Characterization of covering maps via path-lifting property

January 15, 2004

A continuous map between topological \(f : X \to Y \) is said to satisfy the path-lifting property if for any path \(p : [0, 1] \to Y \) and any \(x \in f^{-1}(p(0)) \) there exists a lifting \(\tilde{p} \) of the path \(p \) with the initial value \(x \), i.e. there exists a path \(\tilde{p} \) such that \(f \circ \tilde{p} = p \) and \(\tilde{p}(0) = x \).

Similarly, a smooth map between Riemannian manifolds \(f : X \to Y \) is said to satisfy the rectifiable path-lifting property if the above definition holds for the rectifiable paths \(p(t) \).

Suppose that \(f : X \to Y \) is a local homeomorphism (resp. diffeomorphism) between topological spaces \(X \) and \(Y \) (resp. Riemannian manifolds \(X \) and \(Y \)).

Lemma 0.1. \(f \) satisfies the path-lifting (resp. rectifiable path-lifting) property if and only if the following holds: For each continuous (resp. rectifiable) path \(q : [0, T] \to Y \) and each partial lift \(\tilde{q} : [0, t) \to Y \) extends continuously to the point \(t = T \).

Proof: The implication \(\Rightarrow \) is clear, we will prove the other implication. We will use the standard arguments of the covering theory: Let \(A \subset [0, 1] \) denote the largest subinterval on which a lift \(\tilde{p} \) of the path \(p \) (with the initial value \(x \)) exists. This subset is nonempty (since \(0 \in A \)). Suppose that \(A \) is a half-open interval \([0, T), T \leq 1 \). Then, by our assumption the lift \(\tilde{p} \) exists continuously to the point \(T \). Thus \(A = [0, T] \) is a closed interval, it remains to show that \(T = 1 \). Suppose that \(T < 1 \). Let \(U \) denote a neighborhood of \(x := \tilde{p}(T) \) which maps homeomorphically (by \(f \)) onto a neighborhood \(V \) of the point \(y := p(T) \). Then there exists \(0 < \epsilon < 1 - T \) such that \(p([T, T + \epsilon)) \subset V \) and we define the lift \(\tilde{p} \) on \([T, T + \epsilon)\) by

\[
f^{-1} \circ p : [T, T + \epsilon) \to U.
\]

This contradicts maximality of \(A \). \(\square \)

It is a standard fact of the covering theory that if \(f \) is a covering map then \(f \) satisfies the path-lifting property.

Theorem 0.2. Suppose that \(X \) and \(Y \) are connected, semilocally simply-connected (e.g. are manifolds or cell-complexes), resp. Riemannian manifolds and \(f : X \to Y \) is a local homeomorphism (resp. diffeomorphism) which satisfies the path-lifting (resp. rectifiable path-lifting) property. Then \(f \) is a covering map.
\textit{Proof:} Let \tilde{X} denote the universal cover of X and let $g : \tilde{X} \to \tilde{Y}$ denote a lift of f. It suffices to show that g is a homeomorphism (resp. diffeomorphism).

\textbf{Lemma 0.3.} g satisfies the path-lifting (resp. rectifiable path-lifting) property.

\textit{Proof:} Let $q : [0, 1] \to \tilde{Y}$ be a (rectifiable) path in \tilde{Y}, p be its projection to X and $\tilde{x} \in \tilde{X}$ be such that $g(\tilde{x}) = q(0)$. Let x denote the projection of \tilde{x} to X, then $f(x) = p(0)$. Thus there exists a lift $\tilde{p} : [0, 1] \to X$ of the path p with the initial value x. Then, since $\tilde{X} \to X$ is a covering, the path p lifts to a path $\tilde{q} : [0, 1] \to \tilde{X}$ such that $\tilde{q}(0) = \tilde{x}$. It is clear from the construction that \tilde{q} is the required lift of the path q. \hfill \Box

\textbf{Lemma 0.4.} The mapping g is onto.

\textit{Proof:} Suppose that g is not onto. Then, since \tilde{Y} is connected, there exists a (rectifiable) path $p : [0, 1] \to \tilde{Y}$ so that $p(0) = g(\tilde{x}) \in g(\tilde{X})$ and $p(1) \notin g(\tilde{X})$. Then the path p does not admit a lift with the initial value \tilde{x}, which is a contradiction. \hfill \Box

Thus it suffices to show that g is 1-1. We first consider the easier topological setting:

\textbf{Lemma 0.5.} In case g satisfies the path-lifting property, the map g is 1-1.

\textit{Proof:} We imitate the usual arguments of the covering theory. Suppose that $x, x' \in \tilde{X}$ be distinct points such that $y = g(x) = g(x')$. Let $\alpha : [0, 1] \to \tilde{X}$ be a path connecting x to x'. The composition $\beta := g \circ \alpha$ is a loop in \tilde{Y}. Hence, since \tilde{Y} is simply-connected, there exists a continuous map

$$H : [0, 1] \times [0, 1] \to \tilde{Y}$$

so that $H(1, s) = y = H(t, 0) = H(t, 1)$ for all $s, t \in [0, 1]$ and $H(t, 0) = \beta(t)$. Our goal is to show that the homotopy H admits a lift \tilde{H} to \tilde{X}, which again satisfies:

$$x = \tilde{H}(t, 0), x' = \tilde{H}(t, 1) \text{ for all } t \in [0, 1] \text{ and } H(t, 0) = \alpha(t).$$

This would yield a contradiction since $x \neq x'$. Let $A \subset [0, 1] \times [0, 1] \times [0, 1]$ be a maximal rectangle on which the lift \tilde{H} exists, this rectangle contains the segment $[0, 1] \times \{0\}$ (use α as the lift of β). By the same covering theory arguments (as in the proof of Lemma 0.1), if the maximal rectangle A is closed then it coincides with $[0, 1] \times [0, 1]$ and we are done. Suppose that A is a half-open rectangle: $A = [0, 1] \times [0, S)$. Let $\tilde{H} : A \to \tilde{X}$ denote the required lift of H. Suppose that H does not admit a continuous extension to a point $u := (t, S)$, for some $0 \leq t \leq 1$. This means that there are sequences $z_i, w_i \in A$ convergent to u such that

$$\lim_i \tilde{H}(z_i) = a \neq b = \lim_i \tilde{H}(w_i).$$

Let $\gamma : [0, 1] \to A$ denote the piecewise-linear path in A which connects z_1 to w_1, w_1 to z_2, z_2 to w_2, etc. Since $\lim_i z_i = u = \lim_i w_i$, the path γ extends continuously to the point 1, $\gamma(1) = u$. Thus the composition $H \circ \gamma : [0, 1] \to \tilde{Y}$ is a continuous path which has the partial lift

$$\tilde{\gamma} := \tilde{H} \circ \gamma : [0, 1] \to \tilde{X}.$$
However, since \(a \neq b \), the path \(\tilde{\gamma} \) does not extend continuously to the point 1. This contradicts the path-lifting property of \(g \).

We now modify the above arguments in the setting of Riemannian manifolds:

Lemma 0.6. In case \(g \) satisfies the rectifiable path-lifting property, the map \(g \) is 1-1.

Proof: We follow the proof of Lemma 0.5, modifying it when necessary. We will take \(\alpha \) a smooth curve in \(\tilde{X} \), then \(\beta \) is smooth as well and hence there exists a smooth homotopy \(H \). We again argue that the maximal rectangle \(A \) is closed. Note that if the path \(\gamma : [0, 1] \rightarrow [0, 1] \times [0, 1] \) in the proof of Lemma 0.5 was rectifiable, its image \(H \circ \gamma \) would be rectifiable as well and we would get a contradiction as before. Apriori however \(\gamma \) has infinite length. Note that instead of the original sequences \(z_i \) and \(w_i \) we can freely choose their subsequences: the limits \(a \) and \(b \) would be still different.

We therefore choose subsequences (again denoted \(z_i, w_i \in A \)) such that

\[
d(z_i, u) < 2^{-i-1}, d(w_i, u) < 2^{-i-2}, \forall i.
\]

Then

\[
d(z_i, w_i) + d(w_i, z_{i+1}) < 2^{-i}, \forall i,
\]

and hence the curve \(\gamma \) is rectifiable.

This also concludes the proof of Theorem 0.2.