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ON REPRESENTATION VARIETIES
OF ARTIN GROUPS, PROJECTIVE ARRANGEMENTS

AND THE FUNDAMENTAL GROUPS
OF SMOOTH COMPLEX ALGEBRAIC VARIETIES

by MICHAEL KAPOVICH * andjowj. MILLSON t

ABSTRACT

We prove that for any affine variety S defined over Q there exist Shephard and Artin groups G
such that a Zariski open subset U of S is biregular isomorphic to a Zariski open subset of the character
variety X(G, P0(3)) = Hom(G, PO(3))//PO(3). The subset U contains all real points of S. As an application
we construct new examples of finitely-presented groups which are not fundamental groups of smooth complex
algebraic varieties.

1. Introduction

The goal of this paper is to understand representation varieties of Artin and
Shephard groups and thereby obtain information on Serre's problem of determining
which finitely-presented groups are fundamental groups of smooth complex (not
necessarily compact) algebraic varieties. The first examples of finitely-presented groups
which are not fundamental groups of smooth complex algebraic varieties were given
by J. Morgan [Mol], [Mo2]. We find a new class of such examples which consists
of certain Artin and Shephard groups. Since all Artin and Shephard groups have
quadratically presented Malcev algebras, Morgan's test does not suffice to distinguish
Artin groups from fundamental groups of smooth complex algebraic varieties or even
from fundamental groups of compact Kahler manifolds, see § 16. Recently Arapura
and Nori [AN] have proven that if the fundamental group n of a smooth complex
algebraic variety is a solvable subgroup of GL^(Q) then n is virtually nilpotent. The
examples constructed in our paper are not virtually solvable (see Remark 11.1).

Our main results are the following theorems (Artin and Shephard groups are
defined in § 4 below they were introduced in [BS] and [Sh] respectively):

Theorem 1 .1 . — There are infinitely many distinct Shephard and Artin groups that are not
isomorphic to fundamental groups of smooth complex algebraic varieties.

Theorem 1.2. — For any affine variety S defined over Q there are Shephard and Artin
groups G such that a ^ariski open subset U of S is biregular isomorphic to ^ariski open subsets of
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the character varieties X(G, P0(3)) = Hom(G, P0(3) )//PO(3). The subset U contains all real
points ofS.

The surprising thing about Theorem 1.1 is that Artin groups look very similar
to the fundamental groups of smooth complex quasi-projective varieties. For example
the free group on n letters is the fundamental group of C with n points removed and
it is the Artin group associated with the graph with n vertices and no edges. On the
other extreme, take a finite complete graph where each edge has the label 2. The
corresponding Artin group is free Abelian, hence it is the fundamental group of the
quasi-projective variety (C^. Yet another example is the braid group which is the
Artin group associated with the permutation group S^. Theorem 1.1 is a consequence
of Theorems 1.3, 1.6, 1.7, 1.9, 1.13 and Corollary 1.8 below. The main body of this
paper is concerned with a study of the following diagram (1):

Moduli spaces of
arrangements in the
projective plane

Alg

T

Geo

Varieties
over Q

Character varieties
of representations
of Shephard groups
into P0(3)

Q.

Character varieties
of representations
of Artin groups
into P0(3)

The arrow T is tautological, the arrow Q is pull-back of homomorphisms. The
arrows Geo and 'Alg are defined below. In §§ 8.1, 8.4 we define abstract arrangements A
(essentially bipartite graphs A) and their projective realizations. The space R(A) of
projective realizations of a given abstract arrangement has a canonical structure of a
projective variety (i.e. projective scheme, see the preceding footnote) over Q. In fact
we refine the notion of projective arrangement to obtain the affine variety BRo(A) of
finite based realisations. The variety BRo(A) injects as an open subvariety into the moduli
space ^^(A) = BR(A)//PGL(3) of the arrangement A. Our version of Mnev's theorem
[Mn] is then

Theorem 1.3. — For any affine algebraic variety S defined over Q there is a marked based
abstract arrangement A such that the varieties BRo(A) and S are isomorphic.

Remark 1.4. — It appears that Mnev's theorem [Mn] implies only that there is a stable
homeomorphism between the sets of real points of BRo(A) and S. In addition Mnev gives only an

( ) Here and in what follows we do not assume our varieties are reduced or irreducible, i.e. they are schemes of finite
type over the base field.
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outline of the proof For our application to Sorrels problem it is critical to prove an isomorphism on
the scheme level.

The key idea in proving Theorem 1.3 is to construct a cross-section Geo
to T (over the category of affine varieties) by showing that one can do "algebra
via geometry95, that is one can describe elementary algebraic operations over any
commutative ring using projective arrangements (see § 9). This idea actually goes back
to the work of von Staudt [St] (the "fundamental theorem of projective geometry55).
The abstract arrangement A corresponding to S under Geo depends upon a choice
of affine embedding S (i.e. defining equations) for S and upon a choice of particular
formulae describing these equations (including the insertion of parentheses). Moreover
we obtain an isomorphism geo : § —> BRo(A) of affine schemes over Q. Thus if x C S
then \y = geo(^) is a point in BRo(A) where A is the abstract arrangement corresponding
to S under Geo.

Remark 1.5. —An analogue of theorem 1.3 for moduli spaces of planar mechanical
linkages (in the category of real algebraic sets and Nosh morphisms) is proven in [KM4, KM5].
A version of the latter theorem was formulated by W. Thurston in the late 1970s, however the key
ideas of the proof go back to the last century, namely to the work of A. B. Kempe [Ke].

We next describe the arrow Alg. To an abstract arrangement A we associate a
finitely-presented (Shephard) group G\. Then Alg(BR(A)) is the affine variety Hom(G^,
P0(3)). We have an associated morphism of the varieties

alg : BR(A, P^) -^ Hom(GL P0(3)),

which encodes the points and lines of an anisotropic projective realisation (see § 12 for the
definition) \y of the abstract arrangement A into a representation

P = P ^ : G A - > P O ( 3 , C )

of the Shephard group G^ associated to the abstract arrangement A. A choice of a
nondegenerate bilinear form on C3 determines anisotropic points and lines in P2 (we
choose the bilinear form so that all real points of P2 are anisotropic). Each anisotropic
point P in P2 determines the Gartan involution <7p in P0(3, C) around this point or
the rotation 9p of order 3 having this point as the neutral fixed point (i.e. a fixed point
where the differential of the rotation has determinant 1). There are two such rotations
of order 3, we choose one of them. There is only one vertex v^ of A (corresponding
to a point in A) for which we choose an order 3 rotation 9p around P = V^n)- Since
the realization y is based (see § 8.1), \y(v^) = [1 : 1 : 1] £ P2 for all l|/, and the choice
of rotation is harmless.

Similarly every anisotropic line L uniquely determines the reflection (7^ m

P0(3, C) which keeps L pointwise fixed. Finally one can encode the incidence relation
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between points and lines in P2 using algebra: two involutions generate the subgroup
Z/2 x Z/2 in P0(3, C) if and only if the neutral fixed point of one belongs to the
fixed line of the other, rotations of orders 2 and 3 anticommute (i.e. aQaQ = 1) if and
only if the neutral fixed point of the rotation of order 3 belongs to the fixed line of
the involution, etc. We get a morphism

alg : based anisotropic arrangements —> representations of G^
alg: v ̂  p, p )̂ = G^), v C ^A) - {^}, p(^) = 9^,

p C Hom(G^, P0(3)), \|/ € BR(A),

where ^A) is the set of vertices of bipartite graph A corresponding to A and gy
denotes the generator of Shephard group G\ that corresponds to the vertex v of A.
In the following theorem we shall identify alg(\|/) with its projection to the character
variety

X(G1, P0(3)) := Hom(Gl, PO(3))//PO(3).

Theorem 1.6. — The mapping alg : BR(A, P^) -^ X(GA,PO(3)) is a biregular
isomorphism onto a ^ariski open (and closed) sub-variety Hom^G^, P0(3) )//PO(3).

The mapping alg has the following important property: Let S be an affine variety
defined over Q and 0 C S be a rational point. Then we can choose an arrangement
A so that 0 corresponds to a realization \|/o under the mapping geo : S —r BR()(A)
such that the image of the representation alg(\|/o) is a finite subgroup of P0(3, C) with
trivial centralizer.

There is an Artin group G^ and a canonical epimorphism G\ —> G^ associated
with the Shephard group G^. It remains to examine the morphism co : Hom^G^,
P0(3)) —> Hom(G^, P0(3)) given by pull-back of homomorphisms.

Theorem 1.7. — Suppose that A is an admissible (1) based arrangement. Then the morphism
co : Hom^G^, P0(3)) —> Hom(G^, P0(3)) is an isomorphism onto a union of ^ariski connected
components.

Corollary 1.8. — The character variety X(G^ P0(3)) inherits all the singularities of the
character variety X(GAJ, P0(3)) corresponding to points o/'BR(A^ P^ whence (since all real points
of BR(A) are anisotropic) to all singularities of BR(A) at real points.

Combining Corollary 1.8 with Theorem 1.3 we obtain

Theorem 1.9. — Let S be an affine algebraic variety defined over Q and 0 € S be
a rational point. Then there exists an admissible based arrangement A and a representation

( ) See Section 8.1 for the definition.
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Po : G! -^ ̂ (S, R) with finite image such that the (analytic) germ (X(Gl, P0(3, C)), [po])
is isomorphic to (S, 0).

Thus the singularities of representation varieties ofArtin groups at representations
with finite image are as bad as germs of affine varieties defined over Q^ at rational
points.

As a corollary we get:

Corollary 1.10. — Suppose that Z C R" is a compact real algebraic set defined over Q.
Then there exist an Artin group G^ and a Shephard group 0s so that the affine real algebraic set
2 is isomorphic (1) to a union of components in the affine real algebraic sets

Hom(G\ 80(3, R))/SO(3, R), Hom(G8, S0(3, R))/SO(3, R).

Since every smooth compact manifold is diffeomorphic to an affine real algebraic
set defined over Q (see [AK]) we obtain:

Corollary 1 . 1 1 . — For every smooth compact manifold M there exists an Artin group G^
and a Shephard group G5 so that the manifold M is diffeomorphic to a union of components (with
respect to the ^ariski topology) in

Hoi^G", S0(3, R) )/SO(3, R), Hom(G8, S0(3, R) )/SO(3, R).

On the other hand, if M is a (connected) smooth complex algebraic variety and
G is an algebraic Lie group, then singularities ofHom(7Ci(M), G) at representations with
finite image are severely limited by Theorem 1.13 below. We will need the following

Definition 1.12. — Let X be a real or complex analytic space, x G X and G a Lie group
acting on X. We say that there is a local cross-section through x to the G-orbits if there is a
G-invariant open neighborhood U of x and a closed analytic subspace S C U such that the natural
map G x S —> U is an isomorphism of analytic spaces.

Theorem 1.13. — Suppose M is a smooth connected complex algebraic variety, G is a
reductive algebraic Lie group and p : 7Ci(M) —> G is a representation with finite image. Then the
germ

(Hom(7ii(M), G), p)

is analytically isomorphic to a quasi-homogeneous cone with generators of weights 1 and 2 and relations
of weights 2, 3 and 4. In the case there is a local cross-section through p to the Ad(G)-orbits, then
the same conclusion is valid for the quotient germ

(Hom(7Ti(M), G)//G, [p]).

(1) An isomorphism between two real algebraic sets is a polynomial bijection which has polynomial inverse.
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We present two proofs of this result: in § 14 we deduce it from a theorem
of R. Hain [Hai] and, since Hain's paper is still in preparation, in § 15 we also
deduce Theorem 1.13 from results ofj. Morgan [Mo2] on Sullivan's minimal models
of smooth complex algebraic varieties.

Note that in the case when M is a compact Kahler manifold then a stronger
conclusion may be drawn:

Theorem 1.14 (W. Goldman, J. Millson [GM], C. Simpson [Si]). — Suppose that
M is a compact Kahler manifold, G is an algebraic Lie group and p : 7Ci(M) —> G is a
representation such that the Zariski closure of p(7Ci(M)) is a reductive subgroup of G.
Then the germ

(Hom(7Ti(M),G),p)

is analytically isomorphic to a (quasi)-homogeneous cone with generators of weight 1
and relations of weight 2 (i.e. a homogeneous quadratic cone). In the case there is a
local cross-section through p to Ad(G)-orbits, then the same conclusion is valid for the
quotient germ

(Hom(^(M),G)//G,[p]).

Our proof of Theorem 1.13 is in a sense analogous to the proof of Theorem 1.14
in [GM], [Si]: we construct a differential graded Lie algebra (^9 which is weakly
equivalent to the algebra of bundle-valued differential forms ^'(M, adP) on M so
that Q e controls a germ which is manifestly a quasi-homogeneous cone with the required
weights.

In Figure 16 we describe the graph of an Artin group G^ which admits a
representation with finite image alg(\|/o) = po : G^ —» P0(3, C) such that the germ
(X(G^, PO(3,C)), [po]) is isomorphic to the germ at 0 defined by ^ = 0. Thus
Theorem 1.13 implies that the group G^ is not the fundamental group of a smooth
complex algebraic variety.

Remark 1.15. — Our convention for CoxeUr graphs is different from the standard convention
for Dynkin diagrams. Namely if two vertices are not connected by an edge it does not mean that
corresponding generators commute. If on our diagram an edge has no label, we assume that
the edge has the label 2. On the diagram for a Shephard group if a vertex has no label this
means that the corresponding generator has infinite order.

There is a local cross-section to the P0(3)-orbit through the representation po
(that appears in Theorem 1.9), hence we apply Theorem 1.13 and conclude that the
groups GA and G\ are not fundamental groups of smooth complex algebraic varieties.
To see that there are infinitely many distinct examples we may proceed as follows (we
consider only Artin groups, the case of Shephard groups is analogous).
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Take the varieties V. := {xp = 0}, p ^ 2 are prime numbers. Clearly V. is
not analytically isomorphic to V for q ^ p ' Thus for all p ^ 5 the varieties V.
are not analytically isomorphic to the quasi-homogeneous varieties described in the
Theorem 1.13. Hence the Artin groups G\ corresponding to V. are not fundamental
groups of smooth complex algebraic varieties. Note that among the groups G\ we
have infinitely many ones which are not mutually isomorphic. The reason is that for
any finitely-generated group F the character variety X(F, P0(3, C)) has only finite
number of isolated singular points whose germs are isomorphic to one of V.. This
proves Theorem 1.1.

In § 17 we use the results of § 16 to show that for every Artin group F and Lie
group G the germ (Hom(r, G), p) is quadratic where p is the trivial representation.

Acknowledgements. The first author is grateful to A. Vershik for a lecture on
Mnev's result in 1989. The authors are grateful to E. Bierstone,J. Garlson, P. Deligne,
R. Hain, H. King, J. Kollar, P. Millman, C. Simpson and D. Toledo for helpful
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2. Analytic germs

Let k be either R or C. Let (X, x) be an analytic germ in k" defined by analytic
equations

f\{^-^n) = °^^fk^-^n) = °-

The geometry of (X, x) is then encoded in each of the three following algebraic objects:
(i) the analytic local ring

M^-^.} .
^x,.

(/i,.../.)

(ii) the complete local ring

^ _ k[[^...^J]
X, x ~

(/I,...,/.)

(iii) the functor of points F (see below).

In the above (/i,...,^) denotes the ideal generated by/i,...,^ m the convergent
(resp. formal) power series in ^,...,^. Here we have chosen the coordinates ^,...,^
such that x = (0,..., 0). We now define the functor of points F

X.« x

We recall that an Artin local k-algebra A is a commutative, local k-algebra with
residue field k which is finite dimensional as a k-vector space. Thus if m denotes the
maximal ideal of A, then every element of m is nilpotent. Here is a typical example
of A: let k[^,...,^J be the polynomial ring over k in n variables, let 1̂  be the ideal
in k[^,...,^J which consists of all linear combinations of homogeneous polynomials
of degree ^ d. Then A = k[^, ...,xJ/I^ is an Artin local k-algebra A.
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Let ^^ be the category of Artin local k-algebras. We define

F : ̂ ^-^ gg^
-A. • X

13

by

^ .(A) = { ̂  - ̂ n) ̂  ̂ n 'Jj(rn,,.., m^ = 0, 1 ̂  /; }.

Remark 2.1. — An invariant definition off is given by

^^"Hc^-aig^^A).

Here the Horn denotes local homomorphism of local k-algebras.

We then have the following theorem

Theorem 2.2. — Lit (X, x) and (Y,y) be analytic germs. Letf: (X, x) -> (Y^) be a
morphism. Then the following are equivalent:

(i) f is an isomorphism of analytic germs',
(11) the induced map of analytic local rings is an isomorphism;

(iii) the induced map of complete local rings ^y^ -^ ^x, x is ^ isomorphism;
(iv) the induced natural transformation of junctors from F \o F is a natural isomorphism

r r , -? x •L ?^of functors.

Proof. — The above theorem is essentially Theorem 3.1 of [GM\. We will indicate
the modifications necessary to deduce the implication (iv)=^(i) from Theorem 3.1 and
Lemma 3.2 of [GM]. This is all we need for this paper.

Let (|) be the homomorphism of complete local rings induced by / and let a
be the natural transformation of functors of points induced by / By assumption a
admits an inverse P. By Lemma 3.2 (loc. cit.) P is induced by a homomorphism \y of
complete local rings. By construction the induced natural transformations of functors of
points induced by the compositions of ()) and \y are identity transformations. Hence by
the uniqueness part of Lemma 3.2 (loc. cit.) these compositions are identity maps also.
Hence (|) is an isomorphism of complete local rings and we have proved the implication
(iv)=^(iii). The implication (iii)=^(ii) is proved in [Ar, Paragraph 3 of page 282]. The
implication (ii)=^(i) is entirely trivial, the category of analytic germs is isomorphic to
the opposite of the category of analytic local rings. D

Remark 2.3. — Suppose that (Z, 0), (W, 0) are minimal germs of varieties in A' (i.e.
k" is equal to both parish tangent spaces To(Z) and To(W);, and these germs are analytically
isomorphic. Then there is an analytic dzffeomorphism f'. A" -^ A' defined in a neighborhood of 0
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whose restriction to Z induces an isomorphism of germs (Z_, 0) —> (W, 0). See for instance [Di,
Proposition 3.16].

Lemma 2.4. — Suppose (X^ x) and (Y^) ̂  ̂ -analytic germs and f'. (X^ )̂ —)- (Y^)
zj ^ morphism such that df^ : T^(X) —^ T (Y) zj ̂  isomorphism. Assume that (X^ )̂ £y smooth.
Then f is an isomorphism.

Proof. — By Theorem 2.2 it suffices to prove that the induced map of complete
local rings/* : ^y y ~' ^x x ls an isomorphism. Letj^,...,j^ be elements of the
maximal ideal m such that their images in m /m form a k-basis. Put x- := f * y ,

Y,^ ° Y,y Y,^ z J -/^

1 ^ z ^ N. Then the images of x^,...,% ln m^ /m2 form a k-basis. By Nakayama's
-?Y ^ A" X. . ^

Lemma (see [AM, Proposition 2.8]) the elements;^, ...^N (rcsp. Xi, ...,XN) generate m
^5 -^

(resp. m ) as an ideal. Since (X, x) is smooth we can say more: by the formal inverse
X, .v

function theorem

^x,^k[[^..,^]].

In particular, the monomials of weight n in x^^...,x^ form a basis for the k-vector
n / n+\space m /̂m .̂

We claim that the monomials m; of weight TZ inj^,...,^ form a basis for the
k-vector space m" /m^ . First, {m^} generates the ideal m" as an ideal. HenceY 5 J 1 ; Y 5 J / x •> y
given f^_ m" , there exists {^} C ^y v ^^ that/= ^i ^ w? But modulo m^ we
have

y^E^0)^
i

and we have proved that {m^} spans the k-vector space m1 /m1 . However the
^5 y ^ •> y

image of {m^\ under y* is a basis; hence an independent set. Therefore {m^} is also
an independent set and the claim is proved. Since

GiV-*) : Gr(^Y^) ̂  Gr(^x, .) = ̂  -,^

is an isomorphism it follows that^* is also by [AM, Lemma 10.23]. The lemma now
follows from Theorem 2.2. D

As an easy corollary we get an alternative proof of the following theorem of
A. Weil (see also [LM, Theorem 2.6]).

Theorem 2.5. — Suppose that Y is a finitely generated group, k is either R or C, G
is a reductive algebraic group defined over k, p : T —> G is a representation. Assume that
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H (r, adp) = 0 ,̂ i.e. p is infinitesimally rigid. Then the germ (Hom(r̂  G), p) is smooth and the
Ad(G)-orbit ofp is open in Hom(Î  G) (in the classical topology).

Proof. — Consider the inclusion morphism

i: Ad(G)p ̂  Hom(r, G).

Then for each g C G the adjoint action of g induces an isomorphism

0 = H\r, adp) -^ H\r, Ad(g) o adp).

Hence for each (|) C Ad(G)p the morphism l induces isomorphisms of Zariski tangent
spaces

T^Ad(G)p ̂  Z^r, ad^)) = T^Hom(r, G).

The variety Ad(G)p is smooth (it is isomorphic to the quotient of G by the centralizer
of p(F) in G). Hence by Lemma 2.4, l is an open isomorphism onto its image. D

Below we give another application. Suppose F is a finitely generated group and
G is a reductive algebraic group defined over k. Suppose s G F is a central element.
Let 0 be the subgroup of F generated by j, 0 : = F/0 and n: F —> 0 be the quotient
map.

Lemma 2.6. — Suppose p € Hom(r^, G) satisfies:

1. p ( ^ ) = L
2. H°(r, adp) = 0.

Then for each cocyck <7 C Z^F^, adp) we have: a(s) = 0. Consequently

7i* ^(O.adp^H^adp)

is an isomorphism.

Proof. — From G(sg) = o{gs) we deduce

p{g)a(s) - a(s) = p{s)G{g) - a{g) = 0.

Hence a{s) is fixed by p(F) whence by (1) we have a{s) = 0. Thus TC* is onto. But TC* is
clearly injective. D

Let p be the representation of $ induced by p. Then under the assumptions of
Lemma 2.6 we have

Lemma 2.7. — 7/'Hom(0^ G) is smooth at p then Hom(r^ G) is smooth at p.

This lemma is an immediate consequence of Lemma 2.6 and Lemma 2.4.
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In the rest of this section we discuss the following question:
Suppose that X' C X, Y' C Y are subvarieties in smooth quasi-projective varieties

X, Y over k, r\: X —> Y is a biregular isomorphism which carries X7 bijectively to Y'.
Does T| induce a biregular isomorphism X7 —> Y7 ?

Clearly the answer is " yes " if both subvarieties X', Y' are reduced. The simple
example:

X = Y = C , X ' = { ^ = 0 } , y = { ^ = 0 } , T i = i d

shows that in the nonreduced case we need some extra assumptions to get the positive
answer. Our goal is to prove that the answer is again positive if we assume that r|
induces an analytic isomorphism between X', Y' (Theorem 2.10).

Let R be a ring, m a maximal ideal in R, R^ the localization of R at m and
R^ the completion of R at m.

Lemma 2.8. — Suppose R is a Noetherian ring and f^=. R has the property that its image
in R^ is ^ero for all maximal ideals m. Thenf^- 0.

Proof. — By KrulTs theorem [AM, Corollary 10.19], the induced map R^ -^ R^
is an injection. Thus the image of/in R^ is zero for all maximal ideals m. Hence
for every such m there exists s ^ m with sf^O. Therefore Ann(y) is contained in no
maximal ideal. This implies that Ann(/) = R and/= 0. D

Lemma 2.9. — Let ^ : R —> S be a ring homomorphism and I C R., J C S be ideals.
Suppose that for every maximal ideal m in S with m Dj we have

<KI)®S,CJ(8)S,.

Then <()(I) Cj.

Proof. — It suffices to prove this when (|)(I) is replaced by an element / of S.
Thus we assume that the image of/in S^ is contained inJ®S^ for all maximal ideals
m C S. We want to conclude that/Gj. We further simplify the situation by dividing
byj. We have an exact sequence

o-^j-.s^s/j^o.
We use [AM, Proposition 10.15] to conclude that

(S/JnVjf^S/J®S,

and [AM, Proposition 10.14] to conclude

S/J®S;^SJ(J®SJ.
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Replace f by its image in S/J. We find that the image off in all completions of S/J
at maximal ideals of S/J is zero. Then f is zero by the Lemma 2.8. D

Theorem 2.10. — Suppose that X^ Y are nonsingular (quasi-) projective varieties over k and
r| : X —^ Y is an isomorphism. Let X' C X, Y' C Y be subvarieties so that: T)' := r||x/: X' —^ Y'
is a bijection which is an analytic isomorphism. Then r)' : X' —> Y' is a biregular isomorphism.

Proof. — It is enough to check the assertion on open subsets, so we may as well
assume that X, Y are affine with coordinate rings S, R, and the affine subvarieties Y',
X' are given by ideals I C R, J C S. The coordinate rings of Y7, X' are R/I, S/J.
Let m be a maximal ideal in R/I, then there is a maximal ideal 9Tt C R such that
m = 27t/I. Thus

R/In
R^

I® Rgn

Let (|) : R —> S be the isomorphism induced by T| : X —> Y. Since T)' is an analytic
isomorphism it induces isomorphisms of all completions

^an (̂b(9Jt)

I®R^ J®Ran

Thus the assertion of Theorem follows from Lemma 2.9. D

3. Quasi-homogeneous singularities

Suppose that we have a collection of polynomials F = (^, "">fm) m k", we assume
that all these polynomials have trivial linear parts. The polynomial f. is said to be
weighted homogeneous if there is a collection of positive integers (weights) w^ > 0,..., w^ > 0
and a number u. ^ 0 so that

^(^^Q,..,(V^))=^^(^..,^)

for all t € k. We will call the numbers w^ the weights of generators and the numbers u.
the weights of relations. Let Y denote the variety given by the system of equations

{y;=o..../,=o}
(Note that the germ (Y, 0) is necessarily minimal.) We say that (Y, 0) is quasi-homogeneous
if we can choose generators f^ ...,̂  for its defining ideal such that all the polynomials
f. are weighted homogeneous with the same weights w^..., w^ (we do not require u. to
be equal for distinct j= l,...,m). In particular, if(Y, 0) is quasi-homogeneous then (Y, 0) is
invariant under the kx-action on k" given by the weights w^...,w^.
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Remark 3.1. — The variety Y given by a system of quasi-homogeneous equations {f^O}
is also called a quasi-homogeneous (or weighted homogeneous^ cone.

We now give an intrinsic characterization of quasi-homogeneous germs. Suppose
that (Y, 0) is quasi-homogeneous. Let S^ C k[^, ...,^J be the subspace of polynomials
which are homogeneous of degree m (in the usual sense). We may decompose the
subspace S^ into one dimensional eigenspaces under k>< (since the multiplicative group
of a field is a reductive algebraic group). We obtain a bigrading

k[^..,^]=© ^m, u j r i j n

where m is the degree and n is the weight of a polynomial under k>< (/^transforms to
^f). We obtain a new grading of k[Aq, ...5^] by weight

k[^...^J = ®^=iS^

where S^ is the subspace of polynomials of weight n. We let I be the ideal of Y. Then
I is invariant under the action of kx (since its generators are). We claim

i=©^ins,
This follows by decomposing the action of k>< in the finite dimensional subspaces
I Ft ©^=1 S^. Thus if^C I we may write

f=f^fn, with/,61ns;;

(the sum is of course finite). Let R = k[Y] = k[^, ...,;vJ/L Then R is a graded ring,
R = ©^R,, with Ro = k, R,, = S;/(I n S;).

We let R be the completion of R at m where m is the ideal of zero, i.e. the
ideal generated by { ^,...,^ }. Hence

R^k[[^..,^]]/T

where I is the ideal generated by I in k[[^i, ...,,yj]. Hence R = (^y o- ^ne ri^ ^~
is not graded but it has a decreasing filtration W* such that W^^R is the closure of
(S^'n- Oenne Gr^R) = WWW'^R). The filtration W satisfies:

( i )Gr^=k.
(ii) n^oW" = o.

(iii) dim^Gr^R) < oo for all n.
>^ CN^ ,., -^

The inclusion R ^-> R induces an isomorphism R = Gr (R) and we obtain:
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Lemma 3.2. — (a) ^y, o admits a decreasing filtration W satisfying the properties ft)—
(Hi) above.

(b) There is a monomorphism of filtered rings Gr^^y^ o) -> ^Y . with d^ i^age, so
^Y o ls ^le completion ofGr^^y J.

(c) Conversely if^y^, satisfies (a) and (b) then (Y, 6) is quasi-homogeneous.

Proof. — It remains to prove (c). Define a k"-action on Gr^^y so that the
5

elements in the ^-graded summand have weight n for the action ofk^ Let m be the
ideal of o. Ghoose a basis of eigenvectors under kx action on m/m2. Lift these vectors
to eigenvectors^,..., ̂  of m. Then by a standard argument (see the proof of Lemma
2.4) if we set 7c(^) =^ we obtain a surjection

7C:k[[^,..,^]]->^^

which is k^equivariant. Hence the induced map of graded rings

7r/:k^,...,^-.Grw^,.

is also surjective. Let I be the kernel of 7l' and let Y be the affine variety corresponding
to I. D

Definition 3.3. — We will say that a complete local ring R is quasi-homogeneous if it
satisfies (a) and (b) as in Lemma 3.2. We will say a germ (Y, o) is quasi-homogeneous if the
complete local ring d^y o u quasi-homogeneous.

Here are several examples. The polynomial f(x,y, ̂  = ^ +y + ^ is quasi-
homogeneous with the weights of generators 15, 6 and 10 respectively. The weight of
the relation is 30. Let g{x) = ̂ , then g is quasi-homogeneous for any weight w of the
generator and the weight nw of the relation.

Another example is the germ (V^,, 0) = ( { ^ = 0 }, 0), p ^ 2 is prime. Let
us prove that this germ is not quasi-homogeneous for any weights of relations < p.
Indeed, suppose Y is a quasi-homogeneous cone whose germ at zero is isomorphic to
(V^,, 0). We assume that Y is minimal, hence Y C k. The polynomials defining Y must
be monomials (since Y is quasi-homogeneous). Then the analytical germ (Y, 0) clearly
can be defined by a single monomial equation ^ = 0. An isomorphism of germs
(Y, 0) —» (V^,, 0) induces isomorphisms of finite order tangent spaces, hence m = p.

In a certain sense generic germs are not quasi-homogeneous. This is discussed
in details in [A I], [A2]. Here is one explanation, in the case of germs in the affine
plane A2, which does not require knowledge of singularity theory but is based on
3-dimensional topology Suppose that Y C A2 is a minimal affine curve (defined over



20 MICHAEL KAPOVICH AND JOHN J. MILLSON

C), which is invariant under weighted action of Cx on A2 (with the weights w^ w^).
Then the set of complex points

Y(C) C C2

is invariant under the Cx-action with the weights w^ w^. The corresponding weighted
action of S1 preserves a small sphere S3 around zero and the link Yc H S3 = L. Thus
S3 — L admits a free S1-action, therefore S3 — L is a Seifert manifold. Generic singularities
do not have such property, see [EN]. For convenience of the reader we describe a way
to produce examples of singularities which do not admit Cx-action. Our discussion
follows [EN]. Start with a finite "Puiseux series"

y = ̂ lAl(^ + ̂ Al^ + ̂ /^^.(^ + ̂ ^1-^)...)))

where (p^ ^) are pairs of positive coprime integers. The numbers a. are nonzero
integers. Then y 5 x satisfy some polynomial equation f{x 5 y ) = 0 with integer coefficients,
the link L of the singularity at zero is an iterated torus knot, the number s is the depth
of iteration, the numbers p^ q^ describe cabling invariants. The complement S3 — L is
not a Seifert manifold provided that s ^ 2. The simplest example is when s = 2,

^=^l(al+^2/^).

For instance take a^ = a^ = 1, p^ = p<^ = 2, q^ = q^ = 3 (the iterated trefoil knot), then

(V _ ^3 _ ^2 ^ 4^

Another example of a singularity which is not quasi-homogeneous is

^y+^+y=o
see [Di, Page 122].

4. Coxeter, Shephard and Artin groups

Let A be a finite graph where two vertices are connected by at most one edge,
there are no loops (i.e. no vertex is connected by an edge to itself) and each edge e
is assigned an integer e(e) ^ 2. We call A a labelled graph, let ^{A) and ^(A) denote
the sets of vertices and edges of A. When drawing A we will omit the labels 2 from
the edges (since in our examples most of the labels are 2). Given A we construct two
finitely-presented groups corresponding to it. The first group G\ is called the Coxeter
group with the Coxeter graph A, the second is the Artin group G\. The sets of generators
for both groups are { g^ v £ ^(A) }. The relations in G^ are:

& = \,v € ^A), (g,g^ = 1, over all edges . = [̂  w] G ^(A).
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The relations in G^ are:

gv gw & Sw- = & & &.&••• . £ = ̂ ). over all edges e = [v, w] G ^(A).
£ multiples £ multiples

For instance, if we have an edge [v, w] with the label 4, then the Artin relation is

6y ow 6y ow ow 6y ow ov'

We let e{v^ w) = £([y, ^]) if y, w are connected by the edge [v^ w\ and e(^, w) = oo
if y, w are not connected by any edge. We also let e{v, v) = 1. Note that there is an
obvious epimorphism G^ —^ G^. We say the groups G^ and G^ are associated with
each other. The Artin groups above appear as generalizations of the Artin braid group.
The group G^ admits a canonical discrete faithful linear representation

AR : G^ -> GL(n, R)

where n is the number of vertices in A, see [Bo, Chap. Y § 4], which we describe
below.

Let W be the vector space with the basis e^ v G .̂ Define a bilinear form B
on W by:

8^.^)= -cos(n/e(v,w)).

Note that B(^, 6y) = 1 and B(^, e^) = —1 in the case e(z/, z^) = oo. Then we map each
generator gy of G\ to the reflection <7y = A^^)

G, : x ̂  x - 2B(^, x) • ^

in the space W which maps €y to —€y and fixes the hyperplane orthogonal to €y. We
shall identify R" with W.

We let h : G^ —> GL(TZ, C) be the complexification of h^. Suppose that the
Coxeter group G^ is finite. Then remove from C" the collection of fixed point sets of
elements ofA(G^—{ 1 }) and denote the resulting complement X^. The group G^ acts
freely on XA and the quotient X^/G^ is a smooth complex quasi-projective variety
with the fundamental group G^, see [B] for details. Thus the Artin group associated to
a finite Coxeter group is the fundamental group of a smooth complex quasi-projective
variety.

The construction of Coxeter and Artin groups can be generalized as follows. Sup-
pose that not only edges of A, but also its vertices Vj have labels 8 = §(y.) £ { 0 , 2 , 3 , . . . } .
Then take the presentation of the Artin group G^ and add the relations

^=l, .e^A).
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If 6(v) = 2 for all vertices v then we get the Coxeter group, in general the resulting
group is called the Shephard group. Again there is a canonical epimorphism G\ —^ G\.

Given a Coxeter, Artin or Shephard group G associated with the graph A we
define vertex subgroups Gy, v C ^A) and edge subgroups G, = G^, e = [v,w] G ^(A)
as the subgroups generated by the elements gy (in the case of the vertex subgroup) and
gy, g^ (in the case of the edge subgroup).

We will use the fact that several Shephard groups are finite. In Figure 1 we list
the graphs of the finite Shephard groups that we will use in this paper (see [C]).

2 4 p > 1 2 3

2 •—————————————————————• o
p > 1

FIG. 1. — Graphs for certain finite Shephard groups

All Artin groups we consider in this paper are associated to generalised Carton
matrices N (see [Lo], [Le]) as follows. For each pair of distinct vertices v^ v. of A
we have: £( .̂, .̂) € { 2, 4, 6, oo }. Enumerate the vertices of A from 1 to m. The
generalized Cartan matrix N is the m x m matrix with the following entries:

• The diagonal entries n^ of N are equal to 2.

Now consider off-diagonal entries riy, n^ of N assuming i <j.

• If £(^., Vj) = 2 we let riy = n^ = 0.
• If£(^., v) = 4 we let riy = -1, n^ = -2.
• If£(^., v) = 6 then riy = -1, ̂  = -3.
• Finally, if e(^, vj) = oo we let riy = n^ = —2.

Thus for i <j we have: n^ ^ fly^ 0 and e(^, ^) = 2, 4, 6, oo if Hy^ = 0, 2, 3, 4.

5. Local deformation theory of representations

Let k be a field of zero characteristic and A be an Artin local k-algebra with the
maximal ideal m. Let H be a linear algebraic group defined over k with Lie algebra
t). Let H(A) be the set of A-points of H (see § 2). Then the Lie group H(A) is the set
of k-points of a linear algebraic group H^ (see [GM, § 4]).

The structure of the group H^ can be understood as follows. The Lie algebra
t)^ ofH^ is easily seen to be the tensor product ^0A where the Lie bracket is defined
by the formula:

PC (g) a, Y (g) b] = [X, Y] (g) ab.



ON REPRESENTATION VARIETIES OF ARTIN GROUPS 23

We have a split exact sequence of Lie algebras

1} 0 m —^ ̂  ~^ 1) ^h Ae section t) -CT> ^A-

Since A is Artinian, m1^ = 0 for N ^> 0 and f) (g) m is a nilpotent Lie algebra. The
morphism a is induced by the canonical splitting of m —^ A —> k which sends the
identity of k to the identity of A. There is a corresponding split exact sequence of Lie
groups

H^ -^ HA -^ H with the section H -^ H^.

Now let r be a finitely generated group and pg : F —> H be a representation. Let
Hom(r, H) be the representation variety. We will use Theorem 2.2 to study the analytic
germ

(Hom(r,H),po).

The point here is that the associated functor of points A —> Hom(r, H)(A) is again a
representation variety, it is immediate (compare [LM, § 1]) that

Hom(r, H)(A) = Hom(r, H(A)).

We will say that an element of Hom(r, H)(A) = Hom(r, H(A)) is an A-deformation
of po. We note that there is a distinguished element po := (7 o p^ in Hom(r, H(A)).
We will say that an A-deformation p of po is trivial if there exists h € H(A) so that
p=(AdA)opo .

Example 5.1. — Let A = k^]/^, then

Z^F, ad o p,)^ { p G Hom(r, H(A)) : p o p = p, }

is the ^ariski tangent space to Hom(r^ H) at pg. In this case trivial ^-deformations of po
correspond to coboundaries in Z^I^ ad o p^).

Suppose that 0s is a Shephard group, G*1 is the corresponding Artin group, and
q : Ga —> 0s is the canonical projection. Let V^ denote the set of vertices with nonzero
labels in the graph of 0s. Let H be a group of k-points of an algebraic Lie group.
Consider a homomorphism pg : 0s —> H and let % = Po ° q' The projection q induces
a morphism of the representation varieties

q : Hom(G8, H) -> Hon^, H).

The morphism y* induces a natural transformation ^ of the corresponding functors of
points. If A is an Artin local k-algebra we have (using the above identification)

^ : Hom(G8, H(A)) -^ Hon ,̂ H(A))
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given by

?A(P) = P ° 9 = ?*(P)

We note that q^ is injective.

Lemma 5.2. — Suppose that (p G Hon^G^H^A)) is an P^-deformation of po z^Ao^

restriction to each cyclic vertex subgroup G^ y C V^ iy a trivial deformation o^cpoLa. TT^TZ (p
u

belongs to the image ofq^.

Proof. — We have the exact sequence

\^{{{gy,v^}}}^G^GS^\

where (( { gy \ v € V^ } )) is the normal closure of the collection { g^\ v € V^ }.
Whence (p belongs to the image of ̂  if and only if (p(& ) = 1 for all v € V^. We have
assumed that (p| a is a trivial deformation of po, thus there is an element h := hy € H(A)

v

such that (p^) = A(po(^)/T1. Since (po^5^) = 1 we conclude that (p^5^) = 1 as well. D

Corollary 5.3. — Suppose that H^G8^ ad op) = 0 (̂ . ̂  representation p ^ injinitesimally
rigid) and for each v C V^ the restriction homomorphism

Res^H^G-.ado^-.H^G^adp)

£5' ^ero. Then

q : (Hom(G8, H), p) -. (Hom(G^ H), p)

is an analytic isomorphism of germs.

Proof. — Let Z(p) denote the centralizer of p(GS) in H. Then the representation
variety Hom(G3, H) is smooth near p and is naturally isomorphic to the quotient
H/Z(p), see Theorem 2.5. Now the assertion follows from Lemmas 2.4, 5.2. D

One example when the first condition of the corollary is satisfied is the case
when the Shephard group G8 is finite.
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6. Projective reflections

Fix the bilinear form b = x^y^ + x?j^ + ^3^3 = (^5 ̂ , ^3) • (^i,^?^) on t^le

vector space V = C3; we shall also use the notation (', •) for b. Let (p denote the
quadratic form corresponding to b, let 0(3, C) be the group of automorphisms of b.
Let n : V -^ P(V) denote the quotient map and let C0(3, C) := Cx -0(3, C) C End(V).
The inclusion C0(3, C) —> End(V) induces an embedding P0(3, C) ̂  P(End V). Let
p : End(V) -^ P(End V) be the quotient map. Note that PSL(2, C) ^ P0(3, C) and
SO(3,R)^PO(3,R).

6.1* The correspondence between projective reflections
and their fixed points

In this section we study projective properties of elements of order 2 in the group
P0(3, C). Consider an element A e 0(3, C) such that the projectivization p(A) is an
involution acting on P^C). The fixed-point set of p{A) consists of two components: an
isolated point a and a projective line / dual to a (with respect to b). Our goal is to
describe the correspondence p(A) ^-> a in algebraic terms.

Let R C S0(3, C) be the affine subvariety of involutions. Note that -1 G 0(3, C)
does not belong to R. We leave the proof of the following lemma to the reader.

Lemma 6.1. — P0(3, C) acts transitively by conjugations on PR(C) (the image ^R(C)
mPO(3,C);.

We now determine j&(R), the Zariski closure ofj&(R) in P(End V). We define a
morphism r| : V —> End(V) by T\(v)(x) = ^(v)x — 2(v, x}v. If v is an anisotropic vector,
then T\(v) is a multiple of the reflection through the hyperplane in V orthogonal to v.
The reader will verify that r| is an 0(3)-equivariant morphism, i.e. T|(^) = g'^\(v)g~1,
g C 0(3), v € V, and that r| induces an equivariant embedding

T| : P(V) -^ P(End V)

of smooth complex manifolds.

Lemma 6.2. — The image ofx\ is contained in p{K).

Proof — Let Vp be the complement in V of X = { v G V : (p(z/) = 0 }. Then
Po(V) := 7i(Vo) is Zariski dense in P(V). But also TI(V()) C C .̂ Hence Po(V) C j&(R). D

We now consider P(V) and P(End(V)) as varieties over Q.

. . . . r>J ——
Lemma 6.3. — The morphism T| induces an isomorphism of varieties P(V) = j&(R).
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Proof. — Since r| : 7l(Vo) —> p{K) is equivariant it is easy to verify that it is onto (in
fact a bijection). Hence T|(7c(Vo)) = p{R) and, accordingly, T|7i(Vo) = p(R) = TI(P(V)). But
we have seen that the morphism T| : P(V) —> T|(P(V)) is an analytic isomorphism
of smooth compact complex manifolds. Hence (by the GAGA-principle) it is an
isomorphism of projective varieties. D

Let N :=J&-1Q&(R))-J&-1(^(R)). Then N may be described as follows. The bilinear
form b induces an isomorphism 1 ^ : V ( g ) V — ^ V * ( g ) V = End(V). Then N = ^(X (g) X).
We note that n^ := \>(y®v) is given by n^x) = {v, x)v. Hence the set of real points N(R)
is empty.

Let QC End(V) be the affine cone defined by Q^:= j^OTO. Hence N C Q
We define Qo := Q— N. Then T| induces a commutative diagram

v — a] }
Vo —— Qo.

Remark 6.4. — It can be shown that the cone Q^ C End(V) is defined by the equations:

1. XXT =XTX,
2.XXTE,=E,XXT, l ^ j < 3 ,
S.X^E^X2, \^i, j^3.

Here Ey is the matrix with 1 in the {y)-th position and 0 elsewhere. The equations (1) and
(2) define the closure P0(3) C P(End V). We will not need the explicit equations for j&(R) in what
follows.

We let ^ : PQ, —> P2 be the inverse of T| and abbreviate P(Vo) to P^. Note
that ^ : PR = PQo —> PQ assigns to each projective reflection its neutral (isolated) fixed-
point. Thus we have described the correspondence p(A) <-^ a algebraically. Note that
we have p2(R) = P^(R) and PQ(R) =JPQ^(R). Let ^ : V -> V* be the isomorphism
induced by b. Define (P^ by (P^ = ^(P^). Hence the space of anisotropic lines (P^ is
the space of lines dual to the set of anisotropic points P^.

6.2. Fixed points

Suppose that g G P0(3, C) is a nontrivial element. In this section we discuss the
fixed-point set for the action of g on P^C).

Definition 6.5. — A fixed point x for the action of g on P^C) is called neutral if the
determinant of the differential of g at x is equal to 1.

There are two classes of nontrivial elements g € P0(3, C): (a) g is unipotent, (b) g
is semi-simple.
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Case (a). — In this case g has a single fixed point a G P2, the point ^ belongs to
an invariant projective line L C P2. If we choose coordinates on L such that a = oo,
then g acts on L — {a} as a translation. The flag (L, a) is determined by the element
g uniquely. On the other hand, the flag (L, a) uniquely determines the 1-parameter
maximal unipotent subgroup in P0(3) which contains g. Finally, the fixed point a of g
uniquely determines the line L. It is easy to see that a is the neutral fixed point of g.

The collection P C P2 of fixed points of all unipotent elements in P0(3, C) is
the projectivization of the cone { x G C3 : (p(J?) == 0 }.

Case (b). — Each semisimple element of 0(3) is conjugate (in GL(3, C)) to

(±K 0 0\
A = 0 ^-1 0 .

V 0 0 I /

(up to =b). We have two possible cases depending on whether or not A2 = 1. If A2 ^ 1
then A has three distinct complex eigenvectors, one of them f is fixed by A. Thus,
in this case the transformation p{A) has three fixed points on P^C), the fixed point
/= p{f) is the neutral fixed point. The maximal torus in P0(3, C) containing p(A)
is uniquely determined by the neutral fixed point f (the same is true over the real
numbers).

Finally, consider the case A2 = 1. Then p(A) has one isolated fixed pointy on
P^C) (which is neutral) and a fixed projective line disjoint fromf.

6.3. Commuting and anticommuting elements

Suppose that a, a' are involutions in P0(3, C), thus they have isolated fixed
points X, X' and fixed projective lines A, A' C P^C).

Lemma 6.6. — The elements a, a! commute if and only zf either:

(1) a = a' and X = V, A = A', or (2) ^ C A'^ \' G A and A intersects Af orthogonally
(with respect to the quadratic form (p/

The proof is obvious and left to the reader. D
Suppose that a is an involution in P0(3, C) and P € P0(3, C) — { 1 }. We say

that the elements a, P anticommute if apa? = 1 (i.e. apa~1 = P~1) and a =|= P.

Lemma 6.7. — The elements a, P anticommute if and only if the neutral fixed point \i of
P belongs to the fixed projective line A of a.

Proof. — If a, P anticommute then |LI must belong to the fixed-point set of a. If
|l is the neutral point of a then either a and P commute (and P2 =^= 1) or a = P which
contradicts our assumptions. D
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Remark 6.8. — Suppose that a, P are anticommuting elements as above. Then they satisfy
the Artin relation

apap = papa

(since both right- and left-hand side are equal to 1).

7. Representation theory of elementary Artin and Shephard groups

In this section we consider mostly representation varieties of certain elementary
Artin and Shephard groups (their graphs have only two vertices and one edge). The
section is rather technical, its material will be needed in Section 12.

We will denote the action of elements y of S0(3) on vectors ^ in the Lie algebra
so{3) by ̂  := ad(y)t

7.1. Central quotients of elementary Artin and Shephard groups

Let G^ be an elementary Artin group: its graph \ has 2 vertices and one edge with
the even label n = 2m. We abbreviate gy to a and g^ to b. Set c = ab, ^ := (w. Then

^ = a{ab)m = a^bdf = {abfa = ^a.

Similarly b^ = ^b. This proves

Lemma 7.1. — The element ^ is central in G^.

We set s := ^ and G^ := G^/{s). It is clear that we have a short exact sequence:

1 -^ Z^ ->G^ S := (a, b,c | ab = c, ̂  = 1) ^ Z * Z^ -^ 1.

Put the label 2 on the vertex v of A^ let G^ be the corresponding Shephard
group. Set

G: := G:/(z2).

Then we get a short exact sequence:

1 -^ Z^ ^G[ -^ T := (^ ^ ^ | ̂  = c, (T = 1, ̂  = 1) ^ Z2 * Z^ -^ 1.

Notice that the groups G\ and G^ are virtually free, hence their second cohomologies
vanish. Therefore both G := G[ and G := G^ have smooth representation varieties
Hom(G,SO(3)).

We begin with a partial classification of real representations of G := G^ into
S0(3).
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Definition 7.2. — A representation p : G —» S0(3) zj called dihedral if p(G) AOJ an
invariant line but no invariant nonzero vector. If p(G) fixes a nonzero vector and consequently is
conjugate to a subgroup of 80(2)., then we will say that p is toral. The reducible representations p
split into two subclasses: (a) p is central zfp(^) ^ Ij, (b) p is noncentral otherwise.

We will use the notations a := p(fl), P := p(A),Y := p{c) (as well as notations
a, b, c, ^, s for the elements of G^, G^ and 85 T for the quotients ofG^,G^) throughout
this section and sections 7.2, 7.5, 7.6.

Remark 7.3. — Z^ p : G^ —^ 80(3) ^ ^ real representation. Then p ^ central dihedral
if and only if both a, P ham order 2 and their fixed subspaces in R3 are distinct.

Clearly each reducible real representation p is either dihedral or toral. 8uppose
that p : G^ —> 80(3) is a real representation which factors through p8 : G^ —> 80(3) and
a ^ 1 (i.e has order 2). The following theorem is a direct application of Lemmas 2.65
2.7, the above short exact sequences for the groups G^, G^,G^,G^ and the associated
8erre-Hohschild spectral sequences, we leave computations to the reader.

Theorem 7.4. — Consider a real representation p : G^ —> 80(3) which factors through G^.
Then:

1. p(s) = 1 unless p is toral.
2. Suppose that p : G^ —^ 80(3) is central dihedral. Then

H^ad^H^adp^O

and hence the representations p, p8 are infinitesimally rigid.
3. Suppose that p is either central toral, or noncentral dihedral or irreducible. Then

H^G:, adp) ̂  R2, H^G:, adp8) ̂  R

and both germs

(Hom(G:, 80(3)), p), (Hom(G;, 80(3)), p8)

are smooth. In the central toral case the embedding 80(2) ^-> 80(3) induces isomorphisms
of germs

(X(G:, 80(2), [p]) ̂  (X(G:, 80(3)), [p]),

(X(G;, 80(2)), [p8]) -> (X(G:, 80(3)), [p8]).

4. Suppose that p ^ noncentral toral f<aW nontrivial). Then both germs

(Hom(G:, 80(3)), p), (Hom(G;, 80(3)), p5)



30 MICHAEL KAPOVICH AND JOHN J. MILLSON

are singular and

H'(G:, adp) ^ R3, H'(G;, adp5) ̂  R2.

central dihedral

irreducible

FIG. 2. — The space of conjugacy classes of S0(3, R) representations of the group G^

In Figure 2 we give a schematic picture of the space of conjugacy classes of
S0(3, R) representations of the group G\ such that a =)= 1; this space is a graph with
two components.

7.2. The 2-generated free abelian group

Let r be the graph with two vertices v, w connected by the edge e with the
label 2 (Fig. 3). The corresponding Artin group G" is a free Abelian group on two
generators a = g^ b = g^. Take two anti-commuting involutions a, P C P0(3) and the
homomorphism PQ : G" —> P0(3, C) given by po : a ̂  a, po : b ̂  P. Hence po is
central dihedral The following results are special cases of Theorem 7.4, however because
of their importance we give separate proofs.

w

FIG. 3. — Graph F for 2-generated free Abelian group

Lemma 7.5. — The representation po is infinitesimally rigid, i.e. H^G^ adpo) = 0. The
point po € Hon^, P0(3, C)) is nonsingular.
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Proof — We have G21 = 7Ci(T2) (where T2 is the 2-dimensional torus) and the
group P0(3) is reductive, hence Poincare duality gives an isomorphism

H^.adpo^H^adpo).

The centralizer of Po(G^ in P0(3, C) is trivial. Therefore,

O^H^.adpo^H^.adpo).

Since the Euler characteristic of T2 (and hence of G^ equals zero, we conclude that
0 = H (G% adpo). The second assertion of the Lemma follows from Theorem 2.5. D

Note that the associated Coxeter group G° is the finite group Z/2 x Z/2. Let p^
denote the homomorphism G0 —> P0(3, C) corresponding to po.

Corollary 7.6. — We have a natural isomorphism between germs of representation varieties:

(Hom(GC, P0(3, C)), p^) ^ (Hon^, P0(3, C)), po)

given by composing homomorphisms G^ -> P0(3, C) with the projection G" —^ G0.

Proof — Follows from the Lemma 7.5 and Corollary 5.3. D
Now we consider the global structure ofHon^G^ P0(3)).

Lemma 7.7. — The variety Hon^, P0(3, C)) is the disjoint union of two ^ariski closed
subsets:

(1) the set oftoral representations S^ := { p : dimH^G^ adp) ^ 1 };
(2) the orbit 83 := Ad(PO(3, G))po of the (unique up to conjugation) central dihedral

representation po.

Proof — First we verify that Hom(G^PO(3, C)) is the union S^ U 83. Let
A C P0(3, C) be an abelian subgroup and A be the Zariski closure of A. If A is
infinite then the abelian group A is a finite_ extension of a 1-dimensional connected
abelian Lie subgroup A° ofPO(3, C). Hence A° is either a maximal torus or a maximal
unipotent subgroup of P0(3, C): both are maximal abelian subgroups in P0(3, C),
thus A C A°. We apply this to the group A = p(Ga) and conclude that in this case
dim H°(G\ adp) = 1.

Now we consider the case when A is finite; after conjugation, we get:
A C S0(3, R). It follows from the classification of finite subgroups in S0(3, R) that A
either has an invariant vector in R3-^} (which again means that dimH^G^ adp) ^ 1)
or A = Z/2 x Z/2 is generated by two involutions with orthogonal axes. Hence
Si U 83 = Hon^G", P0(3, C)).

It is clear that S^ and 83 are disjoint. Since the representation po is locally rigid
it follows that the orbit Ad(PO(3, C))po is open (see Theorem 2.5). The representation
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po is stable (see [JM, Theorem 1.1]) since Po^^ = Z/2 x Z/2 is not contained in a
proper parabolic subgroup ofPO(3, C). Hence the orbit Ad(PO(3, C))po is closed. D

7.3. Finite elementary Shephard groups

Take F to be any of the labelled graphs from the Figure 1. The corresponding
Shephard group G := Gp is finh^ hence we have

Proposition 7.8. — All representations of G to P0(3) are infinitesimally rigid and
Hom(G, P0(3)) is smooth.

We will need a slight modification of the above proposition. Let L be a reductive
algebraic group over R with Lie algebra cS?, G be a finitely-generated group such
that all representations p : G —> L(C) are infinitesimally rigid, pick elements a G G and
a G L(C) and consider the subvariety

F = F^ JG, L) = {p : G -^ L | p{d) = a} C Hom(G, L).

Proposition 7.9. — The subvariety F is smooth.

Proof. — The space Hom(G, L(C)) is the union of L(C)-orbits of representations
p.-, 1 ^j < m. If a =(= P(^) for all p G Hom(G, L(C)) then there is nothing to prove.
Otherwise we can assume that a = p(^) , j€ j C { l,...^ }. Since the representations
p are locally rigid we get

F(C)^UZL(C)«a))/Z^c)(P;-(G))
J^J

where ZH^(H) denotes the centralizer of a subgroup H C L(C). It is enough to verify
smoothness of F at the representations p ,j 6 J. Consider the Zariski tangent space
Tp.F(C). It is naturally isomorphic to

{^ez\G,^.):^)=o}.

However infinitesimal rigidity of p implies that (1) Tp.F(C) ̂  5S {a} /cS?0, where G and
{a) act on ^ via the adjoint representation adp. Hence the dimension of F(C) (as a
complex manifold) at p is equal to the dimension of its Zariski tangent space at p,
which implies that F is smooth at p . D

As a particular case we let a be one of the generators of G = Gp, pick an
element a € P0(3, C) and consider the subvariety

F, ^(G, P0(3)) = { p : G -. P0(3, C) [ p(a) = a } C Hom(G, P0(3, C)).

( ) Recall that =Sf denotes the subspace ofH-invariant vectors for a group H acting on S^.
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Corollary 7.10. — Suppose that G = Gp is a Shephard group as above, a is one of the
generators ofG, a G P0(3, C). Then the F^ ^(G, P0(3)) is smooth.

7.4. The infinite cyclic group

Consider the infinite cyclic group G = {b) and a representation p : {b) —^ P0(3, C)
so that p{b) = P is a nontrivial semisimple element with the neutral fixed point B.

Note that the Lie algebra so{3, C) has adp(&)-invariant splitting V^®^^ where
VP consists of vectors fixed by ad(3. The action of? on (V^ has no nonzero invariant
subspaces. Thus H\G, (V^) = 0 and

H\G, so{3, C)) ̂  H^G, V?) © H^G, (V^) ̂  H^G, V?).

This proves the following

Proposition 7.11. — Any cocycle a € Z\G, adp) Aflj ^/om a(&) = T + P^ - ̂  wA^
PT = T- 7%^ element T depends only on the cohomology class of a.

Remark 7.12. — 7^ zwtor T measures the infinitesimal change of the rotation angle of ̂
and ^ measures the infinitesimal motion of the fixed point B.

7.5. An elementary Shephard group with the edge-label 4

Consider the graph with two vertices v, w connected by the edge with the label
4, we put the label 2 on the vertex v, see Figure 4. The corresponding Shephard
group G8 has the presentation {a, b \ a2 = 1, (abf = (bd)2}.

w

FIG. 4. — Graph for a Shephard group

Consider a representation p : G8 -^ S0(3, R), p : a ̂  a, p : b ̂  p, where
we choose a to be an involution, P 4= 1 is an element such that a, P anticommute,
i.e. apap = 1 and a =t= P.^Hence p is noncentral dihedral (note that we have
P(^) = P(^2) = 1). We have T ̂  Z/2 * Z/2. The fixed line V? of P is orthogonal to the
fixed lines V01 and V7 of a and y. Moreover V01 ^ V7, hence so(3) = V^V^^. Note
also that a operates by -1 on V?. We already know that H\G\ adp) is 1-dimensional
(Theorem 7.4). Below is description of a canonical form for cocycles representing
cohomology classes.
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Proposition 7.13. — Let [a] € H^G, adp). Then [a] can be represented by a cocycle a
satisfying:

a{a) = 0, a(b) = T, where T e V13.

The vector T depends only on the cohomology class of the restriction o|^).

Proof. — Since p(^) = 1 and p(G8) has no nonzero fixed vectors we have o(c2) = 0
by Lemma 2.6. Hence we may write a(c) = ^ — y^. We subtract off a coboundary to
arrange that a(a) = 0. If we replace o by 8 = a — 5y with y G V01, then 9(a) = 0 and
8(^) =^— v — y ^ — v ) . Hence we may choose a so that ^ € V^ + V7. But if we replace
a by ^— w with w € V7; this does not change the cocycle a. Hence we may assume
^ G VP. Therefore a(^) = ^ - y^ ^ € V? and

o(&) = a(fl̂ ) = aa(̂ ) = a^ — ay^.

On the other hand, o^ = -^ (since ^ G V^ and ay^ = p^ = ^. We obtain
a{b) = —2^ = T e V^. This proves existence. Uniqueness of T follows from Propo-
sition 7.11. D

Remark 7.14. — Note that the cocycles a described in the above Proposition are integrable,
they correspond tfi deformations p^ of the representation p which fix p(a) = a and change the element
p{b) = P within the corresponding I-parameter subgroup in S0(3). For such representations the
elements p(a), p^b) anticommute.

7.6. The elementary Artin group with the edge-label 6

Now consider the 2-generated Artin group G'1 given by the relation {abf = {ba)3,
see Figure 5. Take a representation p : G" —> S0(3, R) which maps a and b to elements
a, P so that:

•a^l, p^l,
• the product 7 = a? has the order 3,
• [a, P] + 1.
In particular p is irreducible, hence, according to Theorem 7.4, H^G0, adp) is

2-dimensional.

w

6

FIG. 5. — Graph for the Artin group G8'
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Lemma 7.15. — Under the above conditions we have: so(3) = V" + V^ + V7.

Proof. — Let A, B, G € P2 be the neutral fixed points of a, P and y. Since the
representation is irreducible all these points are distinct. Notice that P = ay. Suppose
that there is a projective line L C P2 which contains all three fixed points. This line
is invariant under a and 7(L) n L = G since y has the order 3. Thus y(B) ^ L and
ay(B) ^L. This implies that ay(B) = P(B) =[= B, which is a contradiction. D

Lemma 7.16. — Let a C Z^G^ adp) be a cocycle such that a{a) = 0 and a{b) = T where
PT = T. 77^2 a=0 .

Proof. — We again use Lemma 2.6 to conclude that o(^) = (J(^3) = 0. Hence
(?((;) = ^ — Y^- If 0 ̂  0 then ^ =(= 0. Using Lemma 7.15 and arguing as in the previous
section we may assume that ^ € V". Thus

a{c) = ̂  - o^

hence

G(A) = (J(̂ ) = OC^ — .̂

We deduce o^ = ^ + T 6 V13 and 0 =(= ^ € V13. Hence a carries V13 into itself and p is
dihedral, a contradiction. D

7.7. A non-elementary Shephard group

Now suppose that we have a group G5 with the presentation:

(^, ̂ , 03, A | ̂ 2 = 1, j = 1, 2, 3 ; (a^)2 = (^-)2, i= 1,2; M3 = (^)3}.

See the graph in the Figure 6. Consider a representation pg : 0s —> S0(3, R) so that
1. ^.:=po(^H 1, 1 ̂ 3;
2. The group generated by 03 and P := po(^) has no fixed point in P2;
3. The neutral fixed points of the elements o^, a^, P do not belong to a common

projective line in P2;
4. (a3P)3 = 1.

Take the subvariety W C Hom(G, P0(3, C)) which contains po and consists of
homomorphisms that are constant on the generators a , 1 ̂ j ^ 3.

Lemma 7.17. — The point pg is an isolated reduced point in W.

Proof. — Notice that our assumptions also imply that P2 =^= 1 and [03, P] ^ 1-
Take a cocycle o € Z^G^adpo) which is tangent to the variety W. Hence
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2^1

FIG. 6. — Graph for the nonelementary Shephard group 0s

c{a) = 0, 1 < j< 3. According to Proposition 7.11 the value of a on the generator
b equals T + ^ — ^ . On the other hand, by Proposition 7.13 we can find coboundaries
5 .̂ G B1^., b}, adpo)j= 1, 2, so that

^ := a - 6^, G .̂) = 0, a/A) = T.

Here and below (a, b) denotes the subgroup of 0s generated by a. and A. Notice that
T does not depend on j (see Proposition 7.13). The coboundary 89 is given by

§e )̂ = po(^. - Q^ x C (^ b}, Q^ € so{3).

Thus

o^ = e^ p(9i - 62) = ei - 62.

Note however that the condition (3) on the representation po implies that the (1-
dimensional) fixed-point sets for the adjoint actions of Po(^i)? Po^)? Po(^) on ^(3) are

linearly independent. Therefore we conclude that 9 = 0, j = 1,2, thus a{b) = T and by
Lemma 7.16 we have o{b) = 0. Hence a = 0 and the Zariski tangent space to po in
W is zero. D

7.8. Nondegenerate representations

Let r be a labelled graph where all vertices and edges have nonzero even labels.
Let 0s denote the Shephard group corresponding to the graph F. The following
technical definition will be used in Section 12.1.
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Definition 7.18. — A representation p : G8 —> P0(3, C) ^z7/ ^ ^/W nondegenerate
on the edge e = [v, w] CF if the element p(gyg^) has the order

( e{e) , if 6(v) = 6(w) = 2
\ £(<?)/2 , otherwise

A representation p will be called nondegenerate on the vertex v 6 V(F) if p(gy) =t= 1. A
representation p will be called nondegenerate if it is nondegenerate on each edge and each vertex
ofr. Let Hom/^G8, P0(3, C)) denote the space of all nondegenerate representations.

Proposition 7.19. — Suppose that for each edge e C F the corresponding edge subgroup G^ C
0s is finite. Then Hom/G% P0(3, C)) is parish open and closed in Hon^G5, P0(3, C)).

Proof. — Since each G,, G, C 0s is finite, Hom(G,, P0(3, C)), Hom(G,, P0(3, C))
are disjoint unions of finite numbers of P0(3, C)-orbits of rigid representations. Since
each orbit is Zariski open the proposition follows in the case G8 = Gy, G^. Let

Res,: Hon^G8, P0(3, C)) -> Hom(G,, P0(3, C)),
Res,: Hom(G% P0(3, C)) -^ Hom(G^ P0(3, C))

be the restriction morphisms. Then Hom/G8, P0(35 C)) =

F| Res71Hony(G„PO(3,C))n F| Res^Hom^G,, P0(3, C))
v^(T} ee^(T)

and the proposition follows. D

8. Arrangements

8.1. Abstract arrangements

An abstract arrangement A is a disjoint union of two finite sets A = ^LJcS?, with
the set of "points" ^°= { ^, v^, ... } and the set of "lines" 5S = (/i, ^, ...) together
with the incidence relation l = l^ C ^x SS \\(p^ I ) is interpreted to mean "the point v
lies on the line I". We may represent the arrangement A by a bipartite graph, V = r\:
vertices of F are elements of A, two vertices are connected by an edge if and only if
the corresponding elements of A are incident (F is also called the Hasse diagram of the
arrangement A).

Convention 8.1. — When drawing an arrangement we shall draw points as solid points
and lines as lines. If\(y^ I ) then we shall draw the point v on the line I.
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An example of an abstract arrangement is the standard triangle T described in the
Figure 7 (this is a triangle with the complete set of bisectors):

T = { ^oo. ̂  ̂  ^10. ^oi; 4. ̂  ̂  ^, ^i, 4i ^ ^oo. 4). ̂ oi^), ̂  /J,
l^ U. ̂ . ̂  i(^, ^), 1(^11, ^), 1(^00, ^), 1(^0. y. ̂ 10. ^i),
^oi. 4i). ^10. 4). ̂ . ^i), i(^, 4i). ̂ 11, ^i), ̂ n, 4i)}

FIG. 8. — Bigon

Here is another example of an arrangement (Figure 8), we take A = {^ , ^; ̂ , /J
with the incidence relation:

i(^,/i),i(^, y.1^ ^i).1^. y-
Suppose that (A, i^), (B, 1 )̂ are abstract arrangements, (|): B -> A is a map which

sends points to points and lines to lines. We say that (|) is a morphism of arrangements if
IB(^) implies IA^L W)' A monomorphism of arrangements is an injective morphism.
An isomorphism of arrangements is an invertible morphism. Suppose that (|) : B -> A
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is a monomorphism of arrangements, we call the image (|)(B) a subarrangement in A.
Note that if we work with the corresponding bipartite graphs I\, Fg, then morphisms
A —> B are morphisms of these bipartite graphs which send points to points, lines to
lines.

Definition 8.2. — An abstract based arrangement A is an arrangement together with a
monomorphism of the standard triangle T ^-» A that we call the canonical embedding.

An arrangement A is called admissible if it satisfies the axiom:
(Al) Every element of A. is incident to at least two distinct elements (i.e. every point

belongs to at least two lines and every line contains at least two points) (1).
Note that we do not require any two distinct lines in the arrangement to meet

in a point.

Definition 8.3. — Suppose that Ay B ,̂ G is a triple of arrangements and (|) : C —> A, V)/:
C —> B are monomorphisms. We define the fiber sum A Xc B as follows. First take the disjoint
union of the arrangements A and B. Then identify in A U B the elements (^(c), \y(c) for all c G C.
If A, B are based arrangements and C is as above, then their join A*c B ls defined as A XTUC Bj»
where T is the standard triangle with canonical embedding into A, B.

If G is an arrangement which consists of a single point c and ^(c) = a € A,
\\f(c) = b € B, then we use the notation:

A ^a=b B :== A *c B.

8.2. Fiber products

We remind the reader of the definition of the fiber product of varieties (recall
that our varieties are neither reduced nor irreducible). Let/: X —> Z ^ g : Y —> Z be
morphisms. Then the fiber product X x z Y of X and Y with respect to Z is a variety
X Xz Y together with canonical morphisms FL^ : X Xz Y —> X and IIy : X Xz Y —> Y
such that the following diagram is commutative

X x z Y ——> Xi i
Y ——^ Z.

These data satisfy the property that given a variety W and a commutative diagram

W ——^ X

1 1
YY —^ Z

( ) This axiom will be needed only in Section 12.3.
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we have a unique commutative diagram

W —————> X
\ /

| X x z Y |
4, 4/

/

Y —————> Z.

The fiber product of quasi-projective (resp. projective) varieties is again a quasi-
projective (resp. projective).

We recall how to describe graphs of morphisms via fiber products. Suppose that
f:X=An—^Am=Z is a morphism. Let g : Y = A"1 —> Am be the identity morphism.
Define Fy, graph off, to be the subvariety

r ^ = X x Y Y = { ( ^ ) e X x Y : / ^ = ^ ) = j / } .
Clearly n^ : ly- —> X is an isomorphism of affine varieties.

Let /: X = A" —> Y = A^ be a morphism, Fr its graph and n^ : Tr ^ A" be
the canonical projection. We split A" as A""^ x A\ so ^ € A^ is written as x = (^, ^//),
A/ C A""^, ^// G A^. We obtain projections

nx:r^^A^ and 11 :̂1 -̂̂

defined by n^^) = ^ and n^(^) = y ! ' . Now let ^: A5 —^ A^^ be a morphism with the
graph r 5 letj/ G A8 denote the variable in this space. Using the morphism F —^ A^""^
(the second projection) and n^ : Fr ̂  A""^ we form the fiber product

n-k

Y^^Tf.

Now let h: A8 x A^ —^ A^ be the morphism given by

AL^W^O^").
Lemma 8.4. — TA^ projection map

p : (A5 x A'-^) x (A"^ x A^) x Aw -^ A8 x A^ x A7' = T

given by

p ( i y , x ' ) , { u ' , u " ) , z ) = i y , u " , ^

induces an isomorphism

i^x^r^r,.
Proof. — Obvious. D
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Corollary 8.5. — The morphism

q:Tg x^-fcT^--^ A' x Ak

(given by the restriction of p to Y x^n-k ly and the projection on the first and second factor ofT)
is an isomorphism.

Corollary 8.6. — Suppose that k = 0, then the composition of q with the projection on the
first factor

r:Tg x^-hT^—^ A5

is an isomorphism.

8.3. Intersection operations in the projective plane

Let J% be a commutative ring. We recall that the projective space P(M) for a
projective J% -module M of rank n is defined by

P(M) : = { V c M : V is a projective submodule of rank 1 such that
M/V is projective }.

We then define P%^8) and P"W by

P^)^?^^), ^W ^P^om^^^1,^)).

We refer to [DG, § 1.3.4, § l.S.Q], to see that this is consistent with the usual
definition of P\

Note that an element a G P^J^^ gives rise to a projective J%-submodule
L C J^3 of rank 2, L := ker(a), such that J^/L is projective. We will call both a and
L lines in P2^^). We say that a point V G P(M) belongs to a line L (corresponding
to a € P2^)^ if V C L; equivalently a(V) = 0. Suppose V G P2^) corresponds
to a rank one jree submodule of ^83 with the basis ^ = {x,jy, ^5 then we will write
V:= [x \y : ^] (these are the homogeneous coordinates of V).

We now show how to do projective geometry over J%. We define two elements
Span(^i), Span(^) e P2^^) to be independent if the submodule

L = Span { ^ 3 %2 } := ̂  ̂  + ̂  u^

is a projective summand ofJ^3 of rank 2. In this case we will also say that u^ u^ are
independent.

Lemme 8.7. — T^Span(M^) aW Span(^) are independent over ̂  then Span { 2^5 ̂  }
zj ̂  unique projective summand of ̂ ?> containing u^ and u^.
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Proof. — Let M denote Span { ^, ̂  }. Suppose that N is a projective summand
containing ^ and u^. Then N contains M. We want to prove that M = N. We may
assume that J^ is local whence M and N are free. Let { ^, ^ } be a basis for N.
Note that { ^, u^ } is a basis for M. Write

MI = av^ + ̂ , ^ = bv^ + <fo^.

Let k be the residue field of ̂ . The images of ^ and u^ in k3 are independent
so the image of ad — be in k is nonzero. Hence ad — he is a unit in ̂ . D

Thus two independent points U^ = Span(^), U^ = Span(^) € P2^) belong to
the unique line L = Span { ^, ^} m P2^). We shall use the notation

L := Ui • U^

for the line L through the points U^ , Ug. If u G J^3 we let ^v denote the element of
(J^3)^ given by u^(v) := u ' v = ^=1 M^-. We have the following sufficient condition for
independence:

Lemma 8.8. — Suppose that there exists u^ = (-^3,^3, ̂ ) € J^3 such that (u^ xu^)'u^ = 1.
Then u^, u^ are independent, moreover

Span { MI , ^2 } = ker(Mi x u<^.

7:/<?r̂  x ^ ̂  cross-product in <^3.

jFW/^ — The determinant of the matrix with the columns ^, ̂ , ^3 equals 1,
whence { ^, ̂ , ^3} is a basis for ̂ 3. Furthermore, suppose v = au^ + bu^ + ̂ 3. Then
(z/i X 2/2) • y = c, so ^ = 0 if and only if v G ker(z/^ x M2)v. D

Remark 8.9. — M^ observe that u^ as above always exists (and hence u^, u^ are independent)
if one of the coordinates o f u ^ x u ^ i s a unit in ̂ . In this case we will say that u^ and u^ satisfy
the cross-product test for independence.

Lemma 8.10. — If u^ u<^ e ^83 above satisfy the cross-product test^ then
Vi = Span î)^ V^ = Span(̂ ) can be joined by the unique projective line V^ • V^ in P^^)
corresponding to (u^ x u^.

Dual to the correspondence • : P2 x P2 —> (P2)V there is an operation of
intersection of lines in P2. Namely if ' k , yi are lines in P2 such that ^5^ are
independent points in P2, then we let (^r^ = ̂  •IL^. Clearly ^•n = ker(?l) D ker(|i).
If L^ € (P2^ correspond to rank one free modules with bases o = (a , P , y)? (? = 1 ? 2),
we will write L = [a : P : v]. We have
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Lemma 8.11. — Ifa^a^ above satisfy the cross-product test then L^, L^ intersect in the
unique point L^ • L^ with homogeneous coordinates [a^ x (79].

The incidence variety S7 C P2 x (P2^ is given by the equations

{ ( p , l ) ^ P 2 x ( P 2 ) y \ l ( f i ) = 0 } .

Let x , y , ^ be the coordinate functions on C3 relative to the standard basis and a, P, y
be the coordinate functions on (C3)* relative to the basis dual to ~e^ ,~e^ ,~e^. Then the
homogeneous coordinate ring of ^7 is isomorphic to

C[x^^q,p,Y]

{xa +jP + ^y)

For a general commutative ring ̂  the set of J^ -points I(M} C P2^) X P2^^
consists of pairs (V, a) such that V C L = ker(a).

Pick a point t € P^C). The r^w incidence variety ^(t) C (P2)^) is given by
the equation

{l^{p2)\c)\l{t)=o}.
By dualizing we define the relative incidence variety ^7(1) for any element / C (P2)^).
We define anisotropic incidence varieties S?\, S\{t) and ^^(1) by intersecting with

n ^^ Q __

PO X (Po)v. The proof of the following lemma is a straightforward calculation andPO x (Po)'
we leave it to the reader.

Lemma 8.12. — For any t and I the varieties S?\ S7{t), ^(t) are smooth.

Notation 8.13. — We will make the following convention about inhomogeneous coordinates of
points in P2: if q = [x \y : 1] then we let q := [x,y\ if q = [0 : 1 : 0] we let q := (0, oo), if
q = [1 : 0 : 0] we let q := (oo, 0) and if q = [1 : 1 : 0] we let q := (oo, oo).

8.4. Projective arrangements

A geometric realisation of the abstract arrangement A = ^U 5S is a map

(|): ̂ U S -^ P\C) U (P2(C))V

which sends points to points and lines to lines. This map must satisfy the following
condition:

(1) i(,, t) ̂  ^ e ̂ .
Equivalently:

(2) i(^/)^ W'W=0.
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The image of (|) is a protective arrangement in P2. Usually we shall denote lines of
arrangements A by uncapitalized letters (/, m., etc.), and their images under geometric
realizations by the corresponding capital letters (L, M, etc.).

Example 8.14.
in P2 so that

Consider the standard triangle T. Define a geometric realisation ̂  qfT

<l>T^oo) = (0, 0), ̂ ) = (^ 0), (^) = (0, oo), (|)^n) = (1, 1).

7te realisation uniquely extends to the rest of T. See Figure 9. We call ̂  the standard
realization qfT.

(0,1)

FIG. 9. — Standard realization of the standard triangle

The configuration space of an abstract arrangement A is the space R(A, P^C)) of
all geometric realizations of A. The space R^A.P^C)) is the set of C-points of a
projective variety R(A) defined over Z with equations determined by the condition (2).

Remark 8.15. — We will consider R(A) as a variety over Q.

We now give a concrete description of the homogeneous coordinate ring of R(A)
and the functor of points R(A)(»). Recall that x , y , s are the coordinate functions on C3

relative to the standard basis and a, P, y are Ae coordinate functions on (C3)* relative
to the basis dual to ~e^, ~e^, ~e^. Now let F be the (bipartite) graph corresponding to the
abstract arrangement A. We let { y^,...,^ } denote the vertices of F corresponding to
the points of A and let ^,...,^ denote the vertices of F corresponding to the lines of
A. Let P be the polynomial ring defined by

P:=C[^^i,^,...,^,^,^;ai,Pi,Yi,-^.,P^Yj.
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If ^ and £. are incident we impose the relation ^a "'"J^P; + ^Y; = 0- The resulting
quotient of P is the homogeneous coordinate ring of R(A) which we denote C [R(A)].
We next describe the functor of points J% —> R(A)(J%) where J% is a commutative
ring. It follows from the description ofP2^) in § 8.3 that the set R(A)(J^) is described
by

Lemma 8.16. — Let J% be a commutative ring. Then an J% -point \y € R(A)(J%) consists
of an assignment of a point V^ € P^J^)^ ^A point-zw^: ^ G F <aW <z line L G P^J^^

^/or ^A line-zwto £. G F J^A ^^ i(^, ^ ) implies V^ C L.

A AoW realisation is a realization (|) of a based abstract arrangement such that the
restriction of (|) to the canonically embedded triangle T is the standard realization ̂ .

The space of based realizations of an arrangement A will be denoted by
BR(A, P^C)). It also is the set of C-points of a projective variety BR(A) defined
over Q. Suppose that A is a based arrangement which has distinguished set of points
V = { ^,...,z^ } which lie on the line l^ G T. We call A^ a marked arrangement. A
morphism of marked arrangements is a mapping h : A^ —> B^ such that h(\i) C v. Note
that the fiber sum of two marked arrangements has the natural structure of a marked
arrangement. If v = { ^,..., ̂  } is a marking we define the space of finite realisations as

BRo(A,) = { y € BR(A) : ,̂) ̂  , ., C v }

where L^ is the line at infinity in A2. Clearly BR()(A) is a quasi-projective subvariety
in BR(A).

Lemma 8.17. — The maps R, BR and BRg define contravariant junctors from the category
of abstract arrangements, based abstract arrangements and marked arrangements to the category of
projective and quasi-projective varieties defined over Q.

Proof. — Obvious. D
We leave the description of the coordinate rings and functors of points of BR(G)

and BRo(C) to the reader.

Theorem 8.18. — Under the junctors R^ BR and BRg the operations offiber sum of
arrangements and join of based arrangements (see Definition 8.3) correspond to the operation of fiber
product of projective varieties and quasi-projective varieties.

Proof. — Note that the fiber sum of arrangements fits into the following
commutative diagram of monomorphisms of arrangements:

A

/ \
C — ^ A x c B .
\ /

B
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We shall consider the case of the functor R, the other two cases being similar. It
follows from the previous lemma that we have a commutative diagram of morphisms
of varieties:

R(A)
/ \

R(AxcB)—————^R(C).
\ /

R(B)

Thus, by the universal property we get a morphism

\: R(A xc B) -. R(A) XR(C) R(B).

To see that ^ is an isomorphism we have only to check that it induces bijections of
J^-points, for each commutative ring J^ (see [EH, Proposition IV-2]). This is clear
by Lemma 8.16. D

8.5. The moduli space of a projecrive arrangement

In this section we will construct a distinguished Mumford quotient R(A, P^C))//
PGL(3, C) which we will refer to as the moduli space ^^(A, P^C)) for a based arrange-
ment A. Since the equations defining R(A3P2(C)) are invariant under PGL(3, C) it
suffices to construct a Mumford quotient of

(P^x^P2)^

where m is the number of points in A and n is the number of lines. The Mumford
quotient R(A, p2(C))//PGL(3, C) of R(A,p2(C)) will then be the subvariety of the
quotient variety cut out by the incidence equations. In the next section we will identify
^(A, P^C)) with BR(A, P^C)) which will be seen to be a cross-section to the action
of PGL(3, C) on an open subvariety of R(A, P^C)).

To construct a (weighted) Mumford quotient o^P^C!))^ x ((P^C))^ we need a
projective embedding. Such an embedding corresponds to a choice of polarizing line
bundle over each factor of the product. Since the group of isomorphism classes of line
bundles on P^C) is infinite cyclic this amounts to assigning a positive integer weight
to each factor (i.e. to each vertex of the graph F of A). It will be more convenient to
assign positive rational weights to each vertex, then the integer weights are obtained
by clearing the denominators. We choose a small positive rational number e and assign

the weight - — e to each of the four point vertices VQQ, z^, i) v^ of T C A and the weight

£ to all other vertices. Let W:= { ^o? ^5 ^? ^11 }•
Note that all semistable configurations for the four-point case are stable, see

below. Thus it is clear that if e is small enough, the calculation of stable and semistable
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points will reduce to the corresponding calculation for PGL(3, C) acting on the product
of four copies of P^C) corresponding to the four point-vertices described above. This
calculation is well-known (see [N]). A configuration is stable (resp. semistable) if and
only if less than (resp. no more than) 1/3 of the total weight is concentrated on any
point and less than 2/3 (resp. no more than 2/3) of the total weight is concentrated
on any line. We obtain

Lemma 8.19. — All semistable configurations in R(A, P^C)) are stable. A realisation
\y : A —> P^C) U (P^C)^ is stable if and only if no three points of \|/(W) lie on the same
projective line in P^C).

8.6. The moduli space of the standard triangle

As an important example we consider the configuration space and moduli space
of the standard triangle T. First of all we note that R(T, P^C)) is not irreducible.
Here is the reason. Let ^ ^ R^.P^C)) be the standard realization. Then all
(() C RfT.P^C)) nearby are equivalent to (()-? under some projective transformation.
However there are other (degenerate) realizations \|/̂  C R(T, P^C)). Namely send all
the points of T to the origin (0, 0) € A2 C P2. The triangle T has 6 lines, which can
be sent to any 6 lines in P2 passing through (0, 0). This gives us a 6-parameter family
F of degenerate realizations (which is the product of six copies of P1). After we mod
out by the stabilizer of (0, 0) in PGL(3, C) we get 3-dimensional quotient. There are
several other components which interpolate between ̂  and \(/^ namely when three of
the points VQQ, v^, v , v^ belong to a common projective line. To remedy the problem
we consider the Mumford quotient R(T, P^C^y/PGL^, C) where we assign weights as
in the previous section. Let R^(T, P^C)) be the set of semi-stable points with respect
to these weights. Our definition of weights prevents images of any three of the points
VQQ^V^V 5 ^ 1 from belonging to a common projective line in P^C). It is clear that
R,(T, P2^)) = PGL(3, C){ ̂  }. Thus we get

Lemma 8.20. — The weighted quotient ^(T)(C) = R(T, P2(C))//PGL(3, C) consists
of a single point which we can identify with the cross-section { ̂  } for the action of PGL(3, C)
^Rjr^C!)).

Suppose now that A is a general based arrangement, we assign weights as above.
Then BR(A, P^C)) C R,(A, P\C)) = RJA, P\C)). By Lemma 8.19, BR(A, P\C)) is
a cross-section to the action of PGL(3, C) on R,(A, P^C)). We obtain

Lemma 8.21. — The inclusion BR(A, P2) c-^ R(A) induces an isomorphism
BR(A, P^C)) ^ ̂ (A, P^C)) between projective varieties.
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8.7. Functional arrangements

Suppose that A is a based marked arrangement with the marking v = { ^,..., ̂  }
(see § 8.4). We call the points in v the input points and we shall assume that vHT = 0.
We also suppose that A has the second marking |il = { w^,...,w^ }, which consists
of distinct output points { w^...,w, }. (The sets |l and V can intersect and we allow
|LI H T 4= 0.) Recall that \(v,, 4), \{w^ Q for all ij.

Define the projection maps from the spaces of finite realizations
n : BRo(A,) -. A-, A : BRo(A,) ̂  P- by

n : (|) ̂  (^),..,^)) = fo,..,^) e A-
A : ̂  (^), ..,^)) = ̂  ..,̂ ) € P5

(here we identify the .v-axis L^ — { (oo, 0) } with the affine line A).

Definition 8.22. — Suppose that the arrangement A above satisfies the following axioms:
• (A2) BRo(AJ C BRo(A^ i.e.

V(^) ^ ̂  ! <J < n =^ \y{Wi) ^ L^, 1 ^ i < s .

• (A3) The projection Tl is a biregular isomorphism of the variety BRo(A ,̂) onto An.
Such arrangement A is called a functional arrangement on n variables.

Each functional arrangement defines a vector-function/: A^ —> A8 by

/(^,..,^):=AW=((|)(^),..,^))

where (|) C BR()(A^) corresponds to (^, ...,^) under the map n. We shall record this by
writing A = At. It is easy to see that the vector-function / must be polynomial. Later
on we will give some examples of functional arrangements and we will prove that any
m-tuple of polynomials in Z[^,...,xJ can be defined by a functional arrangement.

Lemma 8.23. — The space BRo(A^) is biregular isomorphic to the graph Tr of the function
f: A^ ̂  A8.

Proof. — Indeed, the natural projection n: Yr —> A" is an isomorphism. Compose
it with the isomorphism n~1. The result is the required isomorphism Fr—^ BR^A^). D

Now suppose that we are given two functional arrangements A^, Ag which define
the functions/: A" —> A' and g : A^ —> A. We denote the variables for/by (^, ...,^)
and the variables for g by (x^ ...,^). We assume that they correspond to the input points
p\^.^pn and yi,...^ respectively. Denote by WQ € Ag the output point. We would like to
find an arrangement which defines the function h ^/(^(^i, ...,^), ^2, ...,^). To do this
we let Ah be the join A7^=wo A^.
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Lemma 8.24. — The arrangement Ah is functional and it defines the polynomial h which
is the above composition of the junctions f, g.

Proof — The Axiom (A2) for A^ follows from the Axiom (A2) for the
arrangements Ay-.A^. The Axiom (A3) follows from the fact that BR^) is the fiber
product of the varieties BR^A7), BRo(A^ see Lemma 8.4. D

9. Algebraic operations via arrangements

The following theorem goes back to the work of von Staudt [St] in the middle
of the last century:

Theorem 9.1. — There are admissible functional arrangements G^, C^ which define the
junctions

A^!. ^2) = ^1 + ^2 . M^!. ^2) == ^1 • ^2 •

Proof. — Consider the functional arrangement G^ described in Figure 10. We
omitted from the figure several (inessential) lines and points of the standard triangle T,
however we still assume that C^ is a based arrangement. A generic projective realization
\y of this arrangement is described in Figure 11. Then the point of intersection of the
line Mi := \v{m^) and the ^-axis L^ is equal to ab. (See [H, page 45].) The addition is
defined via the abstract arrangement in Figure 12. A generic projective realization ofG^
is described in Figure 13. (See [H, page 44].) We will prove that G^ is a functional
arrangement, leaving the similar case of G^ to the reader. The Axioms (Al), (A2)
are clearly satisfied by the arrangement G^, it is also easy to see that the morphism
n : BR^C^) —> A2 is a bijection of complex points.

The problem is to prove that n is invertible as a morphism. The example that
the reader should keep in mind is the following. Consider the identity map

i d : { x = 0 : ^ e C } ^ { ^ = 0 : ^ C C } .

Then id is a morphism which is bijective on complex points but not invertible as a
morphism.

We will prove that n : BR^G^) —^ A2 induces a bijection 11̂  of M -points
for any commutative ring ^B. This will imply that n is an isomorphism by [EH,
Proposition IV-2].

Let A^ be a based marked arrangement. We first interpret the finiteness condition
V(^) f L^, Vj G v, scheme-theoretically for any M -valued point \y G BRo(A)(^g). We
will construct a subfunctor U C P2 corresponding to the affine plane P2 —L^. Let ̂
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/„

FIG. 10. — The abstract arrangement Cj^ for the multiplication

FIG. 11. — Projective arrangement for multiplication

be a commutative ring, let { ^, ^, ^3 } be the standard basis of ̂ 3 and let M C ̂ 3

be a submodule defined by M = Me^ + J%^. We define U(J^) C P2^) by

U(^g)= { V C P2^) :V is a complement to M }.

It is then immediate, see [DG, § 1.3.9], that V € U(J^) implies that V is free and
contains a unique vector (necessarily a basis) u of the form ^ = j^ +j/^ + ^3. The
map 0) : U(^) -^ ̂ 2 + ^3 given by co(V) = ( x , y , 1) is a natural (with respect to <^)
bijection. Consequently U is represented by the polynomial algebra Z[X, Y]. By [DG],
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FIG. 12. — The abstract arrangement CA for addition

h

FIG. 13. — Projective arrangement for addition

loc. cit, U corresponds to an open subvariety, again denoted U, of P2 isomorphic to
A2 (by the previous sentence). We observe that U(C) = p2(C) - L^. Thus U gives us
the scheme-theoretic definition of P2 — L^.

We now give the scheme-theoretic definition of the space of finite realizations
BR()(A^) by requiring that \y{vj) e U, ^ G v. In the case \y C BRo(A^)(^g) we have

^(V(^))=(^ l)^v•

Moreover, since l(^, Q we have ^ = 0, ^ C v. Thus we have associated a point
(^i,...,^) € ^n to each \y C BRo(A^)(^). We will see in what follows that the
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coordinates (^,...,^) will play the same role as complex or real variables in the
classical arguments.

We are now ready to prove

Proposition 9.2. — The map H^ : BR^C^X^) -^ J^2 is a bijection.

Proof — Let \y € BR^C^X^). We will prove that \|/ is determined by \y(v^), \|/(^)
and the incidence relations in C^. If u = { x , y , ^ we will use [x \y : ̂  below to denote
both the element in P2^) with the basis u and the element in P2^^ with the basis
^v; the meaning will be clear from the context.

We now prove the proposition. Let 0)(\|/(^)) = {a, 0, 1) and co^)) = (b, 0, 1).
Now co(v|/(^)) x (0, 1, 0) = (1, 0, -a\ Hence by the cross-product test [1 :0 : -a} is the
unique line joining \y{v^) and [0, 1, 0]. But \|/(/i) = V|/(^)»L^ whence \|/(/i) = [ 1 : 0 : -a].
We continue in this way, at each stage the cross-product test applies and we find in
order

\y(v) = y(/i) • v|/(/^) = [a : a : 1]

^2 )=¥(^ i )^¥(^ )=[ l^ - l : -q
V|/(^)=V|/(/2).V|/(/J=[^-1 :-1 :0]

V|/(mi) = \y(u) • \y{v) = [-1 : 1 - b : ab]
\|̂ ) = y(mi) • \|/(4) = [̂  : 0 : 1]:

This concludes the proof of Theorem 9.1 in the case of the arrangement C^. The
argument in the case of C^ is similar and is left to the reader. D

Lemma 9.3. — For the junction D(x,jy) = x —y there is a functional arrangement C^
which defines the junction D(x,jy).

Proof — Take the arrangement G^ corresponding to the function A(^,j/) = x +j
and reverse the roles of input-output points v^, w^. D

Remark 9.4. — Suppose that A is one of the arrangements C^, C^, C^ and \|/ C
BR(A, P2(C)) is a realisation such that n(\y) = (0, 0), hence \|/(z^) = 0, \y{m^ = L . Then
V(A) C ^(T) U { (oo, oo) }. (Recall that ̂  is the standard realisation of the standard triangle.)
Let us verify this for G^. If \|^i) = 0, V|/(^) = 0 ̂  \|/(/i) = y(^), ̂  = ^). /^n^
\|/(M) = (oo, oo) aW V|/(y) = (0, 0).

Lemma 9.6. — There exist admissible functional arrangements C^ C~ which define the
constant functions

/^)=1, /-(^)=-1.
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FIG. 14. — Projective arrangement for the constant function f—(^) = —1

We describe the configuration only for the function y_, the other case is similar.
Consider the arrangement in the Figure 14, as usual we omit inessential lines and
points form the standard triangle. Let ^ be the input and w^ be the output points.
Under each realization (() of G~ the image ^(w^) is the point ( — I , 0). The image of ^
is any vertical line in A2. We leave the proof of the fact that the arrangement C~ is
functional to the reader. D

Lemma 9.6. — There exist admissible functional arrangements D^ which define the junctions
f^x)=x/mform=2,3^, ....

Proof. — Using arrangements for addition and the constant function f+ we
construct arrangements G^ which define constant functions f(x) = m for m e Z, m ^ 2.
Finally we use the arrangement G^ for multiplication and the formula f^(x)' m = x to
construct an arrangement which defines the function f^{x)'. identify the output of G^
with ^ G C^ and declare w^ G C^ the input, ^ e Gj^ the output. D

Corollary 9.7. — For any polynomial f m n variables with rational coefficients there exists a
functional arrangement At which defines f.

Proof. — Any such polynomial is a composition of the constant functions
f^ addition, multiplication and division by m, m € Z+. Thus the assertion is a
straightforward application of Lemmas 8.24, 9.1, 9.3, 9.5, 9.6 and Corollary 8.18. D

Now we construct arrangements corresponding to polynomial vector-functions
defined over Q.

Lemma 9.8. — Suppose that f^ ...5^ C QI^p-.^^J. Then there exists an admissible
abstract functional arrangement P^ which defines the vector-function F = (^, ...5 )̂.
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Proof. — By Corollary 9.7 there exist functional arrangements A71,...^^ which
define the polynomials f.. Let Vy be the input point of A^ corresponding to the variable
Xp 1 ^ i < m, I ^j ^ n. Let G = { v^..., ̂  } be the arrangement which consists only of
points Vj and has no lines, B = C U T. For each point v. define ^ : v. i—^ v^ this gives us
embeddings \|̂ - : C c-^ A^. Using these embeddings define A = (A71 * ... * A^) x^ B. In
the arrangement A we have Vy = Vjy =. v? 1 ̂ j, k < ^ these are the input points of A. The
output points ^i,...,^ correspond to the output points of the functional arrangements
A71, ..^A7^. Then the fact that A = A1' is the functional arrangement defining the vector-
function F follows by iterated application of Corollary 8.6 and Theorem 8.18 similarly
to the proof of Lemma 8.24. D

10. Systems of polynomial equations

Suppose that we have a system of polynomial equations defined over Q

(MX) = 0
f,(x) = 0

l/J )̂ = 0

where x = {x^, ...,x^), x. G C. These equations determine an affine variety S C A"
defined over Q. In the previous section we have constructed a functional arrangement
A = A17 which defines the vector-function F = C/i, ...,./,,)• Recall that we have two
projection morphisms

n : BRo(A, P2) -^ A" , A : BR()(A, P2) -^ A"

so that the diagram of morphisms

BRo(A, P2) A C"
A! F!4, 4,

C"1 ========= C""

is commutative. By the Axiom (A3) the projection II is an isomorphism. Let T C A
be the standard triangle, w = VQQ be its vertex. Define the new abstract arrangement
A1 as the join

J/x = (•••((^1L *wi=w T) *^=w T)... *w^=w T).

Then BR^) is the fiber product { \|/ € BRo(A, P2) : A(\|/) = 0 } and

BR^A^^eA^F^O},
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where the isomorphism is given by the restriction T of II to BR()(A). Thus we get the
following scheme-theoretic version of Mnev's universality theorem (theorem 1.3 in the
Introduction):

Theorem 10.1. — For any system of polynomial equations with rational coefficients

f,{x) = 0
f,{x) = 0

[fnW = 0

there is an admissible based arrangement A = A^ such that T : BR()(A, P2) = S is an isomorphism
of quasi-projective varieties over Q.

Definition 10.2. — We call the morphism geo = T~1 the geometrization: it allows us to
do algebra (i.e. solve the system Z of algebraic equations) via geometry (i.e. by studying the space of
projective arrangements).

Note that the arrangement A = A1 is not uniquely determined by the affine
variety S but also by its affine embedding (the system of polynomial equations) and
particular formulae used to describe these equations. For instance, the equation ^ = 0
can be described as (^ • x^) ' x as well as x ' { x 1 ' x^) and ( x ' {x2)) ' x^y etc.

Suppose that the system of equations £ is defined over Z and has no constant
terms. Then we can rewrite the system Z so that it does not involve multiplicative
constants, for instance the equation 2x^y + (—1)^: = 0 is equivalent to

y^y + ^y — ^ = 0.

Then the only subarrangements involved in the construction of the arrangement
A^ are the arrangements for multiplication, addition and subtraction (described in
Lemmas 9.1, 9.3) and we do not need the arrangements C±,G^,D^. Let Yo C
BR(A, P2) be the realization corresponding to the point 0 C S under the isomorphism
T. Take any line I 6 A—T and a point v G A—T. Then by using Remark 9.4 and the fact
that the arrangement for the composition of functions is a join of their arrangements
(so it has no new point or line) we conclude that the following holds:

Lemma 10.3. — The image V|/o(/) is one of the lines L^, L , L^ and ^(v) is one of the
points

(0,0) , (O.oo)-, (oo.O) ,(oo,oo)

for each line / € A — T and each point v € A — T.
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Suppose now that Q is an affine variety defined over Q and y G Q^ is a rational
point. Then we can realize Q^ as an affine subvariety S C A^ defined over Z so that
q goes to zero. Hence we get the following

Corollary 10.4. — For any affine variety Q^ defined over Q and any rational point q € Q,
there exists an abstract admissible arrangement A and an isomorphism (1) geo : Q^ —^ BR()(A) jo
^ ̂  point q corresponds to a realisation \y such that \y(l) is one of the lines L^, L , Ly ̂
\|/(z/) 2,5' OT^ o^^ points

(0,0) ,(0,oo) ,(oo,0) ,(oo,oo)

^r <^A line / e A — T W ^cA point v G A — T.

11. Groups corresponding to abstract arrangements

We will define several classes of groups corresponding to abstract arrangements.
Let r = I\ be the bipartite graph corresponding to an abstract arrangement A. We
first construct the Goxeter group G\ without assuming that A is a based arrangement:
we assign the label 2 to all edges of Y and let G^ := Gp.

From now on we suppose that A is a based arrangement. We start by identifying
the point VQQ with the line /^, the point v^ with the line ly and the point v with the line 4
in the standard triangle T. We also introduce the new edges

ko^ooL ki^ooL ki^oo]
(Where v^, VQQ, v^, v^ are again points in the standard triangle T.) We will use the
notation A = A^ for the resulting graph. Put the following labels on the edges of A:

1) We assign the label 4 to the edges [^o, ^J, [^, Voo] and all the edges which
contain v^ as a vertex (with the exception of [y^, ^o]). We put the label 6 on the
edge [^ii^oo]-

2) We assign the label 2 to the rest of the edges.
Let A := A — [v^y VQQ]. Now we have labelled graphs and we use the procedure from
the Section 4 to construct:

(a) The Artin group G\ := G^.
(b) We assign the label 3 to the vertex ^ i and labels 2 to the rest of the vertices.

Then we get the Shephard group G^ := G\.
We will denote generators of the above groups g y , g^ where v, I are elements of A
(corresponding to vertices of A).

Remark 11.1. — Suppose that A is a based arrangement Then the group G\ admits an
epimorphism onto a free product of at least 3 copies ofZ/2 and the group G\ has an epimorphism

( ) Of varieties defined over Q.



ON REPRESENTATION VARIETIES OF ARTIN GROUPS 57

onto a free group of rank r ^ 3, ^/^? r + 3 is the number of lines in A. Z^ ^ ^Z; this
for G == G^. Construct a new arrangement B ^ removing all the points in A (^W ̂  lines
4^ ̂  ^J- ^^ GB = Z * ... * Z zj ̂  r-fold free product, where r ^ 3 is the number of lines
in A — { 4, l y , l^ }. It is clear that we have an epimorphism G\ —^ Gg. Hence all the groups
G^, GA are not virtually solvable.

As an illustration we describe an example of a labelled graph corresponding to
the based functional arrangement defining the function x ̂  x2, see the Figure 15.

FIG. 15. — Labelled graph of the functional arrangement for the function x2.
Identify vertices with the same labels. The point v is the " input", the point w is the " output"

12. Representations associated with projecrive arrangements

This section is in a sense the heart of the paper. We start with an outline of the
main idea behind it (1). A projective arrangement \y is anisotropic \f^(v) e P^, \y{l) € (P^
for all points and lines v, I C A. The anisotropic condition defines Zariski open

( ) Certain versions of this idea were used previously in our papers [KM I], [KM2], [KM3].
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subsets of the previous arrangement varieties to be denoted R(A, P^), BR(A, P^) and
BRo(A, P^) respectively.

We now describe the morphism

alg : BR(A, P^) -. Hom(Gl, S0(3)).

As we already saw in Section 6, the correspondence between involutions in P2 and their
isolated fixed points is a biregular isomorphism between PQ^ and P^: any point x in
PO uniquely determines the " Cartan involution9? around this point, i.e. the involution
such that x is the isolated fixed point. The point x = (1, 1) in A2 C P2 also determines
(uniquely up to inversion) the rotation of order 3 around x, so that x is the neutral
fixed point. (We will choose one of these rotations once and for all.) Similarly any line
L G (PQ^ uniquely determines the reflection which keeps L pointwise fixed. Finally
we encode the incidence relation between points and lines in P2 using algebra: two
involutions generate the subgroup Z/2 X Z/2 in P0(3) if and only if the isolated fixed
point of one of them belongs to the fixed line of the other, rotations of orders 2 and
3 anticommute if and only if the neutral fixed point of the rotation of order 3 belongs
to the fixed line of the involution, etc. Thus, given a geometric object (an anisotropic
projective arrangement) we can construct an algebraic object (a representation of the
associated Shephard group). We call the mapping

alg: anisotropic projective arrangements —> representations

algebrai^ation. This mapping is the key in passing from realization spaces of projective
arrangements to representation varieties. The fact that this correspondence is a
homeomorphism between sets of C-points of appropriate subvarieties will be more
or less obvious, however we will prove more: algebrai^ation is a biregular isomorphism
of certain (quasi-) projective varieties, the latter requires more work.

12.1. Representations of Shephard groups

Let A be an abstract based arrangement with the graph I\ and G\ be the
corresponding Shephard group with graph A^. For all edges e in the graph A^ the
edge subgroups G, C G\ are finite. Recall that in Section 7.8 we have defined the
space Hony (G, P0(3, C)) of nondegenerate representations of Shephard groups G.
Thus as a direct corollary of Proposition 7.19 we get

Corollary 12.1. — The set Hom.(G8, P0(3, C)) is ^ariski open and closed in Hom(G8,
P0(3)).

The significance of nondegenerate representations of Shephard groups is that
they correspond to projective arrangements under the (< algebraization55 morphism alg.
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Definition 12.2. — Suppose that p G Hony(G% P0(3, C)) is a representation, then we
associate a projective arrangement \|/ = a(p) G R(A, P^(C)) as follows:

(a) If v G A is a point then we let \y(v) be the neutral fixed point ofp(gy).
(b) If I G A is a line then we let \y{t) be the fixed line of the involution p(^).

Clearly \y{v) € P^ and \y{l) G (P^. Now we verify that \|/ respects the incidence
relation. Consider edges e in A^ connecting points to lines. Suppose that e = [v, w] is
an edge in A^ where v, w, e have the label 2. Then, p G Hony(G,, P0(3, C)) implies
that p(§y), p(§J anticommute and hence \|/(^) • \|/(/) == 0 (see § 6.3). All other edges e = [v, /]
are labelled as: §(z;) = 3, §(/) = 2, e{e) = 4, thus p € Hony(G,, P0(3, G)) again implies
that p(gy), p^/) anticommute:

(P^Pte))^!

and hence \|/(y) • \|/(/) = 0 (see § 6.3). Note that the mapping

a : Hony (0s, P0(3, C)) -^ R(A, P^(C)), p ̂  y = a(p)

is 2-1. Namely, we can modify any representation p G Horn. (0s, P0(3, C)) by taking
p_(^,J := pfcj"1 and p_(^) := p(^) for aU ^ C V(F) - { v^ }, then a(p) = a(p-).
We denote the involution p \—> p_ by v. The mapping a is far from being onto
R(A, Po(C)) because of extra identifications and edges in the graph A (compared to
r\). The mapping alg will be the right-inverse to a if we restrict the target of a to
based realisations:

Definition 12.3. — Suppose that A is an abstract based arrangement, \y C BR(A, P^) is a
realisation. (1) We construct a homomorphism

alg(v)=P^:Gl-^PO(3,C)

as follows. If v is a point in A — { v^ }, let p(gy) be the rotation of order 2 in P2 with the neutral
fixed point \y(v). (Such a rotation exists since \y(v) is anisotropic.) If v = I is a line in A we let
P(&) ^ ^le faction in the line \|/(/) (equivalent this is the rotation of order 2 with isolated fixed

point \y(l)^ G PQ. For the vertex v = v^ we take the rotation of the order 3 around the point (1 , 1).
There are two such rotations, so we shall choose p(gy): v^oo) 1—)> ^V(vx)'

Below we verify that p respects relations in G8 and determines a nondegenerate
representation. For each v ^ S^— { u^ } C A and each line I € 3S C A we have

vî ) e \y(l) ̂  [p^), p^)] = l, p )̂ ^ p^).

(1) In particular V^oo) = ̂ (loof , V|̂ ) = ̂ f , V(^) = ¥(yv•
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Hence all the relations in 0s corresponding to the edges labelled by 2 are preserved
by p and p is nondegenerate on such edges. Since the spherical distances between the
points (0, 0) and (1,0), and points (0, 0) and (0, 1) in RP2 equal lt/4 we conclude that

(&oo &,o)4 = ^ (?.oo ^o,)4 = ^ (&oo &,o)2 + ^ (&oo + &o,)2 + L

This implies that the Artin relations for the edges [v^, v^~\, [v^, v^] are preserved by
p and p is nondegenerate on these edges.

For each line I incident to the point v^ the rotations p(^) and p(g, ) anticommute
by Lemma 6.7 and we get:

Pfe)P(&,, )P(&)P(^,) = 1, Pfc,, )Pte)p(&,, )p(?/) = 1.

Hence the Artin relations for the edges [I, v^] C A are preserved by p. It is easy
to check that the order of the element p(^ g^) equals 3. Recall that the edge
e = boo^ ^11] in A has the label 6. Thus the relation

(p a )3 = (n a ')3

'&BOO &v\\' '&s\\ SvoO'

associated with the edge e is preserved by p. We have proved

Proposition 12.4. — The mapping alg : BR(A, P^(C)) -^ Hony (GA, P0(3, C)) is
such that a o alg = id. The space BR(A, P^(C)) lies in the image of the mapping a.

Let ResT : Hony (G^, P0(3, C)) -^ Hom^ (G^, P0(3, C)) be the restriction
morphism. Define the varieties

BHony(Gl, P0(3, C)) := R^{ p^, v(p^) }

BHom;(Gl, P0(3, C)) := Res^ p^ }

of based representations. Clearly BHony(GA, P0(3, C)) is the image alg(BR(A, P^(C))) (as
a set) and the mapping

alg : BR(A, P^(C)) -^ BHom;(GA, P0(3, C))

is a bijection.

Lemma 12.5. — The representation p = p^ : G^ -^ P0(3, R) C P0(3, C) corresponding
to the canonical realisation <|) = <J>T o/'^ standard triangle T has finite image. The centralizer of
the group P(GT) in P0(3, C) y trivial.

Proof. — It is clear that the group p(G^.) has invariant finite set

S = { ( 1 , 1 ) , ( - 1 , !),(-!, -!),(!, - 1) } c P2^) C P\C).
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Any three distinct points of S do not lie on a projective line in P^C), thus if
g C P0(3, C) fixes £ pointwise then g = id. This implies finiteness of p(Gy). It is
easy to check that p(G^) equals A4, the alternating group of the 4-element set Z. Any
element o f ^ G P0(3, C) centralizing p(G^) must fix £ pointwise, hence g = 1. D

Proposition 12.6. — The group P0(3, C) acts simply-transitively by conjugations on the set
Hony(GT,PO(3,C)).

Proof. — Suppose that p C Hom^G^, P0(3, C)). We note that G8 = G^ contains
the abelian subgroup Z/2 x Z/2 x Z/2 generated by the involutions gy ? gv , gv ' Since
p is nondegenerate we conclude that the restriction of p to this subgroup is injective.
Thus, by the classification of finite subgroups of P0(3, C), we conclude that p can
be conjugate to a representation (which we again denote by p) so that the projective
arrangement \y = a(p) has the property:

v^oo) = (0, 0), v(^) = (0, oo), ̂ ) = (oo, 0).

Thus necessarily: \y{Q = L^, \|/(/,) = L , y(/oj = L^. Let G^o denote the subgroup of
G8 generated by g^,g^ = g^ g,^ The restriction of p to G^ factors through the
finite Goxeter group G\Q = G^/{{(gy gy )2)). There are only two homomorphisms

p' : G^o -^ P0(3, C) such that>(3, C) such that

P^J = P^oo)- P^) = P^)- P'^io) + P^oo^ P'^io) ^ P'^)'

ae of them the isolated fixed point of p0^ ) has the affine cc
^^^.^j ',4- u^ 4-1,^ /,-PC^^ ^^^^-r^^^-^^ / i rv\ •T'I,̂  ^^n^-,^-*^

Namely, for one of them the isolated fixed point of p0^ ) has the affine coordinates
(1,0), for the second it has the affine coordinates (—1,0) . The reflection in the
line L conjugates one representation to the other and commutes with the elements
P(<^oo^ P(<^ P^)- Thus? after Ĵ11^11^ P ^ this conjugation (if necessary), we
conclude that a(p) = \y : v^ i—> (1, 0). A similar argument works for the vertex v^.
It remains to determine ^(^1)5 V(L)? vK^ii) ^d ¥(^)- Since p^ ) commutes with the
elements p(gy ) and p(gy ) and does not coincide with either, the line V(^(4i) contains
the points (0, 1) and (oo, 0). Similarly the line v(L) contains (1, 0) and (0, oo).

We next determine v|^n). Since the edge \v^, L] has label 4, the elements
p(^y ) and p(gi ) anticommute, so V|^n) € L i (the line in P2 joining (1, 0) and (0, oo)).
Similarly v^n) G L^. Finally we determine v(^). Since p^) commutes with p(§^oo) we

have (0, 0) G y(^). Also p(^) anticommutes with p^ ), so (1, 1) € \|/(^). We conclude
that

\y = a(p) = ̂

and either p = p^ or p = v(pA ). It now follows from Lemma 12.5 that the action of
the group P0(3, C) on Hom^G^, P0(3, C)) is free. D
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Corollary 12.7. — The set HOITI^GT, P0(3, C)) equals the AdPO(3, C)-orbit of the
set { P<t>T? V(P<|)T) }• ^ P^1^^ both p^ and v(p^) are locally rigid.

Note however that this corollary does not a priori imply that the variety
Horrir (Gy 5 P0(3, C)) is smooth since it could be nonreduced. To prove smoothness
we need the following:

Proposition 12.8. — The representations p^ , v(p^ ) : G^ —> P0(3, C) are infinitesimally
rigid.

We will prove the proposition only for p^ , the second case easily follows.
Proposition 12.8 will immediately follow from the more general

Proposition 12.9. — Let Ga = G^ define p : G" -^ P0(3, C) by composing p^ with

the canonical projection G^ —> G^. Then the representation p is infinitesimally rigid.

Proof. — Our proof is based on the results of Section 7. The reader will notice
that the proof follows the lines of the proof of Proposition 12.6. We first consider the
subgroup F in G^ generated by gy , gi ? gi -> these generators mutually commute, hence
the subgroup is abelian. Let G € Z^G^ ad op). By Lemma 7.5 the restriction of o to
each cyclic subgroup {gy } , ( g i } , {gi} is cohomologically trivial, thus a |p comes from
a cocycle on the finite Coxeter group

-r* / / / 2 2 2 \ \
P/U&OO^ Sl^Sl, }}

which implies that G |p is a coboundary. By adjusting the cocycle a by a coboundary
we may assume that <7 |p = 0. Now we consider the subgroup F^Q generated by ̂  , g .
Because of the Artin relations in G^ this is again an abelian subgroup whose image
under p is dihedral. Hence a \y^ is also a coboundary. Let Hio denote the subgroup
generated by elements of F^ and ̂ , we recall that (§̂  &J2 = (^ &J2.

Since the restriction of G to each generator of H^ is exact, the cocycle a IHKJ±±1.^\^ i,±±^ S. V^ljl-1. A^^/t-J-V^J-A \J1- V^ »-V-» V^«-»-V/AA ^ .̂t.JL .̂I. *-*,»-V/A \-/^. A -^ j l J -l-u ^/^».«-«<v^»-, I.AAV/ v^ •»_»•»-/ ̂  ^-/AV^ -v/ |J'lir>

comes from the finite Goxeter group HioA^o^&^&io))- This i111?!1^ that a [1^0 is
a coboundary. Since a(g^) = 0,0^) = 0 and the fixed points of p(gi), P^oo) are

distinct we conclude that a IH^ = 0- The same argument implies that <7(§^) = 0. We
repeat our argument for the two abelian subgroups generated by & , g , g^ and by
Si^gvQ^&i^ k follows that a(g^) = 0, a(g^) = 0.

Then we use Lemma 7.17, where a^ = ̂  j> ^2 = & i ̂ 3 = <?yoo^ ^ = ^n5 to conc^u(:le

that o(gy ) = 0. Finally o(^) = 0 since the Shephard subgroup of G^ generated by
^ , ^/ -> ^ is a^ain finite. DSv\ i -» 6^^ 6yoo 0
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Corollary 12.10. - The variety Hom ,̂ P0(3, C)) is smooth. The variety
BHony(GT, P0(3, C)) is a (scheme-theoretic) cross-section for the action ofPO(3, C) by conju-
gation on the variety Hom/(GT, P0(3, C)).

Proof. — Smoothness of Hony(GT, P0(3, C)) follows from infinitesimal rigidity
of the representations p^,vp^, see Theorem 2.5. In Proposition 12.6 we proved that
the morphism

^ : P0(3, C) x BHony(GT, P0(3, C)) ̂  Hom^, P0(3, G))

given by the action ofPO(3, C) by conjugation, is a bijection. Thus HOIH^GT, P0(3, C))
is also smooth, which implies that the morphism ^ is actually an isomorphism' of
varieties. D

Corollary 12 .11 . — The variety BHony (G^, P0(3, C)) ^ a (scheme-theoretic) cross-
section for the action o/PO(3, C) by conjugation on the variety HOIH^GA, P0(3, C)).

Proof. — Consider the Ad(PO(3, C) )-equivariant restriction morphism

POST : Hony(Gl, P0(3, C)) -^ Hom^, P0(3, C)).

It was proven in Corollary 12.10 that the subvariety BHony(GT, P0(3. C)) is a cross-
section for the action of P0(3, C) by conjugation on Hom^G^, P0(3, C)). Thus the
pull-back variety

ResT'Hom^GT, P0(3, C)) = BHom^Gl, P0(3, C))

is a cross-section as well. D
Our goal is to show that the mapping alg : BR(A, P^(C)) -^ BHom^GA, P0(3, C))

is an isomorphism of varieties over Q, this will be proven in the next section.

12.2. The mapping alg is an isomorphism of varieties

We first establish that alg : BR(A,P^(C)) ^ BHom^, P0(3. C)) is an
isomorphism of varieties in two elementary cases. Let C be an arrangement whose
graph FC has only one edge e = [v, /], m is the number of isolated vertices v. in 1̂ . Let
A be a based arrangement which is the disjoint union of the standard triangle and C.

Lemma 12.12. — The mapping alg : BR(A, P^(C)) ̂  BHom;(GA, P0(3, C)) „ an
isomorphism of varieties over Q.

Proof. — We already know that alg is a bijection. It is clear that the restriction
morphisms

Res: BHom;(Gi, P0(3, C)) ̂  Hony(Gc, P0(3, C))
res : BR(A, P^C)) -^ BR(C, P^C))
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are isomorphisms of varieties. Let alg : BR(G, P^C)) -» Hom.(Gc, P0(3, C)) denote
the mapping induced by the restriction. The group G^ is the free product

G>Z/2*...*Z/2.

Hence

Hony(Gc, P0(3)) ̂  Hony(G^ P0(3)) x (Hony(Z/2, PC^)))^

Since all the edge group G^ and the vertex groups Z/2 are finite (see § 4), the variety
Horn. (Gc 5 P0(3)) is smooth (Proposition 7.8). The quasi-projective variety R(C,P^)
again splits as the direct product

^ 0 x PO x • • • x FO 5

where ^o ls tne anisotropic incidence variety, see Section 8.4. The anisotropic
incidence variety is smooth by Proposition 8.12, hence the product is smooth as well.

Let B denote the arrangement obtained by removing the incidence relation
between v and / in C and Gg be the corresponding Goxeter group. Then

alg : R(B, P^ Hom,(GB, P0(3))

.2x^+9is an isomorphism of smooth varieties (the left-hand side is (Po)^2 and the right-hand
side is ^(R)^2, see Lemma 6.3). Thus alg : BR(A, P^) -^ BHony (G, P0(3)) is an
isomorphism of smooth varieties. D

We now consider a relative version of the above lemma. Suppose that a based
abstract arrangement D is the fiber sum T X y^y G where C is the arrangement above,
w, v are elements of T and G respectively.

Lemma 12.13. — The mapping alg : BR(D, P^(C)) -» BHom^G^, P0(3, C)) is an
isomorphism of varieties.

Proof. — Let a = p^ (gy), Gg C GQ is the edge subgroup corresponding to
e = [v, l\. It is clear that the restriction morphism

BHom;(GA, P0(3, C)) Re5 ) { p e Hom/Gc, P0(3, G)): p^) = a }

=:F^(Gc,PO(3,C))
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is an isomorphism of varieties. The group G^ is finite, hence by Proposition 7.8 the
variety F (G^, P0(3, C)) is smooth. Similarly let q := ^(v), the restriction morphism

§v ?

res : BR(D, P^(C)) -. { v e R(G, P^C)): v|̂ ) = < ? } = : F ^(C, P^(G))

n

is an isomorphism of varieties. Then F (G, P()(C!) ) is isomorphic to the product of
the relative anisotropic incidence variety

^ , ( q ) = { l e { P l Y : q - l = 0 }

(see § 8.4) with m copies of Pg. It is clear that the mapping alg induces a bijection of
the sets of complex points

alg:^o(<7)(C)^F ^(G,,PO(3,G)).
6V? u'

According to Lemma 8.12 the variety ^{q) is smooth and we repeat the arguments
from the proof of Lemma 12.12. D

Now we consider the case when A is a general based arrangement. Let
X := BR(A, P^), Y:= BHom^G^ P0(3)).

Theorem 12.14. — The mapping alg : X —^ Y is a biregular isomorphism of quasi-projective
varieties.

Proof. — Let F (resp. R) be the functor of points of X (resp. Y). Then alg is an
isomorphism of the varieties X and Y if and only if F and R are naturally isomorphic
(see [EH, Proposition IV-2]). Let B be the based arrangement obtained by removing all
edges from the graph of A that are not in the graph of T (and retaining all vertices).
Let Op be the corresponding Shephard group, clearly

GB ̂  GT * Z/2 * ... * Z/2
m times

where m is the cardinality of the vertex set ^A — T). Thus

BR(B, P^(C)) ̂  P^C)", BHom;(GB, P0(3)) ̂  Hom^Z/2, P0(3, C))"

are smooth varieties and

alg : X := BR(B) -^ Y := BHony(GB, P0(3))

is an isomorphism of smooth varieties (see the proof of Lemma 12.12). We let F and
R be the functors of points of X and T. The isomorphism alg : X —> ^t induces a
natural isomorphism of functors T| : F —> R. The functors F and R are subfunctors of
F and R. We now make explicit the inclusions F C P, R C R.
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Let ^Q be the collection of edges of I\ that are not edges of F^. Suppose
^ = [̂  ^] ^ ^o is such an ^g^ Let Xy be the subvariety of BR()(B) defined by

^•+^•+^•=0

where [̂  : .̂ : ^ and [Oy : ^ : 7;] are homogeneous coordinates on BRg(B)
corresponding to z^ ^ respectively We let ¥y be the subfunctor of F which as the
functor of points associated to the subvariety X,-. Then we have

(3) F= H F,CP.
h^e^o

Similarly if the edge Cy has the label e^ then we let R., be the subfunctor of K.
corresponding to the subvariety ¥„. denned by the Artin relation

(g^g^f" = (g^f" •

We have

(4) R = H R^cR.
(y)e^

Lemma 12.15. — The map T| : F —> R induces an isomorphism/Torn Fy to R^.

Pwo/: — Let X^ and Yy be the subvarieties of BR(B, P^), BHOHI^GB, P0(3))
corresponding to the subfunctors Fy, Ry. Then Lemmas 12.12 and 12.13 imply that
alg induces an isomorphism of smooth varieties Xy —^ Yy. Hence r) induces an
isomorphism of the corresponding subfunctors. D

The above lemma and equations (3), (4) immediately imply that r| induces a
natural isomorphism from F to R. Theorem 12.14 follows. D

Now we can prove one of the two main results of this paper. Let S C C" be an
affine variety defined over Q, We will consider S as a quasi-projective variety in P"(C).

Theorem 12.16. — For any variety S as above there exists a ^ariski open subset U C S(C)
containing all real points and a based arrangement A so that the corresponding Shephard group G\
has the property:

There is a parish open subset W in Hom(G^ P0(3, C))//PO(3, C) which is biregular
isomorphic to U.

Remark 12.17. — The set W is never ^ariski dense in the character variety X(G^,
PO(3,C)).

Proof. — Given the variety S we construct an abstract based arrangement A
such that BR()(A, P2) is biregular isomorphic to S via the isomorphism geo (Theorem
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10.1 and Corollary 10.4). Let U := r(BRo(A, P^(C))), it is Zariski open in S(C) and
contains all real points since the subvariety BR()(A, P^) is Zariski open in BR()(A, P2)
and contains all real points. Theorem 12.14 implies that we have an isomorphic
embedding with Zariski open image BHom^GA, P0(3, C))o

alg : BRo(A, Pi) ̂  BHom;(Gl, P0(3, C)).

CoroUary 12.11 implies that BHom^G^ P0(3)) is a cross-section for the ac-
tion of PO(3,C) by conjugation on the Zariski component Hom^G^, P0(3)) of
Hom(GA, P0(3)). Thus we get an open monomorphism of varieties

BHom;(Gl, P0(3, C))o ̂  X(G^ P0(3, C))
=Hom(GA,PO(3,C))//PO(3,C)

so that the image is a Zariski open subvariety W in the character variety Therefore
the composition

e : u ̂  BRo(A, P2(C)) -^ BHom;(G^ P0(3, C))o

-.WCX(G1,PO(3,C))

is the required isomorphism onto a Zariski open subvariety W of the character
variety. D

Proposition 12.18. — Suppose that S is an qfflne variety over Q and q C Q, is a rational
point. Then there is an abstract arrangement A (as in Theorem 12.16) so that the representation
p = alg o geo(y) has finite image. The centrali^er of the subgroup p(G )̂ C P0(3, C) is trivial.

Proof. — Follows from Corollary 10.4 and Lemma 12.5. D
As an example we consider the configuration space of the arrangement (1)

A = { y ; / i , / 2 :i(^/i),i(y, y }•

Take the corresponding Goxeter group G = G^. Then R(A, P^) ^ P^ x P^ x P^
corresponds to the representations of G which are nondegenerate, i.e. the elements
P(&)^ P(&^ P{gi^ P(& gi^ P(& gi^) have order 2. However there are some other
components of Hom(G, P0(3, C)) which are described by assigning which of the
elements p(^), p(^), p(^), p{gv g^\ p{g, g^) are equal to 1. If p(^) = 1 then such
a representation factors through the free product Z/2 * Z/2 and the corresponding
component of Hom(G, P0(3, C)) is isomorphic to P^ x P^. The reader will verify that
besides

Hony(G,PO(3,C))^xPixPi

( ) This is not a based arrangement.
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and the above component isomorphic to P^ X P^ there are four more components
isomorphic to PQ X PQ, four components isomorphic to P^ and one component which
consists of a single reduced point (the last corresponds to the trivial representation).

12.3. Representations ofArtin groups

Our next goal is to prove a theorem analogous to Theorem 12.16 for Artin
groups. Take a based admissible arrangement A, and consider the germ (Hom(G^,
P0(3, C)), p), where p = co(p) is the pull-back of p G Hom^G^, P0(3, C)).

Theorem 12.19. — The morphism co:(Hom(G^ P0(3, C)), p)^(Hom(G^ P0(3)), p)
is an analytic isomorphism of germs.

Proof. — We will show that the induced natural transformation co of the
corresponding functors of points

<-^C2^——>• ^W^

is a natural isomorphism. Let B be an Artin local k-algebra. We need to show that

SB : Hom(Gl, P0(3, B)) -^ Hom(G^ P0(3, B))

is a bijection. We recall that co^p) = ?*P where q : G\ —> G\ is the quotient map.
Since q is onto it is clear that cog is injective. We now prove that cog is surjective.

Let (p G Hon^G^PC^B)). To prove that (p belongs to the image of Sg it
is enough to check that the restriction of (p to each vertex-subgroup of G^ is a
trivial deformation (see Lemma 5.2). We first consider the points v G A distinct from
v^. Then v is incident to at least one line I G A and hence the image of the edge-
subgroup p(G^) = p(G^) is generated by two distinct commuting involutions (since p is
<c nondegenerate5?). Thus by Lemma 7.5 the restriction p | G^ is infinitesimally rigid,
in particular (p | G^ is a trivial deformation. In the case v = v^ we use Proposition 12.9
to conclude that the restriction of (p to the vertex-subgroup G^ is a trivial deformation
as well. Suppose that / G A is a line. Then admissibility of the arrangement A implies
that / is incident to at least one point w in A — { v^ }. Hence we repeat the same
argument as in the case of points in A. D

Thus, we have established that the morphism co induces a bijection and Theorem
12.19 follows from Theorem 2.2. D

Corollary 12.20. — For any admissible based arrangement A the morphism

co : Hony(G^ P0(3)) ̂  Hom(Gl, P0(3))

is open (in the classical topology) and is an analytic isomorphism onto its image.
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Corollary 12.21. — For any admissible based arrangement A the character variety of G\

inherits all singularities of the representation variety of the group G\ corresponding to points of

BR(A,P^(C)).

The image Hony (G^, P0(3, C)) := co(Hony (G\, P0(3, C))) is a constructible
set.

Proposition 12.22. — The set Hony(Gl, P0(3, C)) is closed in Hom(Gl, P0(3, C)).

Proof. — The image Z of the monomorphism

Hom(G^ P0(3, C)) -> Hom(Gl, P0(3, C))

is described by the equations

P^-l. V^^A)

where 6(v) is the label of the vertex v. Thus Z is closed. On the other hand, by
Corollary 12.1, the space Hom^G^, P0(3, C)) is closed in Hom(GA, P0(3, C)), the
proposition follows. D

Corollary 12.23. — For any admissible based arrangement the space Hom^(G^, P0(3, C))

is a union of parish connected components 6^Hom(G^ P0(3, C)).

Proof. — The set Hom.(G^, P0(3, C)) is Zariski open since it is constructible
and open in the classical topology. D

Theorem 12.24. — The morphism co : Hony(GA, P0(3)) -> Hony(Gl, P0(3))) is a
biregular isomorphism of varieties.

Proof. — We will first prove that the reduced varieties corresponding to

X:=Hony(GA,PO(3)) and Y:= Hony(Gl, P0(3))

are isomorphic. We construct nonsingular varieties U, W containing X, Y and an
extension of co to an isomorphism U —> W which carries X to Y bijectively as sets.
Let G be the arrangement obtained from A by removing the incidence relations
everywhere outside of the standard triangle. Thus we get two nonsingular varieties
W = Hony(G^ P0(3)) and U := Hony(Gc, P0(3)) with X C U and Y C W.

Clearly co : U —» W is a biregular isomorphism and it bijectively carries X to
Y. Thus the reduced varieties X^ Y^ are isomorphic via co. Hence the assertion of
Theorem follows from combination of Corollary 12.20 and Theorem 2.10. D

As a corollary we get the following generalization of Theorem 12.16:
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Corollary 12.20. — Let S be an affine variety defined over Q. Then there exists an admissible
based arrangement A so that the corresponding Artin group G\ has the property:

There is a ^ariski open subset in S (containing all real points) which is biregular isomorphic
to a parish open and closed sub-variety in Hom(G ,̂ P0(3, C))//PO(3, C). Suppose that q € S
is a rational point. Then the abstract arrangement A can be chosen so that the representation
p = (0 o alg o geo(y) has finite image. The centrali^er of the subgroup p(G )̂ C P0(3, C) is
trivial.

13. Differential graded algebras and Lie algebras

In this section we discuss differential graded Lie algebras, differential algebras
and their Sullivan minimal models. These definitions will be used in the following two
sections. Let k be the ground field. A graded Lie algebra over k is a k-vector space

L* = ®^o L1

graded by (nonnegative) integers and a family of bilinear mappings

[•,•] '.V^U^V^

satisfying graded skew-commutativity:

[a,P]+(-W,a]=0

and the graded Jacobi identity:

(-1)^, [P, Y]] + (-TO, [Y, a]] + (-I)^[Y, [a, P]] = 0

where a G L', P G L7, y G L\ We say that L is bigraded if L is graded as above and

T — Q\ J — rr\ T l

^ - W^O^ - W^ ^Q ^q

where L^L^L. We also require:

h.]:L^(g)L^L^.

A differential graded Lie algebra is a pair (L, d) where d : L —> L is a derivation of the
degree £, i.e.

d'.V-^L1^, d o d = 0 , and

</[a,P]=[^P]+(-l)^[a^].

Remark 13.1. — In this paper we will use only the degree £ = 1.
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Suppose that L = L: is a bigraded Lie algebra, then the differential graded Lie
algebra (L, d) is called a differential bigraded Lie algebra if there is a number s such that
d has the bidegree (t, s):

d: U —^ L1^, for all i, q.

Remark 13.2. — In this paper we will use only the bidegree (t, s) = (1, 0). Similarly
one defines trigraded differential Lie algebras L^ ; we will use only differentials so that

1 J i -r i+id : L —» L
P ) (! Ps q

Let L9 be a differential graded Lie algebra, and suppose that ^ C U is a vector
subspace. Then ^ is an ideal in L* if:

• ^ is ̂ W, i.e. ̂  = ©^oC^n L');
• <^ C ̂ ;
• For each y € ̂ , a € L we have: [y, a] € ̂ .

Remark 13.3. — IfLis bigraded then we require ideals in 1. to be bigraded as well, ie.

^-©^oC^nL;).

Lemma 13.4. — If^CLisan ideal in a differential graded (bigraded) Lie algebra then
the quotient L/^ has the natural structure of a differential graded (bigraded) Lie algebra so that the
natural projection L —> L/^ is a morphism.

Proof — The proof is straightforward and is left to the reader. D
Let (L', d) be a differential graded Lie algebra and fl be a Lie algebra. An

augmentation is a homomorphism e : L —> Q such that C^iL^ C ker(e) and e ̂  0. The
augmentation ideal of e is the kernel of e.

We recall the definition of the complete local k-algebra R^. (see [Mi]) associated
to a differential graded Lie algebra L* over k. We will give a definition which conveys
the intuitive meaning of R^. but has the defect of being non-functorial. We have the
sequence

0 -^ L° 4 L1 4 L2 4 ...

Choose a complement C1 C L1 to the space of 1-coboundaries B1 C L1. Let

^ : G1 -» L2 be the polynomial mapping given by j^) = dv\ + -[r|,r|]. Then

RL. is the completion at 0 of the coordinate ring of the affine subvariety ofC1 defined
by the equation J^T)) = 0.

Since L1 and C1 are infinite dimensional in many applications, further definitions
of affine variety and completion are needed in infinite dimensional vector spaces. These
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are given in [BuM, § 1]. Suppose next that (X, x) is an analytic germ. We will say
that L* controls (X, x) if R^ is isomorphic to the complete local ring ^x x-

Definition 13.5. — Z-^ A*, B* be cochain complexes and p : A* —> B* ^ ^ morphism.
Then p ^ ^2/W a quasi-isomorphism ^ it induces an isomorphism of all cohomology groups.
The morphism is called a weak equivalence if it induces an isomorphism ^H°,H1 and a
monomorphism ofti2.

Weak equivalence induces an equivalence relation on the category of differential
graded Lie algebras: algebras A*, A^ are (weakly) equivalent if there is a chain of weak
equivalences:

AI —> A^ ^— A^ —> ... <— A^.

In the following two sections we will use the following theorem about controlling
differential graded Lie algebras proven in [GM]:

Theorem 13.6. — Suppose that L* and N* are weakly equivalent differential graded Lie
algebras which control analytical germs. Then the germs controlled by the algebras L* and N* are
analytically isomorphic.

A differential graded algebra A* is defined similarly to a differential graded Lie
algebra except that instead of the Lie bracket [•, •] satisfying the graded Jacobi identity
we have an associative multiplication:

A : A' (g) A' -^ A^'

satisfying the properties:
• d:A1^^, d o d = 0 ,
• d{a A P) = da A P + (- iya A dft, for all a G A1;
• a A P = (-l)^P A a, for all a G A\ P G A;
• A has the unit 1 G A°.
To get a differential graded Lie algebra from a differential graded algebra A*

take a Lie algebra g and let L* = A* (g) g (see [GM] for details).
Suppose that V is a vector space over k, (A*, d) is a differential graded algebra

andy: V —> Z2 is a linear mapping, where Z2 is the space of 2-cocycles of A*. Then
the Hirsch extension A* ®/V is a differential graded algebra which (as an algebra) equals
A^ (g) A(V) and the restriction of the differential on A* ®/V to A* equals d and the
restriction to V equals^

A differential graded algebra ^&9 is called 1-minimal if:
a) ̂ ° = k;
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b) ^^e is the increasing union of differential subalgebras:

k = ̂ &^ C ̂ M^ C ̂ p] c -

with each ^&^\ C ^&^^ a Hirsch extension;
c) The differential d on ^& is decomposable, i.e. for each a C ^& we have

<a) = E P; A Y, , p,, Y, e e î̂ .
^ ?

Definition 13.7. — Suppose that A9 is a differential graded algebra. Then a 1-minimal
modeler A* is a morphism p : ̂ 69 —> A' such that:

• the differential graded Lie algebra ^&* is 1-minimal;
• the morphism p is a weak equivalence.

We refer the reader to [Sul], [GrM], [Mo2] for further discussion of the
definition, properties and construction of 1-minimal models.

14. Ham's theorem and its applications

In this section we give an exposition of work of R. Hain [Hai] which shows
that the singularities in representation varieties of fundamental groups of smooth
complex algebraic varieties are quasi-homogeneous. In fact some assumption on the
representation p which is being deformed is also required. In [Hai] the analogue
of our Theorem 14.6 is proven under the assumption that p was the monodromy
representation of an admissible variation of mixed Hodge structure. One does not
obtain a restriction on weights working in this generality.

Let M be a smooth connected manifold with the fundamental group F. Let G
be the Lie group of real points of an algebraic group G with Lie algebra g defined
over R and p : F —> G a homomorphism. Let P be the flat bundle over M associated
to p and adP the associated fl-bundle. Then ^*(M,adP), the complex of smooth
adP-valued differential forms on M is a differential graded Lie algebra. We define an
augmentation £ : ̂ *(M, adP) —> Q by evaluating degree zero forms at a base-point
x G M and sending the rest of forms to zero. Let ^'(M, adP)o be the kernel of £.
The following theorem follows immediately from [GM, Theorem 6.8].

Theorem 14.1. — The differential graded Lie algebra ^*(M, adP)o controls the germ
(Hom(r, G), p).

The point of this section is that if M is a smooth connected complex algebraic
variety and p has finite image then ^•(M, adP)o is quasi-isomorphic to a differential
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graded Lie algebra which has a structure of a mixed Hodge complex. By a theorem
of Hain this implies that

•n
^'(M, adP)o0C

is a quasi-homogeneous ring. We now give details.
A real mixed Hodge complex (abbreviated MHG) is a pair of complexes K^ and K^

(real and complex respectively), together with a quasi-isomorphism a : K^ (g) C —> K^
such that K^ is a complex of real vector spaces equipped with an increasing filtration
W, (called the weight filtration) and K^ is equipped with an increasing (weight) filtration
W, and a decreasing filtration F* ( called the Hodge filtration). The data

K^K^a.W^r

satisfy the axioms described in [D2, Scholie 8.1.5] (take A = R).
By a theorem of Deligne ([D2, Scholie 8.1.9]) the cohomology of a MHG has

a mixed Hodge structure, [Dl, Scholie 2.3.1]. It is important in what follows that the
filtrations on H'(Kc) induced by W, and F* can be canonically split, [Dl, Section

1.2.8]. Thus the filtration W, induces a canonical grading on H (K^;) and consequently

o n H ^ ( K c ) * , ^ = 0 , l , 2 .
If V is a finite-dimensional vector space over C we will let C [[V]] denote the

completion of the symmetric algebra C [V] at the maximal ideal m corresponding to
0. Thus C [[H (K^)*]] has a canonical decreasing filtration (as an algebra) induced by
the grading of H^(Kc)*, ^ = 0 , 1 , 2 .

We will say that a MHC is a mixed Hodge differential graded Lie algebra if the
complexes K^ and K^ are differential graded Lie algebras ([GM, § 1.1]), such that a
is bracket preserving and the filtrations satisfy

(i) [W/K^),W^)]CW^(K^
(ii) [F^(K^),P(Ky]cF^(K^).
In this case we will use L^ and L^ in place of K^ and K^. Let m denote the

maximal ideal of C [[H^L^)*]]. We now have

Theorem 14.2 (Ham's Theorem). — Suppose L' = (L ,̂ L^, a, W,, F*) is a mixed Hodge
differential graded Lie algebra with H°(L )̂ = 0. Then R .̂ is quasi-homogeneous (see Section 3).
Moreover there exists a morphism of graded vector spaces

^H^r-^Gr^P1^)*]]

with image of 8 contained in m2 such that Gr^^^. is the quotient ofGr^C [[H^L^)*]] by the
graded ideal generated by the image of 8.
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Remark 14.3. — Ham further proves that 8 ̂  Q* (mod m3)^ Q* is dual to Q^ where

Q^H^L^-^H^I/)

is given by the cup-product Q(r|) = [r|, T|] .

We will say an element T| G I-T(L^) has weight n if T| C W^H'(L^) but
1̂ ^W^_iI-T(L^). We will combine Hain's theorem with the following theorem to obtain
our desired result about the singularities in representation varieties of fundamental
groups of smooth complex algebraic varieties. Suppose now that M is a smooth
connected complex algebraic variety, a representation p : 7Ci(M) —> G with finite image,
the bundle adP, etc., are as above.

Theorem 14.4. — Under the conditions above there is a filtration W, on A'(M, adP)
and a filtration F* on A*(M, adP^;) such that for the canonical map a : A'(M, adP) (g) C —>
A*(M, adPc) the algebra

I/ = (A'(M, adP), A'(M, adP^), a, W., F*)

is a mixed Hodge differential graded Lie algebra. Moreover the weights ofH^^fM, adP^)) are 1
and 2 and the weights ofH2(A9(M, adP^)) are 2 ,3 and 4.

Proof. — Let Kl be the finite cover of M corresponding to ker(p). Let 0 ̂  p(F) be
the group of covering transformations. By [Sum] there exists an equivariant completion
N of M. But according to [BiM] there is also a canonical resolution of singularities
N of N so that the complement N — fA is a divisor D = D^ U ... U D^ with normal
crossings.

Hence the action of 0 extends to N, which is a smooth 0-equivariant completion
of ]%. Hence 0 acts on the log-complex of 1̂ defined using the compactification N.
It is a basic result of Deligne ([Dl, Theorem 1.5]) that one may use the log-complex
to define:

a) A subcomplex A*^ C ̂ •(iSl) so that the inclusion is a quasi-isomorphism.
b) Filtrations W., F* on A*(M) and A^^^C which satisfy the axioms ofMHC.
By construction these filtrations are 0-invariant. We tensor with g (regarded as

a mixed Hodge differential graded Lie algebra concentrated in degree zero). Since 0
acts on 0 via adp, it also acts on the tensor product. We obtain the required mixed
Hodge differential graded Lie algebra L* by taking 0-invariants. To derive weight
restrictions we use results of Morgan [Mol], [Mo2], who proved them for A^^K^^C,
etc. The operations of tensoring with g and taking 0-invariants will not change these
restrictions on weights. D

Remark 14.5. — Choose a point m € X and let { m^ i C / } C ]% be the fiber
of^St —^ M over m. We define augmentations (see [GM, § 3.1]) £ : A*(M, adP) —> g and
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^ : Ae(M) ® 3 —> g by evaluation at m and m^ respectively. We define

£=|0|-1^
iei

and let A*(M, adP)o and A^M^ ® Q be the augmentation ideals. Then all statements in
Theorem 14.4 hold when A*(M, adP) and A*(M, adPc) are replaced by A*(M, adP)o and
A*(M, adPc)o. We abbreviate the corresponding mixed Hodge differential graded Lie algebras by L^.

Let r, p, G be as above. Let Z be the representation variety Hom(r, G). By
combining Theorems 14.2, 14.4 we obtain

Theorem 14.6. — The germ (Z^, p) is analytically equivalent to a quasi-homogeneous cone
with generators of weights 1 and 2 and relations of weights 2, 3 and 4. Suppose that G is reductive
and there is a local cross-section S through p to the G-orbits. Then the conclusion is valid not just
for the germ (Z^, p) but also for (Hom(r, G)//G, [p]).

Proof. — We apply Theorems 14.2 and 14.4 to deduce that the complete local
C-algebra (RL.)C has a presentation of the required type. But by Theorem 14.1, (RL.)C
is isomorphic to the complete local ring associated to the germ (Z^, p). We obtain the
corresponding result for (Hom(r, G ^ ) / / G ^ , [p]) by replacing L; by L* and applying
[KM3, Theorem 2.4]. Note that if S exists then H\L9) = 0. D

There are infinitely many germs (Y, 0), where Y C C" is an affine variety defined
over Z, so that (Y, 0) is not quasi-homogeneous with the weights of relations between
2 and 4. We can even assume that 0 is an isolated singular point, see Section 3. Thus
as a consequence of Theorems 14.6, 12.16 we obtain the following

Theorem 14.7. — Among the Artin groups G\ there are infinitely many mutually
nonisomorphic groups which are not isomorphic to fundamental groups of smooth complex algebraic
varieties.

Proof. — Let Y be an affine variety defined over Q andjy e Y be a rational point.
Assume that the analytical germ (Y,j/) is not quasi-homogeneous (with the weights of
variables 1 ,2 and weights of generators 2,3,4). Let A be an affine arrangement
corresponding to the pair (Y,j) as in Proposition 12.18, so that the representation
p^ : GA —^ P0(3, C) corresponding to y has finite image and the group p,{G^) has
trivial centralizer in P0(3, C). Let p = 0)(p,) : G^ -^ P0(3, C), where G^ is the Artin
group of the arrangement A. Recall that we have an open embedding

0) o alg o geo : Y ̂  BRo(A) ̂  Hom(Gl, P0(3) )//PO(3) = X(Gl, P0(3)).

Suppose that G\ is the fundamental group of a smooth complex algebraic variety
Then Theorem 14.6 can be applied to the germ (X(G^, P0(3)), [p]) provided we can
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construct a local cross-section through p to the P0(3, C)-orbits. In the definition of
local cross-section we take

U:=Hony(Gl,PO(3,C)) and S := co[BHony(Gl, P0(3, C))] .

Then U is open by Corollary 12.23 and S is a cross-section because BHom.(GA,
P0(3, C)) is a cross-section for the action ofPO(3, C) on Hom^G^, P0(3, C)) and the
morphism CO : Hony(GA, P0(3, C)) -> U is an isomorphism. We get a contradiction.
To see that there are infinitely many nonisomorphic examples we refer to the argument
at the end of the introduction. D

As the simplest example of (Y, 0) we can take the germ ( { ^ = 0 } , 0). We
describe the Coxeter graph of the Artin group corresponding to this singularity in
Figure 16. We let ^ = (^)2 . x. To get the labelled graph (1) A of G" from the diagram
in Figure 16 identify vertices marked by the same symbols.

FIG. 16. — Labelled graph of an Artin group

H See §§4, 11.
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15. Sullivan's minimal models and singularities of representation varieties

The goal of this section is to give a direct proof of Theorem 15.1 below (which
is Theorem 1.13 of the Introduction).

Theorem 15.1. — Let M be a smooth connected complex algebraic variety with fundamental
group r. Let G be the Lie group of real points of an algebraic group G defined over R ; let g be
the Lie algebra of G. Suppose that p : Y —-> G is a representation with finite image. Then the germ
(Hom(r, G), p) is analytically isomorphic to a quasi-homogeneous cone with generators of weights
1 and 2 and relations of weights 2, 3 and 4. In the case there is a local cross-section through p
to the Ad{G)-orbits, then the same conclusion is valid for the quotient germ (X(F, G), [p]) of the
character variety.

Proof. — We begin the proof by choosing a smooth 0-equivariant compactification
N = Kl U D of M as in the proof of Theorem 14.4.

In what follows we shall use the following simple lemma:

Lemma 15.2. — Suppose that 0 is a finite group and

H

4
E -^ F

is a diagram of morphisms of ^-modules over C such that f (E) C g (H). Then f admits a
0>-equivariant lifting J": E —> H.

Proof. — Since y(E) C g (H) there exists a linear mapping h: E —> H which lifts
f. Then we let

J=Av(A):= lOl-^^oAo^D
<t)e0

Recall that Morgan in [Mo2] defines a mixed Hodge diagram

^(logD) ^- Ecoo(M) ® C ̂  ^(logD)

associated with the pair (N, D). The log-complex ^T(logD) is a subcomplex ofC-valued
differential forms on Kt and the complex ^(logD) is the log-complex with the opposite
complex structure.

The mixed Hodge diagram must satisfy certain properties described in [Mo2]. In
particular, it has a structure of a mixed Hodge complex, i.e. E^oo(M) has an increasing
filtration W and ^T(logD) has a pair of filtrations: an increasing weight filtration W
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and decreasing Hodge filtration F; (p, (p must preserve the weight filtrations and be
quasi-isomorphisms.

Proposition 15.3. — There exists a ^-invariant mixed Hodge diagram with ^-invariant
structure of a mixed Hodge complex. The identity embedding

id : ̂ (logD) ̂  ̂ (lM) 0 C

is a quasi-isomorphism.

Proof. — First we describe the log-complex ^(logD) on M associated with the
compactification N. Let ^ € D be a point of p-fold intersection

^eD^n...nD^

where each D^ is locally (near ^) is given by the equation ^ = 0. Then elements <7
of S are C-valued differential forms on Kl which can be (locally with respect to the
^ -coordinates) written as

^ \ ^^ A — — A . . . A — —
j ^i ^

where each r|j extends to a C^-form in a neighborhood of ^ in N. Thus near any
generic point ^ C D the form <J has at worst a simple pole. Since the group 0 acts
holomorphically on N leaving D invariant we conclude that this group acts naturally
on the log-complex 3T(logD). The complex ^(logD) has the weight and Hodge filtrations
which are defined in a canonical way. Recall that W/?(^(logD)) consists of differential
forms of the type

.̂ &•
c o = ^ c o j A - — A . . . A - — , t<^t

j '̂i %

and ^(^(logD)) consists of differential forms of the type

^ <fc
co = V coy A ̂ , A ...̂ , A —— A ... A — , t^p

f ^ J J\ Js y . 7.
J ^Js+l ^Jt

where the forms 0)j extend smoothly over the divisor D. Thus both filtrations are
0-invariant.

Now we describe the second complex E^oo(St) associated to (N, D). For each
component D of D choose a regular neighborhood N in O-invariant way i.e. if (|) E 0
and (|) : D^•-> D^ then (|) : N, -> N^. Let [coj € H2^, 9N^;R) be the Thorn class. By
using Lemma 15.2 we choose for eachj a 2-form oo representing the class [co] such
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that for (|) G 0 mapping D, to D^ we have: (|)*co^ = o^. We choose 1-forms ^ G ^(logD)
supported on Ny so that d^{. = co. We can choose y so that (|)*Y = Yz f011 ̂ ^ <|) e 0
such that (|) : H —> D^ by using Lemma 15.2 again.

The differential graded algebra Ecoo(M) consists of global sections of a certain
sheaf y of algebras that we will describe below. Let U C M be an open subset
missing all regular neighborhoods Ny. Then sections of y over U are real-valued
infinitely differentiable differential forms on U.

Let W denote the subset of N consisting of j&-fold intersections of the regular
neighborhoods Ny. Take a connected open subset U C N^ which is disjoint from N^1.
We suppose that U is contained in the p-fold intersection N^ ft... DN,. Then sections
of y over U are elements of the Hirsch extension:

^•(U)0,A(T^..,^)

where ^*(U) is the complex of real-valued differential forms on U and

^- = ̂ u

It is clear that the group 0 acts on the sheaf y and on the differential graded algebra
E^oo(M) of its sections as well. The complex Ecoo(Kl) has a canonically defined weight
filtration W, which is therefore invariant under the action of 0. (This filtration is
similar to the weight filtration on the log-complex, use the T 's instead of the forms
&/<y.) Finally Morgan defines a morphism

a : Ecoo(M) 0 C -^ ^(logD)

by mapping Ty to jj and differential forms supported in N to themselves. Morgan proves
that this morphism and the identity embedding

^(logD^^^^C

induce isomorphisms of cohomology groups. The mixed Hodge structure on the dia-
gram is 0-invariant by the construction. This finishes the proof of Proposition 15.3. D

Remark 15.4. — In what follows we shall use the notation A9 to denote the differential
graded algebra Ecoo(M) and A^ its complexification.

Given the weight filtration W on A*, Morgan defines an increasing Dec-weight
filtration DecW,(A') as

DecW^(A^) = { x : x € W^ (A^, dx € W^_^ (A^1) }.

Let v : ̂  —» A* denote a 1-minimal model:

r̂ = ( o -^ ̂ r° = R ̂  ̂ r1 4 ̂ r2 4...).
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Recall the basic properties of^^ and v proven in [Mo2, § 6 and Lemma 7.2]:
a) The Dec-weight filtration DecW,(A^) of A^ pulls back to ^c to a weight

filtration W^^c) which splits so that ^/^ becomes bigraded with the differential of the
bidegree (1,0):

^ = ©z>o^, ^i = ̂ c n ̂  where (^)c consists of elements of ̂  of
the weight i,

d:^^^, A:^®^^^,

^o = -/^0 = C and each ^/l/^ is finite-dimensional.
b) The weight filtration on ̂  induces a weight filtration on H .̂/^) so that

the induced weights on H\^) are 1, 2, the induced weights on H^^) are 2, 3, 4.
c) The homomorphism v : ̂  —» A* is a weak equivalence.
d) ̂  is a 1-minimal differential algebra. Together with (a) it implies that the

restriction of the differential d to ̂ \ is identically zero.

Proposition 15.5. — Suppose that A* is a differential graded commutative algebra (over the
ground field k = C or R) and 0 is a finite group acting on A0. Then the action of ̂  on A* lifts
to an action of<S> on a certain 1-minimal model ̂  for A*.

Proof. — We will prove the proposition by constructing ̂  in 0-invariant way.
Let ^r° := k. Take ̂ ^ := H\A9) and ̂ ^ be the differential graded algebra freely
generated by ̂ ° = ̂ r^ and ^[I]. We need a homomorphism

v = v^ : ̂  -> A'

which induces an isomorphism of the 1-st cohomology groups. The group 0 naturally
acts on H (A*). We have the epimorphism of 0-modules

Z^A^H^A*).

By Lemma 15.2 this epimorphism admits a 0-invariant splitting v1 : H^A*) —> Z^A').
Thus we let v be the identity embedding of ^° = k to A° and v | ./̂ n1 be
v1. We continue the construction of (/l^,v) by induction. Suppose that (-^pVm)
are constructed and the homomorphism of 0-modules Vrn : ^r^i —> A* induces an
isomorphism of H1 but the induced mapping of H2 has nonzero kernel. This kernel is
canonically isomorphic to the relative cohomology group H^./^, A*). Choose a 0-
equivariant section a^ to the projection from the space of relative cocycles Z^*/^, A')
onto H^^^A'). Let

p,:Z\^^}^Z\^
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and

^Z^^-.A1

be the projections. Both are 0-equivariant. Define

^H^^A^Z2^)

by d = p^ o a^ and let

v^H^^A^A1 , v=^°^].

Define

^•.ij-^^H^^A-)

and extend v^ to v^ : ̂ ,+i] —^ A* multiplicatively. The group 0 acts on -^+i] in
the natural way and the homomorphism V r ^ is 0-equivariant. D

We now assume that we have a mixed Hodge diagram:

.r^Ac-^
and a finite group $ acting on the diagram compatibly with the differential graded
algebra structures so that (p and (p are 0-equivariant. In [Mo2, § 6], Morgan constructs
a trigraded 1-minimal model

^ , <P A tP ^
0 <————— AC —————> ^

ĥ.

\ ] /

^

•?•

for the above mixed Hodge diagram (see [Mo2, page 270] for the definition). We
will say that ^% is a 0-equivariant trigraded 1-minimal model for the above mixed
Hodge diagram if all three morphisms with the source c/^ are 0-equivariant and the
trigrading of ̂  is 0-invariant.

Remark 15.6. — Morgan calls ^* a bigraded minimal model.

Proposition 15.7. — There exists a ^-equivariant trigraded 1-minimal model for the mixed
Hodge diagram

^ (p A (p yG <——— AC ———> Q .

The filtration Dec W, (Ac) pulls back to a filtration DecW^^c) given by

DecW^c)^9W,-<^

Consequently the filtration DecW^^c) is ^-equivariantly split.
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Proof. — We will check that Morgan's construction can be made 0-equivariant.
To do this we examine Morgan's induction step when he passes from a trigrading on
^^ to one on ̂ ^. This step is carried out on page 176 of Morgan's paper and
involves a study of the diagram

ZV^) .— ZV^,Ac) —. Z2^,^)

\\. [ ] p s'//

H^.A^)M
r2By induction H (-/^) has a 0-equivariant mixed Hodge structure. Since

H^(./^,A^) is the kernel of the canonical (thus 0-equivariant) morphism

H2^) -. H^)

it inherits a 0-equivariant mixed Hodge structure. Consequently by Deligne's The-
orem (see [Mo2, Proposition 1.9]) H^./^, A^) has a canonical (hence 0-invariant)
bigrading. Thus it suffices to check that the cross-sections s , p and s ' as well as the
maps h, h' in [Mo2, page 176] can be chosen to be 0-equivariant. The cross-sections
s , p , s ' are required to satisfy the linear conditions (1)-(3) of [Mo2, page 176]. It is
immediate that our averages Av(s), Av(p), Av(sf) (defined as in Lemma 15.2 with respect
to the action of 0) again satisfy (1)-(3). Finally the maps

^H^^A^DecW^T)

and

^ : H2^, A^ DecW^)

must satisfy certain lifting conditions. By Lemma 15.2 we can take h, h' to be 0-
equivariant.

By definition (see Proposition 15.5) we have

^^-^I^H^^A^)

we extend the trigrading from ^^ and H^^^A^) to ^+13 multiplicatively We
obtain a 0-equivariant trigrading on -^r^n and a new diagram

S <—— Ac —— <T
-\-\ \ /

^«]
of equivariant maps satisfying Morgan's axioms. This completes the proof of the
proposition. D
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We will no longer need the trigrading on ^ and instead will consider the
bigrading:

^ := ®^=, ̂ k
y y r, s

which defines a splitting of the Dec-filtration DecW.(^c).
Let P be the flat bundle over M associated to p and adP the associated g-bundle;

similarly adF = M x fl. We let adP^;, ad?c denote the complexifications of these vector

bundles. Let ^•(M, adP), ^•(M, adF) denote the differential graded Lie algebras of
adP, adF-valued differential forms. According to [KM3, Theorem 2.4] we have:

Theorem 15.8. — If there is a local cross-section through p to the Ad(G)-orbits then the
differential graded Lie algebra ^•(M, adP) controls the germ (X(F, G), [p]).

We tensor ^•(Kt) with the Lie algebra fl (regarded as a differential graded Lie
algebra concentrated in degree zero). Since 0 acts on g via adp, it also acts on the
tensor product. Since adF is trivial we have isomorphisms

^ •(M, adP) ̂  ̂  •(M, adP)0 ^ (^ •(M) ® gf.

We conclude that under the conditions of Theorem 15.8 the differential graded
Lie algebra (^•(Kl)(g)0)° controls the germ of the character variety (X(F, G), [p]) (see
Theorem 13.6).

We will need similar results for the representation variety Hom(r, G) itself. Pick
a point m e Kl. We define an augmentation e : ^'(M,adP) —> g by evaluating
degree zero forms at a base-point m C M and sending the rest of forms to zero. Let
^•(M, adP)o be the kernel ofe. Recall that by Theorem 14.1 ^•(M, adP)o controls
the germ (Hom(F, G), p).

We lift the augmentation £ to ^•(Kt, ad?c) as follows. Let m be a point in St
which projects to m. Then for each co € ^°(Kt, ad?c) let

s^-IOl-^yco^)
ye0

where | 0 | is the order of the group $. We extend ^ to the rest of ^•(M, adP) by
zero. It is clear that the restriction of ^ to

^•(S/l, adP)0 ^ ̂ •(M, adP)

is the same as e. We let ^•(M, adP)o := ker(£). It is immediate that

^•(M, adP)o ^ ̂ •(^1, adP)0.
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We let P : ̂ "(M) -» R be the evaluation at m and P be the lift of P to ^•(Kt) as
above. We set ^*(M)Q := ker?. It is immediate that the isomorphism above carries "£
to P 0 id and we obtain induced isomorphisms

^ *(M, adP)o ^ ̂  •(M, adF)^ ̂  (^ •(M)o ® fl)0.

By [GM, Theorem 6.8] we conclude that {^*(M)o 0 fl)0 controls the germ
(Hom(r, G), p). By modifying the above argument in an obvious way we find that
(^ •(]%)o 0 0 ® C)° controls the germ (Hom(F, G^), p).

Finally we note that P induces an augmentation of A* = E^oo(M). We let A^
denote ker^ [ A*. Repeating the above arguments we find that (A^ 00)° controls the
germ (Hom(r, G), p), (A^ (g) Q ® C)° controls the germ (Hom(r, G^), p) and (under the
conditions of Theorem 15.8) (A* 0 g)° and (A* ® Q (g) C)° control the germs

(X(F,G)Jp]) and (X(F, Gc)Jp])

respectively.
The action of the finite group 0 lifts from A* 0 fl to the tensor product ^^ ® fl

(recall that the action on the Lie algebra g is induced by the adjoint representation
adp of the group 7Ci(M)). Let ^& C ̂ ^c ® fl denote the subalgebra defined as:

^6 = (^c)0 is the space of 0 — invariants.

Let |l denote the restriction of V to ^^, the image of |l lies in the algebra of 0-
invariants (A* ® ̂ )°. Similarly we let S§ C ^& denote the kernel of£o|Li.

Lemma 15.9. — 7%^ homomorphisms \JL\^& ̂  (A^fl^C)0, n : 5§ —^ (A^fl^C)0

zW^^ isomorphisms qfH , H1 aW monomorphisms qffi .

Proof — Standard. D

Remark 15.10. — Note that H°(^ •(M, adPc)o) ̂  H°((A' (g) fl (g) C)°) ̂  H°(^) ̂  0
^ ^^ ^ assumption of Theorem 15.8, ^(^•(M, adPJ) ^ H0^ ® fl (g) C)°) ^
H°^) ̂  0.

Corollary 15.11. — The differential graded Lie algebra SS controls the germ (Hom(F, G^)y p)
and (under the conditions of Theorem 15.8) the differential graded Lie algebra ^6 controls the germ
(X(r, Gc), [p]).

The split weight filtration on ^^c defines a split weight filtration on ^^ (g) Q (g) C
(by taking tensor products of the components c/̂ * with fl). Using Proposition 15.7
restrict the split weight filtration from ./̂  to ^& and =S?. Clearly these split filtrations
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of ^& and cS? satisfy the properties (a)-(c) (of ̂ \ where in (a) instead of A we take
the Lie bracket. The property (d) fails, however we will need only its weak version:

d') The restriction of the differential to ^€\ and 3S\ is identically zero.
Our further arguments are the same in the cases of ^& and SS so we will

discuss only ^&.
Note that ̂  := ©g^, is an ideal in ̂ . We let ^ be the ideal generated by

^ and ^&\\

^ = ̂  © ^&\ © d(^6\\

The quotient ^6/ ^ is again a differential graded Lie algebra. The property (b) of^^
(weight restrictions on the cohomology groups) implies that the projection morphism
^6 —> Q := ^&f ̂  induces isomorphisms of the 1-st and 2-nd cohomology groups.
Hence by Theorem 13.6 the differential graded Lie algebras Q and ^& control germs
which are analytically isomorphic. So it is enough to prove that Q controls a quasi-
homogeneous germ with the correct weights and we shall consider the differential
graded Lie algebra Q from now on.

Remark 15.12. — We shall use the notation (^. to denote the projection of ^6. (p < 4).
Lemma 13 A implies that Q = ®p(3p so that:

• d : Qp^Qp for each p;

• h']:^®^-^,.
• The induced weights on H\(^9) are 1, 2 and the induced weights on H2^*) are 2, 3, 4;
• d(^\)=0.
• ^° = ^o = 0 (see Remark 15.10).
Thus Theorem 15.1 will follow from

Lemma 15.13. — Suppose that Q\ = Q ) . ^ p is a differential bigraded Lie algebra so
that:

• Qp = 0,p ̂  5.

• Each component (Sp is finite dimensional.
• d\Qp-^Qp for each p.

• h']:^^^^.
• The induced weights on H\(^9) are 1 , 2 and the induced weights on H2^*) ̂ 2,3,4.
•d(^\)=0.
• ^° = ̂ o = 0.

Then the associated complete local algebra R^ • (see Section 13) is quasi-homogeneous with
the weights of variables 1 , 2 and the weights of relations 2,3,4.
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Proof. — In what follows the elements of ̂  will be denoted T|.. We split each
vector space ̂  into the direct sum ^? © B. © C., where

• The space of coboundaries B. is the image of dp : Qp ~ —> Qp;
• The space S^ p of "harmonic forms55 is a complement to B. in Z. := ker((/. :

^-^+1);
k • k k• C. is a complement to Z. in ̂ .

We let ̂ : ̂  -^ B^ denote the projection with the kernel J^©C{ ("coclosed
A-forms55). We let Z, : B^ —> C '̂"1 denote the inverse to the differential d.. This allows
us to define the "co-differential55

S^^-C^C^;-1. 8,-^oP,

(whose kernel is J^p ©G.). Let n.:(^.—> ̂  . denote the projection with the kernel
B. © C.. Clearly the projection

;̂ -^ H^;)

is an isomorphism of vector spaces. Notice that ^1 = Q\ ® ^ 2 ® ^ 3 - Consider the
variety V C Q x given by the equation

(5) rfTi+[TLTi]/2=o, ne^ 1 .
The algebra Q controls the germ (V, 0) (see § 13) and our goal is to show that
this germ is quasi-homogeneous with the correct weights. Since T| = T|^ + T|2 + ^3 the
equation (5) is equivalent to the system:

dr[^ = 0, d^ + [Tii, TiJ/2 = 0, ^3 + [r|i, ̂ ] = 0,
[ r l l . r l3]+[ r l2.T^2]/2=0.

Recall that the differential d is identically zero on (^ i and the restriction

d:€\^€\

has zero kernel (since H'^*) has no weight 3 elements). Therefore the equation
^s + [^i? ^Iz] = 0 is equivalent to the system of three equations:

^hi, ^2] = °' U^i' ^z] = ° (Le- [^ i ' 'Hz] is exact);

^-•-^[ni.^] =°.
equivalendy (since (^1 = 0 for all TI))

[Tli,^] =0 , r^TIi,-^] =0 , Tl3+§3[T|i ,n2] = 0.
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Note however that the equation <A^+ [rii, rij = 0 together with the graded Lie identity
imply that [r|i, dr\^] = 0. Thus we eliminate the variable ^3 and the system of equations
(5) is equivalent to:

(6) ^+[Tii^]/2=o, n,[^^,]=o, -[Th^ETh^M^WS-o.

The mappings d, 83, F^ are linear and the bracket [•, •] is quadratic. We conclude that
the system of equations (6) is quasi-homogeneous where the weights of the generators
(i.e. the components of) r(y are j = 1 ,2 and the weights of the relations are 2, 3 and
4. The only problem is that the first polynomial equation has nonzero linear term. To
resolve this problem we let r^ = r^ + ri^, where r^ G Z^, r)^' € G^. Hence (similarly to
the case of ^3) we conclude that the equation rfr^ + [r|i, T|J/2 = 0 is equivalent to the
system:

r^i, ni] = o, ^ + 6^,, Tij/2 = o.
Thus we have r^ = r^ — SzE^i ? 'Hil/^ and instead of the system of equations (6) we get
the system

^E^i^i] =°. ^l^i^-^hi^i]] =0.

-[Tli.SsEni^^-^hi^iJ/S]]

+[^2 - §2^1. ^1l]/2, Tl2 - §2[T1i , TlJ/2]/2 = 0

which is quasi-homogeneous with the required weights. D
This concludes the proof of Theorem 15.1. D

16. Malcev Lie algebras of Artin groups

Out discussion of the material below follows [ABC]. Let k be a field of zero
characteristic and F be a group. We define the k-unipotent completion (or Malcev completion)
r®k of r by the following universal property:

• There is a homomorphism T|® k : r —> D8)k.
• For every k-unipotent Lie group U and any homomorphism p : r —> U there

is a lift p : r (g) k -» U so that p o (r) (g) k) = p.
• F0 k and T|0 k are unique up to an isomorphism.
• r ® k is k-pro-unipotent.

Remark 16.1. — Recall that any group U above is torsion-free and nilpotent.

Definition 16.2. — The group F® k has a \s.-pro-nilpotent Lie algebra =2?(r, k). This
algebra is called the k-Malcev Lie algebra ofT.
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We will take k = R in what follows. Thus we shall denote ^(F) := ^(F, R),
T| := p (g) R, etc.

Example 16.3. — Suppose that the group Y has a generating set consisting of elements of
finite order. Then cS^(r) = 0 because r ( g ) R = { l } . / 7 2 particular, if T is a Shephard group
where all vertices have nonzero labels then o2f (F) = 0.

Let H be a finite-dimensional real vector space and L(H) be the free Lie
algebra spanned by H. It can be described as follows. Consider the tensor algebra
T(H) of tensors of all possible degrees on H, define the Lie bracket of T(H) by
[u, v\ = u Cx) v — v 0 u. Then L(H) is the Lie subalgebra in T(H) generated by elements
ofH.

Let Fy be a free group of rank r and H be the r-dimensional real vector space,
then

L(H)^(F,).

An element u e L(H) is said to have the degree ^ d if u e ©^H0'. The degree of u
equals d if deg(^) < d but deg(^) is not ^ d — 1. I.e. the degree of u is the highest
degree of monomial in the expansion of u as a linear combination of tensor products
of elements of H. For instance, quadratic elements of L(H) are elements of the degree 2,
i.e. they have the form of nonzero linear combinations

5-. ^L ^ . ̂  ^ H-ED
A quadratically presented Lie algebra is the quotient L(H)/J where J is an ideal

generated by a (possibly empty) set of quadratic elements.

Theorem 16.4. (P. Deligne, P. Griffith, J. Morgan, D. Sullivan, [DGMS]). —
Suppose that M is a compact connected Kdhkr manifold, then the Malcev Lie algebra =5f (^(M))
is quadratically presented.

Theorem 16.5. (J. Morgan, [Mol], [Mo2]). — "Morgan's test.55 Suppose that M
is a smooth connected complex algebraic variety. Then the Malcev Lie algebra S? (n^(M)) is the
quotient L(H)/J^, where L(H) is a free Lie algebra and the ideal J is generated by elements of degrees
2 ^ d ^ 4.

Remark 16.6. — Until recently Morgan's theorem was the only known restriction on the
fundamental groups of smooth complex algebraic varieties, besides finite presentability. Much more
restrictions are known in the case of smooth complete varieties and compact Kdhler manifolds, see
[ABC].
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Below we compute Malcev algebras of Artin groups. Suppose that G" is an Artin
group. Let n be the number of generators of G^ Define a Lie algebra over R

SS := (Xi, ..., X, I ̂  X,] = 0 if e(^) ^ oo is even ,
X .̂ = X .̂ if e{i,j) =[= oo is odd )

where [X, Y] denotes the Lie algebra commutator. Clearly this Lie algebra is
quadratically presentable. Let ^ denote the generator of Ga corresponding to the
vertex ^.

To compute Malcev completions we will need the following two lemmas

Lemma 16.7. — Suppose that p : G" —^ N is a homomorphism to a torsion-free nilpotent
group. Then for all x^ ^ such that 2qy = e(i,j) =(= oo we have [p(^), p( .̂)] = 1. For all x^ x.
such that 2qy + 1 = e{i,j) =(= oo we have p(^.) = p(x-).

Proof. — The assertion is obvious if N is Abelian. So we assume that the assertion
is valid for all (s — l)-step nilpotent torsion-free groups N. Let N be j-step nilpotent.
Let Z(N) denote the center of N, let N := N/Z(N) and p : N —^ N be the projection.
Then by the induction hypothesis:

• ^(P(^U(P(^))] = 1. provided that 2qy = e(^j) ̂  oo.
• PW) =P(P{^\ provided that 2^+1 = e(z^) ^ oo.
(1) Consider the case 2qy = e(^j). Then p(^-)p(^-) = p(^)p(^.)z, for some ^ € Z(N).

Thus the relation

(x^y = {x^

implies that

^pKy^-] = p[(y l̂.
Since N is torsion-free we conclude that ^ = 1 and hence p([^, A:]) = 1.

(2) The other case is when 2^+ 1 = £(^j). Then p(^) = ^p(x), for some ^ e Z(N).
The relation

(^•)^ .̂ = (y .̂

implies that ^ = 1. D

Remark 16.8. — /TZ our paper we use only Artin groups with even labels.

Lemma 16.9. — Suppose that U is an J^-unipotent group, a, b e U are commuting elements.
Then [log(a), log(A)] = 0 in the Lie algebra ofV.

Proof. — Since U is unipotent we can think of U as the subgroup of the group
of upper-triangular matrices with 1-s on the diagonal. Then for any g e U we have:
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l°g(?) = l°g(l — (1 — <?))? h = 1 — ̂  is a nilpotent matrix, thus log(l — A) is a polynomial
in A. Since the matrices a, b commute, any polynomial functions of them commute as
well. Thus [log(a), log(6)] = 0. D

Theorem 16.10. — Under the above conditions 3S = S'(G^ is the Malcev Lie algebra
ofG\

Proof. — Let F denote the free group on ^,...,^ and n : F —> G^ be the
quotient map. Let F (g) R be the R-unipotent completion of F and T| : F —> F 0 R
be the canonical homomorphism. Let ^(F,R) be the Lie algebra of F (g) R. Put
& = Tl(^), 1 ^ i ^ n and X^ := log(&). Let ^ be the ideal in ^(F, R) generated by the
commutators [X^, X^], for even labels ^(i,j) =|= oo and the elements X^.—X. if£(^j) =t= oo
is odd. Let Q := =S^(F, R)/^7 be the quotient Lie algebra and Qbe the corresponding
pro-unipotent Lie group over R. Let n: F(g)R —> Qbe the quotient map. Put& := TC^)
and X^ := ^Jr(X^). Then^ = exp(X^), 1 ^ i ̂  72. Consequently [&,&] = 1 for all vertices
i,j connected by an edge with even label and^ = g. for all vertices i,j connected by
an edge with odd label. Hence we have a commutative diagram

F -^ F0R ——> ^(F,R)'i "i iN ^ 4 ' 4-

G" -̂  Q ——> Q

where T(7i(^)) = g^ 1 ^ z ^ n. We claim that Q^ is the Malcev completion of G^ It
is clear that any homomorphism p : Q^ —> U from Q^ to a unipotent group U is
determined by its pull-back to Ga (because its pull-back to F 0 R is determined by its
further pull-back to F). So let p : G'1 —^ U be a homomorphism with U a unipotent
group over R. The homomorphism 7C*p extends to a morphism p : F (g) R —> U. Note
that U is necessarily nilpotent and torsion-free.

According to Lemma 16.7 for each pair of (i,j) such that ^{iyj) is even we have:

p(k. gj\) = ̂ *p(k. ̂ ]) = p(k-. ^-]) = i.
Hence log(p(^)) and log(pfc)) commute in the Lie algebra u of U (see Lemma 16.9).
Therefore <2?p(X^) and <$(X) commute in u. The case of odd labels e(^j) is similar. This
implies that dp descends to Q and consequently p descends to Q .̂ D

Corollary 16.11. — IfG" is any Artin group then 5S (G^ is quadratically presented.

Thus the Artin groups constructed in Theorem 14.7 satisfy Morgan's test of being
fundamental groups of smooth complex algebraic varieties.
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17. Representation varieties near the trivial representation

The second author would like to thank Carlos Simpson for explaining Theorem
17.1 in this section.

Let r be a finitely-generated group, F (g) R be its Malcev completion and
T| ® R : F —> r (g) R be the canonical homomorphism. Let 5S (F) denote the Malcev
Lie algebra of F. Both F (g) R and ^(F) can be described as inverse limits of (finite-
dimensional) unipotent Lie groups and nilpotent Lie algebras respectively:

r (g) R = lim U

^(r)=UmLie(U,.).

Let G be the set of real points of an algebraic group G defined over R, let 3 = Lie(G)
be the Lie algebra of G. Let po : F —^ G be the trivial representation.

Theorem 17.1. — 1. If the Lie algebra c^(r) is quadratically presentable then the variety
Horn (=2? (r), g) is given by homogeneous quadratic equations.

2. There is an isomorphism of germs

(Hom(J3?(r), fl), 0) —— (Hom(r, G), po).

Proof. — (1) The Malcev Lie algebra ^(F) has a finite set of generators X^, ...,X^
(since F is finitely generated), it is clear that the subvariety Hom(^(r), Q) C Q" is given
by homogeneous quadratic equations.

(2) Let ̂  be an Artin local R-algebra. We recall that G(^ ) is the set of
^ -points of G, algebraically the group G(^& ) is the semidirect product N^ x G,
where N^ is a certain R-unipotent group (the kernel of the natural projection
po : G(^ ) —> G). Consider the sets

Hom,(F, G(^ )) := { p : r -^ G(^ ) | j&o(p) = po } ̂  Hom(F, N^ )
Homo(r(g)R,G(^)) :={^: r (g)R^G(^) \p^= 1 }

^Hom(r(g)R,N^)
Homo(^(r), fl(^ )) := { v|/ : r 0 R -^ Q(^ ) | logj&o exp (y) = 0 }

^Hom(^(r),Lie(N^)).

Thus, by the definition of T (g) R, for each Artin local R-algebra ̂  the morphism
T|(g)R induces a natural bijection between the sets Hom(r, N^ ) and Hom(r(g)R, N^ ).
Then we have an induced isomorphism between the functors

Hom^ (r (g) R, G(^ )) : ̂  ̂  Hom(F (g) R, N^ ),
Homo(r, G) (^ ) : ̂  ̂  Hom(F, N^ )
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of ̂  -points. Finally we note the isomorphism of functors

Hom^ (^ (F), fl) (^ ) ̂  Homo (F (g) R, G(^ )).

Therefore (by Theorem 3.1 of [GM]) we have an isomorphism of the germs

(Hom(^(r),fl),0)—^(Hom(r,G),po)). D

Proposition 17.2. — Let T be a Coxeter group or a Shephard group (where all vertices have
nonzero labels). Then the trivial representation po : T —^ G is infinitesimal^ rigid (and hence is an
isolated reduced point) in Hom(r, G).

Proof. — The group F is generated by elements of finite order. Let ^ be a cocycle
in Z\r, g). Then ^\^ is a coboundary for each generator ^ of F (since ^ has finite
order). However po(^.) = 1, hence .̂) = 0 for all^'. We conclude that ^ = 0. D

Theorem 17.3. — Let T be any Artin group. Then the representation variety Hom(F, G)
has at worst a quadratic singularity at the trivial representation.

Proof. — Combine Corollary 16.11 and Theorem 17.1. D
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