 (g2), h3 = 0(3) with 
distinct attracting fixed points ai, a2, a3, where 1i, g2, g3 c G. Normalize each 

developing mapping f, so that the attracting fixed point of 0 (gj) remains 

aj, j = 1, 2, 3. This can be done for all a C A if A is sufficiently small, i.e., 
if the attracting fixed points remain distinct and the elements 0' (gj) remain 
loxodromic. Thus in A we have a holomorphic lift 

hol: Bg -? Vg C Hom(G, PSL(2, C)). 

Now given a lift q* E Qo of q C R, there is, in the set of lifts of q, to fQ, a 
closest (in the spherical metric) point q,* to q*. Define 

P: (RT, qf, 2p) / ( f- (q*) E $2 

It is clear that the mapping P is holomorphic provided that A is so small that 
the point q* is unique. f 

Thus, by the previous lemma we have a locally defined holomorphic map 

= (P,hol):Bg S2 x Vg 

and its lift 

- 

= (P, hol):Bg- S2xVg 

We are now ready to state our theorem. 

THEOREM 11.5.2. The holonomy map hol: Bg * Vg is locally a topolog- 
ical fiber bundle with fiber of complex dimension one. 

Remark 11.5.3. The fibers reflect the choice of branch point. This result 
should generalize to the space of D-branched projective structures where D is 
a fixed (topological) branching divisor, provided we consider structures with 
nonelementary monodromy. 
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Proof. In Lemmas 11.5.5 and 11.5.4 below we will prove that ,u is injective 
and an open map. Hence fu is a local homeomorphism. Since S2 x Vg is a 

complex manifold of dimension (6g-5) we can therefore use , to locally identify 
Bg with the product S2 x Vg so that hol is identified with the projection to the 
second factor. D 

LEMMA 11.5.4. Let X be a holomorphic variety of generic complex di- 
mension n (i.e. there is an open dense subset U C X which is a complex 
manifold of dimension n). Let f : X --> M be a locally injective holomorphic 
mapping, where M is a complex manifold of dimension n. Then f is open. 

Proof. Since this is a local question it suffices to consider the germ of X 
at a point x E X and the germ of f at x. Since f is locally injective, the germ 
of the mapping f at x is "finite" in the terminology of [Gu4, p. 56]. 

Suppose that the germ of f at x is not onto. Apply [Gu4, Corollary 9]: it 
follows that there exists a nonzero germ of a holomorphic function h on M at 
m = f(x) such that ho f = 0. The germ at m of the zero level set {h = 0} of h 
is a holomorphic subvariety of dimension strictly less than n, by the uniqueness 
principle of holomorphic functions. Thus the germ of the image f(X) at m has 

generic dimension less than n. However f(X) is generically a manifold, hence 

f(U) has dimension less than n, a contradiction to invariance of domain for 
manifolds. O 

LEMMA 11.5.5. The mapping u is locally injective. 

Proof. It suffices to show that two nearby branched structures with the 
same monodromy representation are identical provided that the images of their 
branch points under P are the same. Our proof is analogous to that of [Hel, 
Theorem 1]. It clearly enough to show local injectivity of the holomorphic lift 

=(P, hol) : Bg 
_ S2 x Vg. 

We consider the points a = (R,, q,, Ipo) of a small neighborhood A of the point 
(R, q, ) E Bg. 

Let Tc C 2Q denote the (closed) Dirichlet fundamental domain for G, in 
the hyperbolic metric on Q, and with center q*; r = rT(c). Let W* be a small 

open neighborhood of o0, and take A so small that TF C To* for all a C A. 
We may also assume that the orbit G,-(q) meets the closure of * only at q*. 

We again use the developing mappings f,: Q, - S2 Decreasing A even 
more if necessary, we may assume that: 

a) For each a E A there is an open neighborhood F* of Fa such that for 

any pair of points a, 6 E A we have Y6 C F*, and 

b) Given small e > 0, there is a disk V C Fo about q* of radius 2e with 
the following property. To any z E Jo* \ V, and to any pair of points a, 6 E A, 
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corresponds a unique point z,,^ E F* such that 

fs(z,s) = fa(Z), and d(z, z) < E. 
Here d(., .) is the spherical metric. 

The "membranes" {fa (1F)} over S2 serve as "fundamental domains" for 
the image groups Ha = 0 (G). 

Suppose fi is not injective in any neighborhood A. Then for arbitrarily 
small A there exist c 7h 6 C A so that P(cr) = P(6) and the normalized 
monodromy representations are identical, i.e., 

(0' : G -- Ha) - (0' G H6). 

We claim that there is a branch F of f~-1 o f, which is a conformal home- 
omorphism of the fundamental domain .F onto a new fundamental domain 
FJ for G,(6) in rT(s). Such a map F would necessarily be equivariant in 
the sense that if z,g(z) E FJ, g E Gc (o), then F(z),F(g(z)) E FC and 

F(g(z)) = Pr(6) o 
pr()(g)F(z). Here ' Pr: () o pr() : G(f) - Gr(6) is 

the isomorphism which factors through G. 
Indeed, for z ? V define F(z) := z,,s. It is clear F is a univalent holomor- 

phic mapping. Furthermore FTLFx \ V extends over V to a conformal mapping 
because both f, and f6 are 2-fold branched coverings near q* E Q0 with the 
same critical value 

f~(q*) = P(o) = P(6) = f6(q*). 
The mapping F projects to a conformal map of R =(f) = QT(u)/Gr(a) onto 

r(6) = Qr(6)/Gr(6). Correspondingly F extends to a conformal mapping 
F: ?Q(o-) -Q r(6) that induces the isomorphism : G,(,) 

-- 
G(<). 

The map hT(6) o h-(1) is a conformal map of Q_( ) onto (6) which also 
induces the isomorphism ~. The two conformal mappings have continuous 
extensions to the limit set which are necessarily identical. Since the limit set is 
a quasicircle they are the restrictions of a M6bius transformation. In particular 
F is a M6bius transformation and a = 6, a contradiction. D 

The following is a direct consequence of Theorem 11.5.2. 

COROLLARY 11.5.6. Let a = (R,p, p) be a singly branched projective 
structure. Let A C Bg be a sufficiently small neighborhood of a in the space of 
singly branched structures 6 on R "with the same image of the branch point" 
P(6) as a. Suppose the sequence of normalized representations Oi : 7i(R) - 

PSL(2, C) converges algebraically to the normalized monodromy representation 
0 associated with a. Then for all large i, Oi is associated with a unique voi E A. 

11.6. Monodromy of singly branched projective structures. In this section 
we will prove facts that have been announced in ?1.6. 
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THEOREM 11.6.1. Suppose that R is a closed Riemann surface of genus 
g > 2, 0 : Ti(R) -- PSL(2, C) is the monodromy representation of a singly 
branched complex projective structure r on R. Then F = 0(7rl (R)) is a nonele- 

mentary subgroup of PSL(2, C). 

Proof. Since r has exactly one branch point and the order of this branch 

point is 2, the representation 0 has nonzero 2nd Stiefel-Whitney class. In 

particular, 0 cannot be lifted to a representation 7ri (R) -* SL(2, C). Suppose 
that the group F = 0(7i (R)) is elementary. There are three cases: 

(a) The group F has a fixed point z E S2. Without loss of generality 
we can assume that z = oo, thus F is contained in the group A of complex 
affine transformations of C. The inclusion A (-* PSL(2, C) admits a 1-1 lift 
A SL(2, C) 

a2z?+b0( a-1<' 2+ac(a (a-l) 
Therefore 0 lifts to a representation 0* : 7r (R) -+ SL(2, C), which contradicts 
the assumption that 0 has nonzero 2nd Stiefel-Whitney class. 

(b) Suppose that F is conjugate into the subgroup PU(2) C PSL(2, C). 
Let Rf - R be a 2-fold covering over R. Thus 2(g- 1) = - 1, where g denotes 
the genus of R. The complex projective structure T on R defines a complex 
projective structure f on R with two branch points of order two. Suppose that 
r C PU(2); then 09(rl(R)) C PU(2) as well. The representation l0ri(R) lifts 
to a linear representation 

0* : 7r (R) - SU(2) C SL(2, C). 

Consider the flat vector bundle V of the rank 2 over the surface R associated 
with the action 0* of 7ri (R) on C2. Clearly det(V) = 1. The developing map 
of the branched complex projective structure f defines a section 

a: R- P(V). 

According to Proposition 11.2.2, the self-intersection number u2 of the surface 

a(R) in P(V) equals (2 - 2) + 2, since the structure f has exactly two branch 

points of the order 2. 
It follows from Lemma 11.1.1 that the section a gives rise to a line sub- 

bundle L C V such that 

deg(L) = (g - 1) - 1 = 2g - 3 > 0. 

We conclude that u(V) > 0 and the bundle V is unstable. On the other hand, 
every flat bundle over R with unitary monodromy group is semistable (see 
for instance [N-S]). This contradiction shows that F cannot be contained in 

PU(2). 
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(c) Consider the case that the group 0(7ri(R)) has an invariant pair of 
points in S2. (This does not imply that 0 can be lifted to SL(2, C).) We argue 
as in Case (b). There is a 2-fold covering R -> R such that the group 0(7rl (R)) 
has a pair of fixed points in S2. Therefore the induced complex projective 
structure on R has two branch points and the monodromy group 0(r1(R)) has 
a lift 0*(-(I?)) to a subgroup of SL(2, C) conjugate to the group of diagonal 
matrices. Let V denote the holomorphic vector bundle associated with the 
representation 0* : 7lr(R) -+ SL(2,C). The representation 0* splits as the 
direct sum of representations. Hence the bundle V is decomposable (into the 
direct sum of two line bundles of degree zero), which implies that u(V) = 0. 
On the other hand, the developing map of the branched complex projective 
structure on R defines a section a : R -> P(V) with the self-intersection 
number 

(2 - 2) + 2 < 0, 

where g denotes the genus of R. Hence u(V) > 0 which contradicts u(V) = 0. 
D 

Suppose that T is a branched complex projective structure on the closed 
Riemann surface R of genus at least two. We identify the universal cover of R 
with the hyperbolic plane H2. Let f: H2 -> S2 be the developing map of 7 and 
r = 0(7ri(R)) be the holonomy group. We say that r is a branched hyperbolic 
structure if r has at least one branch point and the image of f is a round disk 
in S2. This definition is motivated by the fact that in such case F preserves 
the hyperbolic metric ds2 in f(H2). The pull back of ds2 from f(H2) to R is 
a hyperbolic metric on R which has singular points at the branch points zj of 
r; the total angle around zj is 27rkj, where kj is the order of zj. 

Later we will show by example why the following result is false if we do not 
exclude branched hyperbolic structures. This too has been announced in ?1.6. 

COROLLARY 11.6.2. Suppose that either the complex projective structure 

(f, 0) is unbranched, or is singly branched but is not a branched hyperbolic 
structure (i.e. f(H2) is not a round disk). Then the following statements are 
equivalent: 

(i) f(E2) S2; 

(ii) H2 - f (H2) is a (possibly branched) cover; 

(iii) r acts discontinuously on f(H2). 

Proof. The unbranched case is classical (see ?1.6). Consider then the 
branched case. By Theorem 11.6.1, r = O(T71(R)) is nonelementary. The limit 
set A(r) is the smallest r-invariant closed nonempty subset of S2. Since r 
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is nonelementary, A(r) is the closure of the set of fixed points of loxodromic 
elements of F. It follows that the F-orbit of any open set containing a limit 

point is S2. Suppose that F C PSL(2, C) is nondiscrete. Let r be the closure of 
F in PSL(2, C). Since r is nonelementary it follows that F is either PSL(2, C) 
or it preserves a round circle C C S2 and A(r) = C [Gr]. If the latter case 

occurred, f(H2) would be one of the two round disks in S2 bounded by C. It 
would follow that r is a branched hyperbolic structure in contradiction to our 

assumption. If F = PSL(2, C) then f(H2) is contained in A(r) - S2 which 

implies that f(H2) = S2. 
We conclude that if (i) holds then r is a discrete subgroup of PSL(2, C) 

and f(H2) is contained in the discontinuity domain Q(F) = S2 \ A(r). Hence 

(i) = (iii). Clearly, (iii) (i). 
The implication (ii) = (i) is immediate. Conversely if (iii) holds, f(H2) 

must be contained in a component A of the domain of discontinuity of F. Since 

f(H2) is connected and F-invariant it follows that A is also F-invariant. Hence 

f projects to a holomorphic map f : R -+ f(R) C E = A/F. Since f(R) 
is a compact subsurface without boundary in S we conclude that f(R) = E 
and E is a closed surface. Any nonconstant holomorphic surjective mapping 
between closed Riemann surfaces is necessarily a covering, possibly branched. 
Consequently f itself is a possibly branched covering map. D 

We will now construct an example of a singly branched hyperbolic struc- 
ture on a surface R of genus two which has nondiscrete holonomy in PSL(2, RI). 

Start with a regular hyperbolic octagon X C H2 with vertex angles 7r/2 
(cf. [Tan]). Label the edges bl1, al, bl, all,... a21 in positive order around 
X. Identify the edges by corresponding isometries Al, B1, A2, B2 to obtain a 
Riemann surface of genus two such that IH2 is a two sheeted cover branched 
over one point on R. Let a denote the line segment from the left end point of 
b-1 to the right end point of a-~1 Then 

A1B1A-1B-1 = E = A2B2A21B21 

where E is a elliptic transformation of order two fixing the midpoint of r. Let 

7 denote the branched projective structure on R with the holonomy group 
r = (Al, B1,A2, B2). The quotient orbifold IH[2/F is a torus with one cone 

point of order two. Clearly the holonomy 0 : rl(R) -> F is not injective (cf. 
[Gol]). According to Theorem 1.1.1, 0 does not lift to SL(2, R). 

Next, we will show-there exists a hyperbolic structure with exactly one 
branch point of order two and a nondiscrete holonomy group. Take the example 
above of a branched structure y. The representation variety 

Hom(r, PSL(2, R))/PSL(2, R) 
is 2-dimensional and the representation variety 

Hom(7rl(R), PSL(2, R))/PSL(2, R) 
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is 6-dimensional. Therefore we can find a real-analytic curve of nonelementary 
representations Ot : r1(R) -+ PSL(2, IR), 00 = 0, t E [0, 1], which do not factor 

through 0 : 7rl(R) -F r. The fact that Ot is a real-analytic curve implies that 
there is a dense subset J C [0, 1] so that K = ker(Ot) = ker(8s), s, t E J. Let 
F' := 7rl(R)/K. We claim that there cannot be a sequence of t E J which 

converge to t = 0 such that each Ft := Ot(rli(R)) is discrete. For otherwise a 

sequence of discrete nonelementary representations Pt : F' - Ft, t E J would 

converge to p: F' -+ F as t -> 0. The limit p of such sequence has to be a faith- 
ful representation as well, as a consequence of [J-K]. This contradicts the fact 
that ker(p) = ker(O)/K Z {1}. Thus there is an infinite sequence of nondis- 
crete representations Ot : irl(R) -> Ft which converges to 0. In addition Ft 

necessarily preserves the upper halfplane for t close to 0. By Corollary 11.5.6, 
Ot is the monodromy of a branched complex projective structure yt on R with 
branch point likewise at z = 0. 

12. Open questions about complex projective structures 

In this chapter we list some unsolved problems. Some are well known in 
the field, others arise from the specific analysis of this paper. 

There are two general issues: the monodromy representation per se, and 
the Riemann surfaces of specified type where it is induced by a particular 
projective structure. 

We recall from ?1.5 that Qg denotes the vector bundle of quadratic differ- 
entials over Teichmiiller space Tg and Vg is the subset of nonelementary repre- 
sentations in the representation variety Vg, modulo conjugation by PSL(2, C). 

12.1. Existence and nonuniqueness of points in Qg with given monodromy. 
Our proof exhibits two sources of nonuniqueness: 

* The nonuniqueness of the pants decomposition on which the monodromy 
is Schottky. 

* The nonuniqueness of the pants configuration over S2 obtained from a 

pants decomposition: one can use N-sheeted branched covers for arbi- 

trarily large N. 

Our Theorem 1.1.1 provides a Riemann surface for every nonelementary 
representation 0. On the other hand, if we fix attention on a particular oriented 
surface R, we don't know whether all projective structures on R itself can be 
obtained from the pants decomposition method. For example, can there be 
a complex projective structure a on R so that for each simple loop y C R 
with loxodromic monodromy, no element of its homotopy class is sent by the 

developing map to a simple arc in $2? 
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For the case of representations into PSL(2, R) all projective structures can 
be obtained by the pants decomposition method, see [F], [Gol], [Ga2]. However 
in all three papers the proofs that the developing map is a covering over the 

upper and the lower half-planes have the same gap: In general the pull-back of 
a complete Riemannian metric on a manifold via a local diffeomorphism can 
be incomplete. For complete proofs of the assertion about covering see [Kui, 
pp. 485-486], [Kul-Pin], or [Cho-L]). 

For those projective structures on R which do arise from pants decompo- 
sitions, are there optimal choices for the decompositions? For example, does 
the developing mapping send each pants of some decomposition directly into 
the domain of discontinuity of the corresponding Schottky group? 

PROBLEM 12.1.1. Characterize and classify the nonuniqueness of projec- 
tive structures with given monodromy. 

In particular is it possible to get one projective structure on R from an- 
other by a specific series of "moves"? 

One might ask to do this through a sequence of graftings. Yet, at least in 
the case of a once-punctured torus R, a connection solely by means of a grafting 
sequence is known to be impossible in general. The reason has to do with the 
fact that in the Bers slice, the result of pinching R along a simple nondividing 
loop y is a B-group F representing the punctured torus on one side, and the 

triply punctured sphere on the other. Specifically, construct two complex- 
projective structures on R with the monodromy G -- F as follows. Consider 

simple nondividing loops a and P on the surface R so that all the loops a, 3, 7 
are mutually non-homologous. Let at,t E [0, 1) denote the family of complex- 
projective structures on R which is being pinched along y as t -+ 1. Let 

gra(at), grp(at) be the complex-projective structures on R obtained from at via 

grafting along a and 3. One can show that gra(ct), gr,p(ct) are convergent to 

complex-projective structures ac, ('1 on R as t approaches 1. There results two 
structures a', ca with the same orientation and the same monodromy G -> F. 
However these complex projective structures are not related by grafting. The 

underlying reason is that the "complex of simple loops" on the once punctured 
torus R is totally disconnected. 

For branched structures, there is another way of changing projective struc- 
tures without changing the monodromy. This is the method of "bubbling." 

Suppose that R is a Riemann surface with a (branched) projective struc- 
ture a. Let a C R be a compact simple arc, disjoint from the singular points of 

a, which the developing map sends to simple arcs in S2. Let a be one of these 

arcs in S2. Then split R open along a, split S2 open along a, take N copies of 
the Riemann surface S2 - a and glue them to R - a with appropriate identifi- 
cation of boundary edges. The net result is a projective structure on the new 
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"bubble-on" Riemann surface RN with the same monodromy. The projective 
structure on RN has two additional branch points (at the end points of a), 
both of order N. 

"Bubble-off" is the inverse operation on R. 

PROBLEM 12.1.2. Suppose that C1, o2 are complex-projective structures 
on a surface R with the same monodromy representation. Can one pass from al 
to a2 using the following elementary moves: "grafting," inverse to "grafting," 
"bubble-on," "bubble-off"? 

12.2. Surfaces with punctures. What about surfaces with punctures where 
the corresponding quadratic differentials have at most double poles? As with 

compact surfaces, the dimension of the vector bundle Q(g,n) of quadratic differ- 
entials over the Teichmiiller space T(g,n) agrees with that of the representation 
variety, if one allows arbitrary monodromy at the punctures (for an analysis 
of the derivative of the monodromy map for this case see [Luo]). One can 
search again for pants decompositions, provided the monodromy is not elliptic 
of infinite order at a punctures. With discrete monodromy at the punctures, 
one can look for representations of fundamental groups of pants to extended 
forms of Schottky groups (i.e. Klein combinations of pairs of discrete cyclic 
subgroups of PSL(2, C)). 

Suppose the genus of R is positive. We believe that our technique in 
Part A will yield a pants decomposition of R in which the restrictions of the 
monodromy are onto Schottky-like groups, provided the representation around 
each puncture is a discrete (cyclic) group. 

PROBLEM 12.2.1. Prove and/or explore the existence and nonuniqueness 
of complex projective structures with given nonelementary monodromy in the 
case of punctures, most importantly and most classically, punctured spheres. 

12.3. Linear monodromy representations. Throughout the paper we con- 
sidered Schwarzian differential equations on Riemann surfaces. Their mon- 
odromy representations are projective representations 0 : 7r (R) -- PSL(2, C). 

One can also consider the more general case of representations into 
GL(2, C). In the classical case of punctured spheres R, the dimension of the 
representation variety, modulo conjugations, is identical to the dimension of 
the vector bundle over T(o,n) of linear equations 

u" +pu' + q = 0, 

where p has at most simple poles and q double poles at the punctures. Note 
that we have to restrict to the representations 0* into GL(2, C) which map the 
peripheral loops of R to unipotent elements. 
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PROBLEM 12.3.1. Is there an analogue of Theorem 1.1.1 for punctured 
spheres if one seeks a differential equation that induces a given linear repre- 
sentation 0*? 

12.4. Divergence of monodromy representations. Fix a closed Riemann 
surface R of the genus g > 1 and let Oqn = (pn(z)dz2 be a sequence of quadratic 
differentials on R so that Il\nIl -1 oo. Let [Pn] be the sequence of conjugacy 
classes of monodromy representations of )n. We know from Theorem 11.4.1 
that the sequence [Pn] cannot subconverge to the to the conjugacy class of any 
representation. 

PROBLEM 12.4.1. Characterize the "limit points" of divergent sequences 
of representations in the representation variety. Prove the Divergence Theorem 
11.4.1 for complex projective structures on R which have a single branch point 
of order 2. 

One way that the representation variety Vg can be compactified is by 
(projective classes of) actions of the group G = 7ri(R) on metric trees. Which 
actions of G on trees can appear as limits of the sequences [pn]? For instance, 
is it true that for each sequence of quadratic differentials qn = nq, q 0, there 
is a limit p of the sequence Pn with the following property: p is an action of G 
on a tree that is dual to the singular foliation on R determined by (q? 

12.5. Path lifting properties of monodromy mappings. In [Hel], Hejhal 
proved that the natural mapping 

Pg : Qg + Vg 

is a local homeomorphism which fails to be a covering mapping. 

PROBLEM 12.5.1. Let y : [0, 1] - Vg be a continuous path, 7: [0, 1) -Qg 
a partial lift which can not be extended to the end-point 1. Describe the asymp- 
totic behavior of the path 5. 

For instance is it true that a has a well-defined limit 

lim y(t) 

in a natural (e.g. closed ball) compactification of Qg? 

12.6. Branched projective structures. As the degree of a positive divisor D 
increases, it becomes easier to construct a complex projective structure with 
the branching divisor D. Thus, one should be able to eliminate the assump- 
tion that the representation 0 is nonelementary for sufficiently large values of 
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deg(D). For instance, if 0 is the trivial representation, then branched struc- 
tures with the monodromy 0 are just m-fold ramified coverings f : R -+ 2. 
Thus X(R) = -mX(2) - deg(D) = 2m - deg(D). The number m is at least 

2, hence deg(D) > 4 - X(R) = 2g + 2. The minimal degree is realized by a 
hyperelliptic ramified covering f, for which we have: deg(D) = 2g + 2. 

PROBLEM 12.6.1. Make precise and optimize the connection between 
branching divisors and monodromy. Namely, compute the function 

d: Hom(G, PSL(2, C)) - 2, 

where d(0) is the smallest integer for which there exists a branched complex 
projective structure with branching divisor of degree d and monodromy 0.3 

We proved that d(O) = 0 for all liftable nonelementary representations 0 
and d(O) = 1 for all nonliftable nonelementary representations 0. Is it true 
that d(O) = 2g for all liftable representations 0 : G -- S0(3) C PSL(2, C) and 

d(O) = 2g - 1 for all nonliftable elementary representations 0 : G -+ SO(3) C 

PSL(2, C), provided that the monodromy group 0(G) is dense in S0(3)? Is it 
true that d(O) < 2g + 2 for any : G -- PSL(2, C)? 

Remark 12.6.2. For the flat holomorphic bundles of rank 2 over R the 
corresponding question is the following: given a representation 0* : G -- SU(2) 
with dense image, find a complex structure on R so that the associated flat 
C2-bundle V over R has the degree of instability u(V) = -1. 
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