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Preface

The goal of this book is to present several central topics in geometric group
theory, primarily related to the large scale geometry of infinite groups and spaces
on which such groups act, and to illustrate them with fundamental theorems such
as Gromov’s Theorem on groups of polynomial growth, Tits’ Alternative, Mostow
Rigidity Theorem, Stallings’ theorem on ends of groups, theorems of Tukia and
Schwartz on quasi-isometric rigidity for lattices in real-hyperbolic spaces, etc. We
give essentially self-contained proofs of all the above mentioned results, and we
use the opportunity to describe several powerful tools/toolkits of geometric group
theory, such as coarse topology, ultralimits and quasiconformal mappings. We also
discuss three classes of groups central in geometric group theory: Amenable groups,
(relatively) hyperbolic groups, and groups with Property (T).

The key idea in geometric group theory is to study groups by endowing them
with a metric and treating them as geometric objects. This can be done for groups
that are finitely generated, i.e. that can be reconstructed from a finite subset,
via multiplication and inversion. Many groups naturally appearing in topology,
geometry and algebra (e.g. fundamental groups of manifolds, groups of matrices
with integer coefficients) are finitely generated. Given a finite generating set S of a
group G, on can define a metric on G by constructing a connected graph, the Cayley
graph of G, with G serving as the set of vertices and the oriented edges labeled by
elements in S. A Cayley graph G, as any other connected graph, admits a natural
metric invariant under automorphisms of G: The distance between two points is
the length of the shortest path in the graph joining these points (see Section 1.3.4).
The restriction of this metric to the vertex set G is called the word metric distg on
the group G. The first obstacle to “geometrizing” groups in this fashion is the fact
that a Cayley graph depends not only on the group but also on a particular choice
of finite generating set. Cayley graphs associated with different generating sets are
not isometric but merely quasi-isometric.

Another typical situation in which a group G is naturally endowed with a
(pseudo)metric is when G acts on a metric space X: In this case the group G
maps to X wvia the orbit map g — gx. The pull-back of the metric on G is then a
pseudo-metric on G. If G acts on X isometrically, then the resulting pseudometric
on G is G-invariant. If, furthermore, the space X is proper and geodesic and the
action of G is geometric (i.e., properly discontinuous and cocompact), then the
resulting (pseudo)metric is quasi-isometric to word metrics on G (Theorem 5.29).
For example, if the group G is the fundamental group. of a closed Riemannian
manifold M, the action of G on the universal cover M of M satisfies all these
properties. The second class of examples of isometric actions (whose origin lies in
functional analysis and representation theory) comes from isometric actions of a
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group G on Hilbert spaces. The square of the corresponding metric on G is known
in the literature as a conditionally negative definite kernel. In this case, the relation
between the word metric and the metric induced from the Hilbert space is more
loose than quasi-isometry; nevertheless, the mere existence of such a metric has
many interesting implications, detailed in Chapter 17.

In the setting of geometric view of groups, the following questions become
fundamental:

QUESTIONS. (A) If G and G’ are quasi-isometric groups, to what extent
do G and G’ share the same algebraic properties?

(B) If a group G is quasi-isometric to a metric space X, what geometric prop-
erties (or structures) on X translate to interesting algebraic properties of
G?
Addressing these questions is the primary focus of this book. Several striking
results (like Gromov’s Polynomial Growth Theorem) state that certain algebraic
properties of a group can be reconstructed from its loose geometric features.

Closely connected to these considerations are two foundational conjectures
which appeared in different contexts but both render the same sense of existence of
a “demarkation line” dividing the class of infinite groups into “abelian-like” groups
and “free-like” groups. The invariants used to draw the line are quite different
(existence of a finitely-additive invariant measure in one case and behavior of the
growth function in the other); nevertheless, the two conjectures and the classifica-
tion results that grew out of these conjectures, have much in common.

The first of these conjectures was inspired by work investigating the existence
of various types of group-invariant measures, that originally appeared in the con-
text of Euclidean spaces. Namely, the Banach-Tarski paradox (see Chapter 15),
while denying the existence of such measures on the FEuclidean plane, inspired J.
von Neumann to formulate two important concepts: That of amenable groups and
that of paradozical decompositions and groups [VIN28]. In an attempt to connect
amenability to the algebraic propeties of a group, von Neumann made the observa-
tion, in the same paper, that the existence of a free subgroup excludes amenability.
This was later formulated explicitly as a conjecture by M. Day [Day57, §4]:

CONJECTURE (The von Neumann—Day problem). Is non-amenability of a group
equivalent to the existence of a free non-abelian subgroup?

The second conjecture appeared in the context of Riemannian geometry, in
connection to various attempts to relate, for “a compact Riemannian manifold M,
the geometric features of its universal cover M to the behavior of its fundamental
group G = m1(M). Two of the most basic objects in Riemannian geometry are the
volume and the volume growth rate. The notion of volume growth extends naturally
to discrete metric spaces, such as finitely generated groups. The growth function of
a finitely generated group G (with a fixed finite generating set .S) is the cardinality
®(n) of the ball of radius n in the metric space (G,distg). While the function
&(n) depends on the choice of the finite generating set S, the growth rate of &(n)
is independent of S. In particular, one can speak of groups of linear, polynomial,
exponential growth, etc. More importantly, the growth rate is preserved by quasi-
isometries, which allows to establish a close connection between the Riemannian
growth of a manifold M as above, and the growth of G = w1 (M).
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One can easily see that every abelian group has polynomial growth. It is a
more difficult theorem (proven independently by Hyman Bass [Bas72| and Yves
Guivarc’h [Gui70, Gui73|) that all nilpotent groups also have polynomial growth.
We prove this result in Section 12.5. In this context, John Milnor formulated the
following conjecture

CONJECTURE (Milnor’s conjecture). The growth of any finitely generated group
is either polynomial (i.e. &(n) < Cn? for some fized C and d) or exponential (i.e.
&(n) = Ca™ for some fited a > 1 and C > 0).

Milnor’s conjecture is true for solvable groups: This is the Milnor—Wolf Theo-
rem, which states that solvable groups of polynomial growth are virtually nilpotent.
This theorem still holds for the larger class of elementary amenable groups (see
Theorem 16.33); moreover, such groups with non-polynomial growth must contain
a free non-abelian subsemigroup.

The proof of the Milnor—Wolf Theorem essentially consists of a careful exam-
ination of increasing/decreasing sequences of subgroups in nilpotent and solvable
groups. Along the way, one discovers other features that nilpotent groups share
with abelian groups, but not with solvable groups. For instance, in a nilpotent
group all finite subgroups are contained in a maximal finite subgroup, while solvable
groups may contain infinite strictly increasing sequences of finite subgroups. Fur-
thermore, all subgroups of a nilpotent group are finitely generated, but this is no
longer true for solvable groups. One step further into the study of a finitely gener-
ated subgroup H in a group G is to compare a word metric disty on the subgroup
H to the restriction to H of a word metric dists on the ambient group G. With an
appropriate choice of generating sets, the inequality distg < disty is immediate:
All the paths in H joining h,h’ € H are also paths in G, but there might be some
other, shorter paths in G joining h, h'. The problem is to find an upper bound on
disty in terms of distg. If G is abelian, the upper bound is linear as a function
of distg. If disty is bounded by a polynomial in distg, then the subgroup H is
said to be polynomially distorted in G, while if disty is approximately exp(Adists)
for some A > 0, the subgroup H is said to be exponentially distorted. Tt turns out
that all subgroups in a nilpotent group are polynomially distorted, while in solvable
groups there exist finitely generated subgroups with exponential distortion.

Both the von Neumann-Day conjecture and the Milnor conjecture were an-
swered in the affirmative for linear groups by Jacques Tits:

THEOREM (Tits’ Alternative). Let F be a field of zero characteristic and let T
be a subgroup of GL(n, F). Then either T is virtually solvable or T' contains a free
nonabelian subgroup.

We prove Tits” Alternative in Chapter 13. Note that this alternative also holds
for fields of positive characteristic, provided that I' is finitely generated; we decided
to limit the discussion to the zero characteristic case in order to avoid algebraic
technicalities and because this is the only case of Tits’ Alternative used in the
proof of Gromov’s theorem below.

There are other classes of groups in which both von Neumann-Day and Mil-
nor conjectures are true, they include: Subgroups of Gromov—hyperbolic groups
(|Gro87, §8.2.F], [GAIH90, Chapter 8]), fundamental groups of closed Riemannian
manifolds of nonpositive curvature [Bal95], subgroups of the mapping class group
[Iva92]| and the groups of outer automorphisms of free groups [BFH00, BFHO5]|.
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The von Neumann-Day conjecture is not true in general: The first counter-
examples were given by A. Olshansky in [O1’80]. In [Ady82] it was shown that
the free Burnside groups B(n,m) with n > 2 and m > 665, m odd, are also
counter-examples. Finally, finitely presented counter-examples were constructed
by Olshansky and Sapir in [OS02]. These papers have lead to the develop-
ment of certain techniques of constructing “infinite finitely generated monsters”.
While the negation of amenability (i.e. the paradoxical behavior) is, thus, still
not completely understood algebraically, several stronger properties implying non-
amenability were introduced, among which are various fixed-point properties, most
importantly Kazhdan’s Property (T) (Chapter 17). Remarkably, amenability (hence
paradoxical behavior) is a quasi-isometry invariant, while Property (T) is not.

Milnor’s conjecture in full generality is, likewise, false: The first groups of
intermediate growth, i.e. growth which is super-polynomial but subexponential,
were constructed by Rostislav Grigorchuk. Moreover, he proved the following:

THEOREM (Grigorchuk’s Subexponential Growth theorem). Let f be an arbi-
trary sub-exponential function larger than 2V™. Then there exists a finitely gener-
ated group T' with subexponential growth function &(n) so that:

f(n) < &(n)
for infinitely many n € N.

Later on, Anna Erschler [Ers04| adapted Grigorchuk’s arguments to improve
the above result with the inequality f(n) < &(n) for all but finitely many n. In
the above examples, the exact growth function was unknown. However, Laurent
Bartholdi and Anna Erschler [BE12] constructed examples of groups of intermedi-
ate growth, where they actually compute &(n), up to the appropriate equivalence
relation. Note, however, that Milnor’s conjecture is still open for finitely presented
groups.

On the other hand, Mikhael Gromov proved an even more striking result:

THEOREM (Gromov’s Polynomial Growth Theorem, [Gro81]). Every finitely
generated group of polynomial growth is virtually nilpotent.

This is a typical example of an algebraic property that may be recognized via
a, seemingly, weak geometric information. A corollary of Gromov’s theorem is
quasi-isometric rigidity for virtually nilpotent groups:

COROLLARY. Suppose that G is a group quasi-isometric to a nilpotent group.
Then G itself is virtually nilpotent, i.e. it contains a nilpotent subgroup of finite
index.

Gromov’s theorem and its corollary will be proven in Chapter 14. Since the
first version of these notes was written, Bruce Kleiner [Klel0] gave a completely
different (and much shorter) proof of Gromov’s polynomial growth theorem, using
harmonic functions on graphs (his proof, however, still requires Tits’ Alternative).
Kleiner’s techniques provided the starting point for Y. Shalom and T. Tao, who
proved the following effective version of Gromov’s Theorem [ST10]:

THEOREM (Shalom-Tao Effective Polynomial Growth Theorem). There exists
a constant C such that for any finitely generated group G and d > 0, if for some
R > exp (exp (Cdc)), the ball of radius R in G has at most R? elements, then G

has a finite index nilpotent subgroup of class less than C?.
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We decided to retain, however, Gromov’s original proof since it contains a
wealth of ideas that generated in their turn new areas of research. Remarkably, the
same piece of logic (a weak version of the axiom of choice) that makes the Banach-
Tarski paradox possible also allows to construct ultralimits, a powerful tool in the
proof of Gromov’s theorem and that of many rigidity theorems (e.g, quasi-isometric
rigidity theorems of Kapovich, Kleiner and Leeb) as well as in the investigation of
fixed point properties.

Regarding Questions (A) and (B), the best one can hope for is that the geometry
of a group (up to quasi-isometric equivalence) allows to recover, not just some of
its algebraic features, but the group itself, up to virtual isomorphism. Two groups
G and G4 are said to be wirtually isomorphic if there exist subgroups

F¢<1Hi§Gi,i:1,2,

so that H; has finite index in G;, F; is a finite normal subgroup in H;, i = 1,2, and
Hy/F; is isomorphic to Hy/F». Virtual isomorphism implies quasi-isometry but, in
general, the converse is false, see Example 5.37. In the situation when the converse
implication also holds, one says that the group G; is quasi-isometrically rigid.

An example of quasi-isometric rigidity is given by the following theorem proven
by Richard Schwartz [Sch96b]:

THEOREM (Schwartz QI rigidity theorem). Suppose that I' is a nonuniform
lattice of isometries of the hyperbolic space H",n > 3. Then each group quasi-
isometric to I' must be virtually isomorphic to T'.

We will present a proof of this theorem in Chapter 22. In the same chapter
we use similar “zooming” arguments to prove the special case of Mostow Rigidity
Theorem:

THEOREM (Mostow Rigidity Theorem). Let I'y and I'y be lattices of isometries
of H".,n > 3, and let ¢ : I'y — 'y be a group isomorphism. Then ¢ is given by
conjugation via an isometry of H™.

Note that the proof of Schwartz’ theorem fails for n = 2, where non-uniform
lattices are virtually free. (Here and in what follows when we say that a group has
a certain property virtually we mean that it has a finite index subgroup with that
property.) However, in this case, quasi-isometric rigidity still holds as a corollary
of Stallings’ theorem on ends of groups:

THEOREM. Let T be a group quasi-isometric to a free group of finite rank. Then
T is itself virtually free.

This theorem will be proven in Chapter 18. We also prove:

THEOREM (Stallings “Ends of groups” theorem). If G is a finitely generated
group with infinitely many ends, then G splits as a graph of groups with finite
edge—groups.

In this book we provide two proofs of the above theorem, which, while quite
different, are both inspired by the original argument of Stallings. In Chapter 18
we prove Stallings’ theorem for almost finitely presented groups. This proof follows
the ideas of Dunwoody, Jaco and Rubinstein: We will be using minimal Dunwoody
tracks, where minimality is defined with respect to a certain hyperbolic metric on
the presentation complex (unlike combinatorial minimality used by Dunwoody). In
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Chapter 19, we will give another proof, which works for all finitely generated groups
and follows a proof sketched by Gromov in [Gro87], using least energy harmonic
functions. We decided to present both proofs, since they use different machinery
(the first is more geometric and the second more analytical) and different (although
related) geometric ideas.

In Chapter 18 we also prove:

THEOREM (Dunwoody’s Accessibility Theorem). Let G be an almost finitely
presented group. Then G is accessible, i.e. the decomposition process of G as a
graph of groups with finite edge groups eventually terminates.

In Chapter 21 we prove Tukia’s theorem, which establishes quasi-isometric
rigidity of the class of fundamental groups of compact hyperbolic n-manifolds, and,
thus, complements Schwartz’ Theorem above:

THEOREM (Tukia’s QI Rigidity Theorem). If a group T is quasi-isometric to
the hyperbolic n-space, then I is virtually isomorphic to the fundamental group of
a compact hyperbolic n-manifold.

Note that the proofs of the theorems of Mostow, Schwartz and Tukia all rely
upon the same analytical tool: Quasiconformal mappings of Euclidean spaces. In
contrast, the analytical proofs of Stallings’ theorem presented in the book are mostly
motivated by another branch of geometric analysis, namely, the theory of minimal
submanifolds and harmonic functions. In the end of the book we also give a survey
of quasi-isometric rigidity results.

In regard to Question (B), we investigate two closely related classes of groups:
Hyperbolic and relatively hyperbolic groups. These classes generalize fundamental
groups of compact negatively curved Riemannian manifolds and, respectively, com-
plete Riemannian manifolds of finite volume. To this end, in Chapters 8, 9 we cover
basics of hyperbolic geometry and theory of hyperbolic and relatively hyperbolic
groups.

Other sources. Our choice of topics in geometric group theory is far from ex-
haustive. We refer the reader to [Aea91|,[Bal95|, [Bow91|, [VSCC92]|, [Bow06],
[BH99|, [CDP90|, [Dav08|, [Geo08|, [GAIH90], [dIHO00], [NY11], [PB03],
[Roe03], [Sap13], [V&i05], for the discussion of other parts of the theory.

Requirements. The book is intended as a reference for graduate students and
more experienced researchers, it can be used as a basis for a graduate course and as
a first reading for a researcher wishing to learn more about geometric group theory.
This book is partly based on lectures which we were teaching at Oxford Univer-
sity (C.D.) and University of Utah and University of California, Davis (M.K.). We
expect the reader to be familiar with basics of group theory, algebraic topology (fun-
damental groups, covering spaces, (co)homology, Poincaré duality) and elements of
differential topology and Riemannian geometry. Some of the background material
is covered in Chapters 1, 2 and 3.
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CHAPTER 1

General preliminaries

1.1. Notation and terminology

1.1.1. General notation. Given a set X we denote by P(X) the power set
of X, i.e., the set of all subsets of X. If two subsets A, B in X have the property
that AN B = () then we denote their union by A U B, and we call it the disjoint
union. A pointed set is a pair (X, x), where z is an element of X. The composition
of two maps f: X — Y and g: Y — Z is denoted either by go f or by gf . We will
use the notation Idx or simply Id (when X is clear) to the denote the identity map
X —» X. Foramap f: X =Y and a subset A C X, we let f|A or f|4 denote the
restriction of f to A. We will use the notation |E| or card (E) to denote cardinality
of a set E.

The Axiom of Choice (AC) plays an important part in many of the arguments
of this book. We discuss AC in more detail in Section 7.1, where we also list
equivalent and weaker forms of AC. Throughout the book we make the following
convention:

CONVENTION 1.1. We always assume ZFC: The Zermelo—Fraenkel axioms and
the Axiom of Choice.

We will use the notation A and cl(A) for the closure of a subset A in a topo-
logical space X. The wedge of a family of pointed topological spaces (X;,x;),i € I,
denoted by V;c1Xj;, is the quotient of the disjoint union Ll;c; X;, where we identify
all the points z;.

If f: X — R is a function on a topological space X, then we will denote by
Supp(f) the support of f, i.e., the set

c{r € X : f(z) # 0}.

Given a non-empty set X, we denote by Bij(X) the group of bijections X — X,
with composition as the binary operation.

CONVENTION 1.2. Throughout the paper we denote by 14 the characteristic
function of a subset A in a set X, i.e. the function 14 : X — {0,1}, 1a(z) =1 if
and only if x € A.

We will use the notation d or dist to denote the metric on a metric space X.
For z € X and A C X we will use the notation dist(z, A) for the minimal distance
from z to A, i.e.,

dist(z, A) = inf{d(z,a) : a € A}.
If A, B C X are two subsets A, B, we let

dist gaus(A, B) = max <sup dist(a, B), sup dist(b, A)>
acA beB
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denote the Hausdorff distance between A and B in X. See Section 1.4 for further
details on this distance and its generalizations.

Let (X, dist) be a metric space. We will use the notation Ng(A) to denote the
open R-neighborhood of a subset A C X, i.e. Ngr(A) = {z € X : dist(z, 4) < R}.
In particular, if A = {a} then Ng(A) = B(a, R) is the open R-ball centered at a.

We will use the notation N'g(A), B(a, R) to denote the corresponding closed
neighborhoods and closed balls defined by non-strict inequalities.

We denote by S(z,r) the sphere with center x and radius r, i.e. the set

{y e X : dist(y,z) =r}.

We will use the notation [A, B] to denote a geodesic segment connecting point
A to point B in X: Note that such segment may be non-unique, so our notation is
slightly ambiguous. Similarly, we will use the notation A(A, B,C) or T(A, B, C) for
a geodesic triangle with the vertices A, B, C. The perimeter of a triangle is the sum
of its side-lengths (lengths of its edges). Lastly, we will use the notation A(A, B, C)
for a solid triangle with the given vertices. Precise definitions of geodesic segments
and triangles will be given in Section 1.3.3.

By the codimension of a subspace X in a space Y we mean the difference be-
tween the dimension of Y and the dimension of X, whatever the notion of dimension
that we use.

With very few exceptions, in a group G we use the multiplication sign - to
denote its binary operation. We denote its identity element either by e or by 1. We
denote the inverse of an element ¢ € G by g~ !. Given a subset S in G we denote
by S~! the subset {g~! | g € S}. Note that for abelian groups the neutral element
is usually denoted 0, the inverse of x by —z and the binary operation by +.

If two groups G and G’ are isomorphic we write G ~ G'.

A surjective homomorphism is called an epimorphism, while an injective ho-
momorphism is called a monomorphism. An isomorphism of groups ¢ : G — G is
also called an automorphism. In what follows, we denote by Aut(G) the group of
automorphisms of G.

We use the notation H < G or H < G to denote that H is a subgroup in G.
Given a subgroup H in G:

e the order |H| of H is its cardinality;
e the index of H in G, denoted |G : H|, is the common cardinality of the
quotients G/H and H\G.

The order of an element g in a group (G, -) is the order of the subgroup (g) of
G generated by g. In other words, the order of g is the minimal positive integer n
such that ¢g" = 1. If no such integer exists then g is said to be of infinite order. In
this case, (g) is isomorphic to Z.

For every positive integer m we denote by Z,, the cyclic group of order m,

Z/mZ. Given x,y € G we let z¥ denote the conjugation of = by vy, i.e. yry~'.

1.1.2. Direct and inverse limits of spaces and groups. Let I be a directed
set, i.e., a partially ordered set, where every two elements i, 7 have an upper bound,
which is some k € I such that ¢ < k,j < k. The reader should think of the set of
real numbers, or positive real numbers, or natural numbers, as the main examples
of directed sets. A directed system of sets (or topological spaces, or groups) indexed
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by I is a collection of sets (or topological spaces, or groups) A;,i € I, and maps (or
continuous maps, or homomorphisms) f;; : A; = A;,i < j, satisfying the following
compatibility conditions:
(1) fix = fijko fij, Vi< j <k,
(2) fu=1Id.
An inverse system is defined similarly, except f;; : A; — A;i < j, and,
accordingly, in the first condition we use f;; o fjx.
The direct limit of the direct system is the set

A=limA; = <HAZ-> / ~
il
where a; ~ a; whenever f;;(a;) = fjr(a;) for some k € I. In particular, we have

maps fp, : Ay, — A given by fi,(am) = [am], where [a,,] is the equivalence class in
A represented by a,, € A,,. Note that

A= fm(Am).
icl

If A;’s are groups, then we equip the direct limit with the group operation:

la] - [a;] = [fir(ai)] - [fix(a;)],
where k € I is an upper bound for i and j.

If A;’s are topological spaces, we equip the direct limit with the final topology,
i.e., the topology where U C li_r)nAi is open if and only if f{l(U) is open for every
i. In other words, this is the quotient topology descending from the disjoint union
of A;’s.

Similarly, the inverse limit of an inverse system is

@A'L = {(az) S HAz La; = f,’j((lj),Vi < j} .
iel

If A;’s are groups, we equip the inverse limit with the group operation induced from
the direct product of the groups A;. If A;’s are topological spaces, we equip the
inverse limit the initial topology, i.e., the subset topology of the Tychonoff topology
on the direct product. Explicitly, this is the topology generated by the open sets
of the form f,'(Uy,,), Uy C X, are open subsets and f,, : l(i£1Ai — A, is the
restriction of the coordinate projection.

EXERCISE 1.3. Every group G is the direct limit of the directed family G;,i € I,
consisting of all finitely generated subgroups of G. Here the partial order on [ is
given by inclusion and homomorphisms f;; : G; — G; are tautological embeddings.

EXERCISE 1.4. Suppose that G is the direct limit of a direct system of groups
{Gi, fij : 1,4 € I'}. Assume also that for every ¢ we are given a subgroup H; < G;
satisfying

fij(Hi) < Hj,  Vi<j.
Then the family {H;, fi; : i,j € I} is again a direct system; let H denote the direct
limit of this system. Show that there exists a monomorphism ¢ : H — G, so that
for every i € I,
fila, = ¢o film, : Hi — G.
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EXERCISE 1.5. 1. Let H < G be a subgroup. Then |G : H| < n if and only

if the following holds: For every subset {go,...,gn} C G, there exist g;, g; so that
—1
9i9; € H.

2. Suppose that G is the direct limit of a family of groups G;,7 € I. Assume
also that there exist n € N so that for every ¢ € I, the group G; contains a subgroup
H; of index < n. Let the group H be the direct limit of the family {H; : i € I} and
¢ : H — G be the monomorphism as in Exercise 1.4. Show that

G : ¢(H)| < n.

1.1.3. Growth rates of functions. We will be using in this book two differ-
ent asymptotic inequalities and equivalences for functions: One is used to compare
Dehn functions of groups and the other to compare growth rates of groups.

DEFINITION 1.6. Let X be a subset of R. Given two functions f,g : X — R,
we say that the order of the function f is at most the order of the function g and
we write f 3 g, if there exist a, b, ¢, d, e > 0 such that

fl@) <aglbx+c¢)+dr+e

for every z € X, x > xg, for some fixed zg.
If f 2 ¢gandg 3 f then we write f ~ g and we say that f and g are approzi-
mately equivalent.

The equivalence class of a numerical function with respect to equivalence rela-
tion =2 is called the order of the function. If a function f has (at most) the same
order as the function z, 22, 23, 2 or exp(z) it is said that the order of the function
f is (at most) linear, quadratic, cubic, polynomial, or exponential, respectively. A
function f is said to have subexponential order if it has order at most exp(z) and is
not approximately equivalent to exp(z). A function f is said to have intermediate
order if it has subexponential order and z™ 3 f(z) for every n.

DEFINITION 1.7. We introduce the following asymptotic inequality between
functions f,g : X — R with X C R: We write f = g if there exist a,b0 > 0
such that f(z) < ag(bx) for every z € X, x > ¢ for some fixed zg.

If f < gand g =< f then we write f < g and we say that f and g are asymptot-
ically equal.

Note that this definition is more refined than the order notion =. For instance,
x =~ 0 while these functions are not asymptotically equal. This situation arises, for
instance, in the case of free groups (which are given free presentation): The Dehn
function is zero, while the area filling function of the Cayley graph is A(¢) < ¢. The
equivalence relation & is more appropriate for Dehn functions than the relation =,
because in the case of a free group one may consider either a presentation with
no relation, in which case the Dehn function is zero, or another presentation that
yields a linear Dehn function.

EXERCISE 1.8. 1. Show that ~ and =< are equivalence relations.
2. Suppose that x < f, z < g. Then f = g if and only if f =< g.

1.2. Graphs

An unoriented graph T' consists of the following data:
e a set V called the set of vertices of the graph;

4



e a set E called the set of edges of the graph;
e a map ¢ called incidence map defined on E and taking values in the set
of subsets of V' of cardinality one or two.

We will use the notation V = V(T') and E = E(T') for the vertex and edge sets
of the graph I'. Two vertices u, v such that {u,v} = ¢(e) for some edge e, are called
adjacent. In this case, u and v are called the endpoints of the edge e.

An unoriented graph can also be seen as a 1-dimensional cell complex, with 0-
skeleton V' and with 1-dimensional cells/edges labeled by elements of E, such that
the boundary of each 1-cell e € F is the set t(e). As with general cell complexes
and simplicial complexes, we will frequently conflate a graph with its geometric
realization, i.e., the underlying topological space.

CONVENTION 1.9. In this book, unless we state otherwise, all graphs are as-
sumed to be unoriented.

Note that in the definition of a graph we allow for monogons' (i.e. edges
connecting a vertex to itself) and bigons® (distinct edges connecting the same pair
of vertices). A graph is simplicial if the corresponding cell complex is a simplicial
complex. In other words, a graph is simplicial if and only if it contains no monogons
and bigons.

An edge connecting vertices u,v of T' is denoted [u,v]: This is unambiguous if
T is simplicial. A finite ordered set [v1, 2], [v2, V3], ..., [Un, Unt1] is called an edge-
path in T'. The number n is called the combinatorial length of the edge-path. An
edge-path in T is a cycle if v, 411 = v1. A simple cycle (or a circuit), is a cycle where
all vertices v;,© = 1,...,n, are distinct. In other words, a simple cycle is a cycle
homeomorphic to the circle, i.e., a simple loop in T'.

A simplicial tree is a simply-connected simplicial graph.

An isomorphism of graphs is an isomorphism of the corresponding cell com-
plexes, i.e., it is a homeomorphism f : I' — I so that the images of the edges of T
are edges of IV and images of vertices are vertices. We use the notation Aut(I") for
the group of automorphisms of a graph I'.

The wvalency (or valence, or degree) of a vertex v of a graph T' is the number
of edges having v as one of its endpoints, where every monogon with both vertices
equal to v is counted twice.

A directed (or oriented) graph T' consists of the following data:

e aset V called set of vertices of the graph;

e aset E called the set of edges of the graph;

e twomaps o: E — V and t : E — V, called respectively the head (or
origin) map and the tail map.

Then, for every x,y € V we define the set of oriented edges connecting = to y:

Ey) ={e: (0(e),t(e)) = (z,y)}-
A directed graph is called symmetric if for every subset {u,v} of V the sets
E(;,) and E(,,) have the same cardinality. For such graphs, interchanging the
maps t and o induces an automorphism of the directed graph, which fixes V.

INot to be confused with unigons, which are hybrids of unicorns and dragons.
2Also known as digons.



A symmetric directed graph I is equivalent to a unoriented graph I' with the
same vertex set, via the following replacement procedure: Pick an involutive bijec-
tion B : F — E, which induces bijections f3 : Epyy — By forall z,y € V. We
then get the equivalence relation e ~ 3(e). The quotient E = E/ ~ is the edge-set
of the graph I', where the incidence map ¢ is defined by ¢([e]) = {o(e),t(e)}. The
unoriented graph I' thus obtained, is called the underlying unoriented graph of the
given directed graph.

EXERCISE 1.10. Describe the converse to this procedure: Given a graph I',
construct a symmetric directed graph I', so that I' is the underlying graph of I'.

DEFINITION 1.11. Let FF C V = V(T') be a set of vertices in a (unoriented)
graph I'. The vertez-boundary of F, denoted by Oy F', is the set of vertices in F'
each of which is adjacent to a vertex in V' \ F.

The edge-boundary of F, denoted by E(F, F), is the set of edges e such that
the set of endpoints t(e) intersects both F and its complement F© = V \ F in
exactly one element.

Unlike the vertex-boundary, the edge boundary is the same for F' as for its
complement F¢. For graphs without bigons, the edge-boundary can be identified
with the set of vertices v € V' \ F adjacent to a vertex in F', in other words, with
Oov(V\F).

For graphs having a uniform upper bound C on the valency of vertices, cardi-
nalities of the two types of boundaries are comparable

(1.1) 0y F| < |BE(F, F°)| < C|dyF|.

DEFINITION 1.12. A simplicial graph I' is bipartite if the vertex set V splits as
V =Y UZ, so that each edge e € E has one endpoint in Y and one endpoint in Z.
In this case, we write I' = Bip(Y, Z; E).

EXERCISE 1.13. Let W be an n-dimensional vector space over a field K (n > 3).
Let Y be the set of 1-dimensional subspaces of W and let Z be the set of 2-
dimensional subspaces of W. Define the bipartite graph I' = Bip(Y, Z, E), where
y € Y is adjacent to z € Z if, as subspaces in W, y C z.

1. Compute (in terms of K and n) the valence of I', the (combinatorial) length
of the shortest circuit in I', and show that I" is connected. 2. Estimate from above
the length of the shortest path between any pair of vertices of I'. Can you get a
bound independent of K and n?

1.3. Topological and metric spaces

1.3.1. Topological spaces. Lebesgue covering dimension. Given two
topological spaces, we let C'(X;Y") denote the space of all continuous maps X — Y;
set C'(X) := C(X;R). We always endow the space C(X;Y’) with the compact-open
topology.

DEFINITION 1.14. Two subsets A,V of a topological space X are said to be
separated by a function if there exists a continuous function p = pgv : X — [0, 1]
so that

1. plA=0

2. plV =1

A topological space X is called perfectly normal if every two disjoint closed
subsets of X can be separated by a function.
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An open covering U = {U; : i € I} of a topological space X is called locally
finite if every subset J C I such that

Ui #0
ieJ
is finite. Equivalently, every point € X has a neighborhood which intersects only
finitely many U;’s.
The multiplicity of an open covering U = {U; : i € I} of a space X is the
supremum of cardinalities of subsets J C I so that

(U # 0.

ied
A covering V is called a refinement of a covering U if every V € V is contained in
some U € U.

DEFINITION 1.15. The (Lebesgue) covering dimension of a topological space
Y is the least number n such that the following holds: Every open cover U of Y
admits a refinement V which has multiplicity at most n + 1.

The following example shows that covering dimension is consistent with our
“intuitive” notion of dimension:

ExampLE 1.16. If M is a n-dimensional topological manifold, then n equals
the covering dimension of M. See e.g. [Nag83].

1.3.2. General metric spaces. A metric space is a set X endowed with a
function dist : X x X — R with the following properties:

(M1) dist(z, y) > 0 for all z, y € X; dist(x, y) = 0 if and only if x = y;
(M2) (Symmetry) for all z, y € X, dist(y, ) = dist(z, y);
(M3) (Triangle inequality) for all z, y, z € X, dist(z, z) < dist(z, y)+dist(y, z).

The function dist is called metric or distance function. Occasionally, it will be
convenient to allow dist to take infinite values, in this case, we interpret triangle
inequalities following the usual calculus conventions (a+o0o = oo for every a € RUoo,
etc.).

A metric space is said to satisfy the ultrametric inequality if

dist(z, z) < max(dist(z,y), dist(y, 2)), Vz,y,z € X.
We will see some examples of ultrametric spaces in Section 1.8.
Every norm | - | on a vector space V' defines a metric on V:
dist(u, v) = |u — v|.

The standard examples of norms on the n-dimensional real vector space V are:

n 1/p
vlp = (ZIW) 1< p < oo,
=1

and

|U‘maz = |U|oo = max{|x1|, RN ‘mn‘}
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EXERCISE 1.17. Show that the Euclidean plane E? satisfies the parallelogram
identity: If A, B,C, D are vertices of a parallelogram P in E? with the diagonals
[AC] and [BD], then

(1.2) d*(A,B) + d*(B,C) + d*(C, D) + d*(D, A) = d*(A,C) + d*(B, D),

i.e., sum of squares of the sides of P equals the sum of squares of the diagonals of
P.

If X,Y are metric spaces, the product metric on the direct product X x Y is
defined by the formula

(1'3) d((xla yl)? (1‘2, y2))2 - d(x17 1‘2)2 + d(y17 y2)2'

We will need a separation lemma which is standard (see for instance [Mun'75,
§32]), but we include a proof for the convenience of the reader.

LEMMA 1.18. Ewvery metric space X is perfectly normal.

ProOOF. Let A,V C X be disjoint closed subsets. Both functions dist 4, disty,
which assign to € X its minimal distance to A and to V respectively, are clearly
continuous. Therefore the ratio

o(x) =

is continuous as well. Let 7 : [0,00] — [0, 1] be a continuous monotone function
such that 7(0) = 0,7(c0) =1, e.g.

dist 4 (z) )
Tisty (z)’ o:X —[0,00]

2
T(y) = —arctan(y), y#oo, 7(00):=1.
T
Then the composition p := 7 o o satisfies the required properties. O

A metric space (X, dist) is called proper if for every p € X and R > 0 the closed
ball B(p, R) is compact. In other words, the distance function d,(x) = d(p,z) is
proper.

A topological space is called locally compact if for every x € X there exists
a basis of neighborhoods of x consisting of relatively compact subsets of X, i.e.,
subsets with compact closure. A metric space is locally compact if and only if for
every x € X there exists € = £(x) > 0 such that the closed ball B(z,¢) is compact.

DEFINITION 1.19. Given a function ¢ : Ry — N, a metric space X is called ¢—
uniformly discrete if each ball B(x,r) C X contains at most ¢(r) points. A metric
space is called uniformly discrete if it is ¢—uniformly discrete for some function ¢.

Note that every uniformly discrete metric space necessarily has discrete topol-
ogy.
Given two metric spaces (X, distx), (Y, disty), amap f: X — Y is an isomet-
ric embedding if for every z,2' € X
disty (f(z), f(z')) = distx (z,2) .
The image f(X) of an isometric embedding is called an isometric copy of X inY.
A surjective isometric embedding is called an isometry, and the metric spaces

X and Y are called isometric. A surjective map f : X — Y is called a similarity
with the factor X if for all z,2" € X,

disty (f(z), f(2')) = Mdistx (z,2') .
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The group of isometries of a metric space X is denoted Isom(X). A metric
space is called homogeneous if the group Isom(X) acts transitively on X, i.e., for
every x,y € X there exists an isometry f: X — X such that f(z) = v.

1.3.3. Length metric spaces. Throughout these notes by a path in a topo-
logical space X we mean a continuous map p : [a,b] — X. A path is said to join
(or connect) two points z,y if p(a) = z, p(b) = y. We will frequently conflate a
path and its image.

Given a path p in a metric space X, one defines the length of p as follows. A
partition

a=ty<t1 <...<tph_1<t,=0b

of the interval [a, b] defines a finite collection of points p(to), p(t1), ..., p(tn-1), p(tn)
in the space X. The length of p is then defined to be

(1.4) length(p) = sup i dist(p(t;), p(tiv1))

a=to<t1 < <tn=b
where the supremum is taken over all possible partitions of [a, b] and all integers n.
By the definition and triangle inequalities in X, length(p) > dist(p(a), p(b)).

If the length of p is finite then p is called rectifiable, and we say that p is
non-rectifiable otherwise.

EXERCISE 1.20. Consider a C'-smooth path in the Euclidean space p : [a, b] —
R™ ) p(t) = (x1(t),...,z,(t)). Prove that its length (defined above) is given by the
familiar formula

length(p) = / JEOP + R

Similarly, if (M,g) is a connected Riemannian manifold and dist is the Rie-
mannian distance function, then the two notions of length, given by equations (2.1)
and (1.4), coincide for smooth paths.

EXERCISE 1.21. Prove that the graph of the function f : [0,1] — R,

zsint if 0<z<1,
J(@) = { 0 if z=0,
is a non-rectifiable path joining (0,0) and (1,sin(1)).

Let (X,dist) be a metric space. We define a new metric dist, on X, known
as the induced intrinsic metric: disty(x,y) is the infimum of the lengths of all
rectifiable paths joining = to y.

EXERCISE 1.22. Show that dist, is a metric on X with values in [0, 00].

Suppose that p is a path realizing the infimum in the definition of distance
disty(z,y). We will (re)parameterize such p by its arc-length; the resulting path
p: [0, D] — (X, disty) is called a geodesic segment in (X, disty).

EXERCISE 1.23. dist < dist,.

DEFINITION 1.24. A metric space (X, dist) such that dist = dist, is called a
length (or path) metric space.



Note that in a path metric space, a priori, not every two points are connected
by a geodesic. We extend the notion of geodesic to general metric spaces: A geodesic
in a metric space X is an isometric embedding g of an interval in R into X. Note
that this notion is different from the one in Riemannian geometry, where geodesics
are isometric embeddings only locally, and need not be arc-length parameterized.
A geodesic is called a geodesic ray if it is defined on an interval (—oo, a] or [a, +00),
and it is called bi-infinite or complete if it is defined on R.

DEFINITION 1.25. A metric space X is called geodesic if every two points in X
are connected by a geodesic path. A subset A in a metric space X is called convex
if for every two points x,y € A there exists a geodesic v C X connecting x and y.

EXERCISE 1.26. Prove that for (X, disty) the two notions of geodesics agree.

A geodesic triangle T = T(A, B,C) or A(A, B,C) with vertices A, B,C in a
metric space X is a collection of geodesic segments [A4, B], [B, C], [C, A] in X. These
segments are called edges of T. Later on, in Chapters 8 and 9 we will use generalized
triangles, where some edges are geodesic rays or, even, complete geodesics. The

corresponding vertices generalized triangles will be points of the ideal boundary of
X.

EXAMPLES 1.27. (1) R™ with the Euclidean metric is a geodesic metric
space.

(2) R™\ {0} with the Euclidean metric is a length metric space, but not a
geodesic metric space.

(3) The unit circle S! with the metric inherited from the Euclidean metric of
R? (the chordal metric) is not a length metric space. The induced intrinsic
metric on S! is the one that measures distances as angles in radians, it is
the distance function of the Riemannian metric induced by the embedding
St — R2

(4) The Riemannian distance function dist defined for a connected Riemann-
ian manifold (M, g) (see Section 2.1.3) is a path-metric. If this metric is
complete, then the path-metric is geodesic.

(5) Every connected graph equipped with the standard distance function (see
Section 1.3.4) is a geodesic metric space.

EXERCISE 1.28. If X,Y are geodesic metric spaces, so is X x Y. If X,Y are

path-metric spaces, so is X x Y. Here X x Y is equipped with the product metric
defined by (1.3).

THEOREM 1.29 (Hopf-Rinow Theorem [Gro07]). If a length metric space is
complete and locally compact, then it is geodesic and proper.

EXERCISE 1.30. Construct an example of a metric space X which is not a
length metric space, so that X is complete, locally compact, but is not proper.

1.3.4. Graphs as length spaces. Let I' be a connected graph. Recall that
we are conflating I' and its geometric realization, so the notation x € T" below will
simply mean that x is a point of the geometric realization.

We introduce a path-metric dist on the geometric realization of I' as follows.
We declare every edge of I' to be isometric to the unit interval in R. Then, the
distance between any vertices of I' is the combinatorial length of the shortest edge-
path connecting these vertices. Of course, points of the interiors of edges of I" are
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not connected by any edge-paths. Thus, we consider fractional edge-paths, where
in addition to the edges of I' we allow intervals contained in the edges. The length
of such a fractional path is the sum of lengths of the intervals in the path. Then,
for x,y € T, dist(x, y) is

inf (length(p)),
where the infimum is taken over all fractional edge-paths p in I' connecting x to y.

EXERCISE 1.31. a. Show that infimum is the same as minimum in this defini-
tion.

b. Show that every edge of I' (treated as a unit interval) is isometrically em-
bedded in (T, dist).

c. Show that dist is a path-metric.

d. Show that dist is a complete metric.

The metric dist is called the standard metric on T'.

The notion of a standard metric on a graph generalizes to the concept of a
metric graph, which is a connected graph I' equipped with a path-metric disty.
Such path-metric is, of course, uniquely determined by the lengths of edges of '
with respect to the metric d.

EXAMPLE 1.32. Counsider I' which is the complete graph on 3 vertices (a tri-
angle) and declare that two edges e1,es of I' are unit intervals and the remaining
edge e3 of I' has length 3. Let disty be the corresponding path-metric on I". Then
es is not isometrically embedded in (T, disty).

1.4. Hausdorff and Gromov-Hausdorff distances. Nets

Given subsets Ay, As in a metric space (X,d), define the minimal distance
between these sets as

diSt(Al,AQ) = inf{d(ahag) ta; € Ai,i = 172}.

The Hausdorff (pseudo)distance between subsets A, Ao C X is defined as
diSthLs(Al, AQ) = mf{R : A1 C NR(AQ), AQ C NR(Al)}

Two subsets of X are called Hausdorff-close if they are within finite Hausdorff
distance from each other.

The Hausdorfl' distance between two distinct spaces (for instance, between a
space and a dense subspace in it) can be zero. The Hausdorff distance becomes
a genuine distance only when restricted to certain classes of subsets, for instance,
to the class of compact subsets of a metric space. Still, for simplicity, we call it a
distance or a metric in all cases.

Hausdorfl distance defines the topology of Hausdorff-convergence on the set
K(X) of compact subsets of a metric space X. This topology extends to the set
C(X) of closed subsets of X as follows. Given € > 0 and a compact K C X we
define the neighborhood U,  of a closed subset C' € C'(X) to be

{Z € C(X) : distgaus(ZNK,CNEK) < €}

This system of neighborhoods generates a topology on C(X), called Chabauty topol-
ogy. Thus, a sequence C; € C(X) converges to a closed subset C € C(X) if and

11



only if for every compact subset K C X,
lim ;N K=CnK,
71— 00

where the limit is in topology of Hausdorff-convergence.

M. Gromov defined in [Gro81, section 6] the modified Hausdor{f pseudo-distance
(also called the Gromov-Hausdorff pseudo-distance) on the class of proper metric
spaces:

(1.5)  distggaus((X,dx), (Y,dy)) = inf inf{e > 0] 3 a pseudo-metric
(z,y)EX XY

dist on M = X UY, such that dist(z,y) < ¢, dist|x = dx,dist|y = dy and
B(x,1/e) C No(Y), B(y,1/e) C No(X)}.

For homogeneous metric spaces the modified Hausdorff pseudo-distance coin-
cides with the pseudo-distance for the pointed metric spaces:

(1.6) dist 5 ((X, dx, x0), (Y,dy,90)) = inf{e > 0 | 3 a pseudo-metric
dist on M = X UY such that dist(zg,yo) < &, dist|x = dx,dist|y = dy,

B(xo,1/) C Ne(Y), B(yo, 1/€) C N=(X)}.

This pseudo-distance becomes a metric when restricted to the class of proper
pointed metric spaces.

Still, as before, to simplify the terminology we shall refer to all three pseudo-
distances as ‘distances’ or ‘metrics.’

ExXAMPLE 1.33. The real line R with the standard metric and the planar circle
of radius r, C(O, ), with the length metric, are at modified Hausdorfl' distance

4

0 Vr2r2 £16 + nr

Since both are homogeneous spaces, it suffices to prove that the pointed metric
spaces (R,0) and (C(O,r),N), where N is the North pole, are at the distance
with respect to the modified Hausdorff distance with respect to these base-points.

To prove the upper bound we glue R and C(O,r) by identifying isometrically
the interval [—gr , gr] in R to the upper semi-circle (see Figure 1.1), and we endow
the graph M thus obtained with its length metric dist. Note that the use of pseudo-
metrics on M in the definition of the modified Hausdorff pseudo-distance allows for

points z € X and y € Y to be identified. The minimal € > 0 such that in (M, dist)

[_1, 1] C N-(C(O,r)) and B(N,1/e) Cc N-(R)

e’ e
is g9 defined above. This value is the positive solution of the equation
1

(1.7) gr—i—sz -

For the lower bound consider another metric dist” on R\VC(O, r) which coincides
with the length metrics on both R and C(O,r). Let €’ be the smallest ¢ > 0 such
that dist’(0, N) < e and [-1, 1] c M.(C(O,r)), B(N,1/e) C N.(R) in the metric

e’ e
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dist’. Let 2,3 be the nearest points in C(O,r) to —% and L, respectively. Since

dist’(2',9') < mr, it follows that % < wr+2¢’. The previous inequality implies that
e > eo.
N=0

T
/ \ e grap

3

13

NI

i. O\/}
|

FiGURE 1.1. Circle and real line glued along an arc of length 7r.

One can associate to every metric space (X, dist) a discrete metric space that
is at finite Hausdorfl distance from X, as follows.

DEFINITION 1.34. An e—separated subset A in X is a subset such that
dist(ai,as) > €, Vay,as € A, a1 # asy.

A subset S of a metric space X is said to be r-dense in X if the Hausdorff
distance between S and X is at most r.

DEFINITION 1.35. An e-separated —net in a metric space X is a subset of X
that is e—separated and d—dense.
An e-separated net in X is a subset that is e—separated and 2e—dense.

When the constants € and ¢ are not relevant we shall not mention them and
simply speak of separated nets.

LEMMA 1.36. A mazximal §—separated set in X is a d—separated net in X.

PROOF. Let N be a maximal J—separated set in X. For every z € X \ N, the
set NU{z} is no longer j—separated, by maximality of N. Hence there exists y € N
such that dist(z,y) < 4. O

By Zorn’s lemma a maximal §—separated set always exists. Thus, every metric
space contains a d—separated net, for any § > 0.

EXERCISE 1.37. Prove that if (X, dist) is compact then every separated net in
X is finite; hence, every separated set in X is finite.
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DEFINITION 1.38 (Rips complex). Let (X,d) be a metric space. For R > 0
we define a simplicial complex Ripsp(X); its vertices are points of X; vertices
g, X1, ..., Ly Span a simplex if and only if for all 4, j,

diSt(Ii,Ij) g R.
The simplicial complex Ripsg(X) is called the R-Rips complex of X.

We will discuss Rips complexes in more detail in §6.2.1.

1.5. Lipschitz maps and Banach-Mazur distance

1.5.1. Lipschitz and locally Lipschitz maps. A map f: X — Y between
two metric spaces (X, distx), (Y, disty) is L-Lipschitz if for all x,2" € X

disty (f(x), f(2')) < Ldistx (x, 2') .
A map which is L-Lipschitz for some L is called simply Lipschitz.

EXERCISE 1.39. Show that every L-Lipschitz path p : [0,1] — X is rectifiable
and length(p) < L.

The following is a fundamental theorem about Lipschitz maps between Eu-
clidean spaces:

THEOREM 1.40 (Rademacher Theorem, see Theorem 3.1 in [HeiO1]). Let U be
an open subset of R™ and let f: U — R™ be Lipschitz. Then f is differentiable at
almost every point in U.

A map f: X — Y is called locally Lipschitz if for every x € X there exists
€ > 0 so that the restriction f|B(x,¢) is Lipschitz. We let Lip,,.(X;Y) denote the
space of locally Lipschitz maps X — Y. We set Lip,,.(X) := Lip},.(X;R).

EXERCISE 1.41. Fix a point p in a metric space (X, dist) and define the function
dist,, by dist,(x) := dist(z,p). Show that this function is 1-Lipschitz.

LEMMA 1.42 (Lipschitz bump-function). Let 0 < R < co. Then there exists a
%7Lipschitz function ¢ = pp g on X such that

1. ¢ is positive on B(p, R) and zero on X \ B(p, R).

2. ¢(p) = 1.

3. 0<p<1lonX.

PROOF. We first define the function ¢ : Ry — [0,1] which vanishes on the
interval [R, 00), is linear on [0, R] and equals 1 at 0. Then ¢ is %-Lipschitz. Now
take ¢ := ( o dist,. O

LEMMA 1.43 (Lipschitz partition of unity). Suppose that we are given a lo-
cally finite covering of a metric space X by a countable set of open R;-balls B; :=
B(zi, R;), i € I C N. Then there exists a collection of Lipschitz functions n;, i € I
so that:

2.0<; <1, Viel.

3. Supp(n;) C B(z;, R;), Viel.
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PrOOF. For each i define the bump-function using Lemma 1.42:

Pi = Pa; R,
Then the function
o= %
iel
is positive on X. Finally, define
Pi
i = —.
2
It is clear that the functions n; satisfy all the required properties. (I

REMARK 1.44. Since the collection of balls {B;} is locally finite, it is clear that
the function

L(z):= sup Lip(n;)
i€l,m;(x)#0

is bounded on compact sets in X, however, in general, it is unbounded on X. We
refer the reader to the equation (1.8) for the definition of Lip(;).

From now on, we assume that X is a proper metric space.

PROPOSITION 1.45. Lip,,.(X) is a dense subset in C(X), the space of continu-
ous functions X — R, equipped with the compact-open topology (topology of uniform
convergence on compacts).

PRrROOF. Fix a base-point 0 € X and let A,, denote the annulus
{r e X :n—1<dist(zx,0) <n},neN.

Let f be a continuous function on X. Pick € > 0. Our goal is to find a locally
Lipschitz function g on X so that |f(z) — g(x)| < € for all x € X. Since f is
uniformly continuous on compact sets, for each n € N there exists 6 = §(n, €) such
that
Vz,x' € Ay, dist(z,2') <§ = |f(z) — f(2)] <e.
Therefore for each n we find a finite subset
X, = {In,la s 7xn,mn} C A,

so that for r := é(n,€)/4, R := 2r, the open balls B,, ; := B(z, ;,r) cover A,. We
reindex the set of points {z, ;} and the balls B,, ; with a countable set /. Thus, we
obtain an open locally finite covering of X by the balls B;,j € I. Let {n;,j € I}
denote the corresponding Lipschitz partition of unity. It is then clear that

g(z) = Zm(fl?)f(wz)
i€l
is a locally Lipschitz function. For = € B; let J C I be such that
J?%B(J?j,Rj), VJ§§J
Then |f(z) — f(z;)| < € for all j € J. Therefore
l9(z) = (@) <Y mi@)|f(a;) = f@)] <ed_mi(a) =€) mi(x) =e

jeJ jeJ icl

It follows that |f(z) — g(z)| < e for all z € X. O

A relative version of Proposition 1.45 also holds:
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PROPOSITION 1.46. Let A C X be a closed subset contained in a subset U which
is open in X. Then, for every e > 0 and every continuous function f € C(X) there
exists a function g € C(X) so that:

1. g is locally Lipschitz on X \ U.

2. If =gl <e.
3. g|A = f|A.

PRrROOF. For the closed set V' := X \ U pick a continuous function p = pa v
separating the sets A and V. Such a function exists, by Lemma 1.18. According to
Proposition 1.45, there exists h € Lip,,.(X) such that || f — k|| < e. Then take

9(@) == p(x)h(z) + (1 — p(x)) f(z).
We leave it to the reader to verify that g satisfies all the requirements of the propo-
sition. O

1.5.2. Bi—Lipschitz maps. The Banach-Mazur distance. A map f :
X — Y is L—bi-Lipschitz if it is a bijection and both f and f~! are L-Lipschitz
for some L; equivalently, f is surjective and there exists a constant L > 1 such that
for every z,2' € X

1
Zdistx(as,x') L disty (f(2), f(2')) < Ldistx (z,2') .
A bi-Lipschitz embedding is defined by dropping surjectivity assumption.

EXAMPLE 1.47. Suppose that X, Y are connected Riemannian manifolds (M, g),
(N, h) (see Section 2.1.3). Then a diffeomorphism f : M — N is L-bi-Lipschitz if
and only if

f*h

L'« < L.

<

In other words, for every tangent vector v € T M,

L1 )
T

|<L.

If there exists a bi-Lipschitz map f : X — Y, the metric spaces (X, distx) and
(Y, disty) are called bi-Lipschitz equivalent or bi-Lipschitz homeomorphic. If disty
and diste are two distances on the same metric space X such that the identity map
id : (X,dist;) — (X,dists) is bi-Lipschitz, then we say that dist; and dists are
bi-Lipschitz equivalent.

EXAMPLES 1.48. (1) If dy, dy are metrics on R™ defined by two norms on
R™, then dy, ds are bi-Lipschitz equivalent.
(2) Two left-invariant Riemannian metrics on a connected real Lie group de-
fine bi-Lipschitz equivalent distance functions.

For a Lipschitz function f: X — R let Lip(f) denote
(1.8) Lip(f) := inf{L : f is L-Lipschitz}

ExAMPLE 149. If T : V — W is a continuous linear map between Banach
spaces, then
Lip(T) = |||,
the operator norm of 7.
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The Banach-Mazur distance distgas(V, W) between two Banach spaces V' and
W is
1 ( inf (|7 - |7~ ) ,
og (. inf (I -IT~"])
where the infimum is taken over all invertible linear maps 7 : V — W.

THEOREM 1.50 (John’s Theorem, see e.g. [Verll]|, Theorem 2.1). For every
pair of n-dimensional normed vector spaces V, W, distgpr(V, W) < log(n).

EXERCISE 1.51. Suppose that f, g are Lipschitz functions on X. Let ||f]], ||lg]]
denote the sup-norms of f and g on X. Show that

LLip(f + g) < Lip(f) + Lip(g).

2. Lip(fg) < Lip(f)llgll + Lip(g)[| £l

i (£) < HoDlgl £ Lnto1 1
inf,cx g%(z)
Note that in case when f is a smooth function on a Riemannian manifold, these
formulae follow from the formulae for the derivatives of the sum, product and ratio
of two functions.

1.6. Hausdorff dimension

We recall the concept of Hausdorff dimension for metric spaces. Let K be a
metric space and o > 0. The a—Hausdorff measure p,(K) is defined as

N
(1.9) }%1nf27"i ,

where the infimum is taken over all countable coverings of K by balls B(x;,r;),
r; <r (i =1,...,N). The motivation for this definition is that the volume of
the Euclidean r-ball of dimension a € N is r® (up to a uniform constant); hence,
Lebesgue measure of a subset of R* is (up to a uniform constant) estimated from
above by the a-Hausdorff measure. Euclidean spaces, of course, have integer di-
mension, the point of Hausdorff measure and dimension is to extend the definition
to the non-integer case.
The Hausdorff dimension of the metric space K is defined as:

dimpy (K) = inf{a: po(K) = 0}.
EXERCISE 1.52. Verify that the Hausdorff dimension of the Euclidean space
R™ is n.
We will need the following theorem:

THEOREM 1.53 (L. Sznirelman; see also [HW41]). Suppose that X is a proper
metric space; then the covering dimension dim(X) is at most the Hausdorff dimen-
ston dimpg (X).

Let A C X be a closed subset. Let B := B(0,1) C R denote the closed unit
ball in R™. Define
C(X,A;B"):={f:X — B™; f(A)c S" ' =09B"}.
An immediate consequence of Proposition 1.46 is the following.
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COROLLARY 1.54. For every function f € C(X, A; B™) and an open set U C X
containing A, there exists a sequence of functions g; € C(X, A; B") so that for all
1€ N:

1. gilA = f|A.

2. g; € Lip(X \ U;R"™).

For a continuous map f: X — B™ define A = Ay as
A= s,

DEFINITION 1.55. The map f is essential if it is homotopic rel. A to a map
'+ X — 8" An inessential map is the one which is not essential.

We will be using the following characterization of the covering dimension due
to Alexandrov:

THEOREM 1.56 (P. S. Alexandrov, see Theorem II1.5 in [Nag83]). dim(X) < n
if and only if every continuous map f : X — B™ is inessential.

We are now ready to prove Theorem 1.53. Suppose that dimg(X) < n. We
will prove that dim(X) < n as well. We need to show that every continuous map
f:X — B" is inessential. Let D denote the annulus {z € R" : 1/2 < |z| < 1}. Set
A= f~YS" ) and U := f~Y(D).

Take the sequence g; given by Corollary 1.54. Since each g; is homotopic to f
rel. A, it suffices to show that some g; is inessential. Since f = lim; g;, it follows
that for all sufficiently large 1,

()N B (o, ;) —0.
We claim that the image of every such g; misses a point in B (O, %) Indeed,
since dimy (X) < n, the n-dimensional Hausdorff measure of X is zero. However,
9:|X \ U is locally Lipschitz. Therefore g;(X \ U) has zero n-dimensional Hausdorff
(and hence Lebesgue) measure. It follows that g;(X) misses a point y in B (0, §).
Composing g; with the retraction B \ {y} — S"! we get a map f': X — 7!
which is homotopic to f rel. A. Thus f is inessential and, therefore, dim(X) <
n. (]

1.7. Norms and valuations

In this and the following section we describe certain metric spaces of algebraic
origin that will be used in the proof of the Tits alternative.

A norm on aring R is a function |- | from R to R, which satisfies the following
axioms:

1. |z|=0 < x=0.

2. |zyl = || - lyl.

3.z +yl < 2|+ Jyl-

An element x € R such that |z| = 1 is called a unit.

We will say that a norm | - | is nonarchimedean if it satisfies the ultrametric
inequality

|z + y| < max(|z], |y]).

We say that | - | is archimedean if there exists an isometric monomorphism R < C.
We will be primarily interested in normed archimedean fields which are R and C
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with the usual norms given by the absolute value. (By a theorem of Gelfand—
Tornheim, if a normed field F' contains R as subfield then F' is isomorphic, as a
field, either to R or to C.)

Below is an alternative approach to nonarchimedean normed rings R. A func-
tion v : R — RU {oo} is called a wvaluation if it satisfies the following axioms:

1. v(z) =00 <= z=0.

2. v(zy) =v(z) +v(y).

3. v(z 4+ y) = min(v(z), v(y)).

Therefore, one converts a valuation to a nonarchimedean norm by setting
lz| = ¢V@ 2 £0, [0]=0,
where ¢ > 0 is a fixed real number.

REMARK 1.57. More generally, one also considers valuations with values in
arbitrary ordered abelian groups, but we will not need this.

A normed ring R is said to be local if it is locally compact as a metric space; a
normed ring R is said to be complete if it is complete as a metric space. A norm
on a field F is said to be discrete if the image I of || : F'\ {0} — (0,00) is an
infinite cyclic group. If the norm is discrete, then an element 7w € F' such that ||
is a generator of I" satisfying |r| < 1, is called a uniformizer of F. If F is a field
with valuation v, then the subset

O,={zeF:v(x)=0}
is a subring in F', the valuation ring or the ring of integers in F.

EXERCISE 1.58. 1. Verify that every nonzero element of a field F' with discrete
norm has the form 7*u, where u is a unit.
2. Verify that every discrete norm is nonarchimedean.

Below are the two main examples of fields with discrete norms:
1. Field Q, of p-adic numbers. Fix a prime number p. For each number
x = q/p" € Q (where both numerator and denominator of ¢ are not divisible by
p) set |z|, := p". Then |- |, is a nonarchimedean norm on Q, called the p-adic
norm. The completion of Q with respect to the p-adic norm is the field of p-adic
numbers Q,,. The ring of p-adic integers O,, intersects Q along the subset consisting
n

of (reduced) fractions /- where m,n € Z and m is not divisible by p. Note that p
is a uniformizer of Q,.

REMARK 1.59. We will not use the common notation Z, for O,, in order to
avoid the confusion with finite cyclic groups.

EXERCISE 1.60. Verify that O, is open in Q,,. Hint: Use the fact that |z+y|, <
1 provided that |z|, < 1, |y,| < 1.

Recall that one can describe real numbers using infinite decimal sequences.
There is a similar description of p-adic numbers using “base p arithmetic.” Namely,
we can identify p-adic numbers with semi-infinite Laurent series

)
Z akpka

k=—n
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where n € Z and ay, € {0,...,p—1}. Operations of addition and multiplication here
are the usual operations with power series where we treat p as a formal variable, the
only difference is that we still have to “carry to the right” as in the usual decimal
arithmetic.

With this identification, |z|, = p™, where a_,, is the first nonzero coefficient in
the power series. In other words, v(z) = —n is the valuation. In particular, the
ring O,, is identified with the set of series

o0
S uirt
k=0
REMARK 1.61. In other words, one can describe p-adic numbers as left-infinite
sequences of (base p) digits

Q1 ... QQ.G_1 Gy

where Vi, a; € {0,...,p — 1}, and the algebraic operations require “carrying to the
left” instead of carrying to the right.

EXERCISE 1.62. Show that in Q,,
oo P 1
Zp T 1—1p
k=0 p
2. Let A be a field. Consider the ring R = A[t,t~!] of Laurent polynomials

&)= axt".
k=n

Set v(0) = oo and for nonzero f let v(f) be the least n so that a, # 0. In other
words, v(f) is the order of vanishing of f at 0 € R.

EXERCISE 1.63. 1. Verify that v is a valuation on R. Define |f| := e~ (/).
2. Verify that the completion R of R with respect to the above norm is naturally
isomorphic to the ring of semi-infinite formal Laurent series

f = Z a’ktka
k=n
where v(f) is the minimal n such that a,, # 0.

Let A(t) be the field of rational functions in the variable t. We embed A in R

by the rule
1 o0
=1 .
R IL
n=1
If A is algebraically closed, every rational function is a product of a polynomial
function and several functions of the form
1

ai—t’

so we obtain an embedding A(t) < R in this case. If A is not algebraically closed,
proceed as follows. First, construct, as above, an embedding ¢ of A(t) to the
completion of A[t,t71], where A is the algebraic closure of A. Next, observe that
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this embedding is equivariant with respect to the Galois group Gal(A/A), where
o € Gal(A/A) acts on Laurent series

oo
f= Zaktk,a €A,
k=n

by
oo
f7 = Z agtk.
k=n

Therefore, t(A(t)) C R, R = Alt,t™!).

In any case, we obtain a norm on A(t) by restricting the norm in R. Since
R C tA(t), it follows that R is the completion of tA(t). In particular, R is a
complete normed field.

EXERCISE 1.64. 1. Verify that R is local if and only if A is finite.

2. Show that ¢ is a uniformizer of R. R

3. At the first glance, it looks like QQ, is the same as R for A = Z,, since elements
of both are described using formal power series with coefficients in {0,...,p — 1}.
What is the difference between these fields?

LEMMA 1.65. Q, is a local field.

Proor. It suffices to show that the ring O, of p-adic integers is compact. Since
Qp is complete, it suffices to show that O, is closed and totally bounded, i.e., for
every € > 0, O, has a finite cover by closed e-balls. The fact that O, is closed
follows from the fact that |- |, : Q, — R is continuous and O, is given by the
inequality O, = {z : |z|, < 1}.

Let us check that O, is totally bounded. For € > 0 pick & € N such that
p~* < e. The ring Z/p*Z is finite, let 21,...,2y € Z\ {0} (where N = p*) denote
representatives of the cosets in Z/p*Z. We claim that the set of fractions

5
wij:i,lgi,jSN,
Zj
forms a p~F-net in Op N Q. Indeed, for a rational number = € O, N Q, find
s,t € {z1,...,2n} such that

s=m,t=n, mod pF.

Then
m s k
——-€p0
n t P
and, hence,
‘m s &
—— | <p .
n tp

Since O, N Q is dense in Oy, it follows that
N
Oy C |J Bwij,e). O
ij=1

EXERCISE 1.66. Show that O, is homeomorphic to the Cantor set. Hint: Verify
that O, is totally disconnected and perfect.
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1.8. Metrics on affine and projective spaces

In this section we will use normed fields to define metrics on affine and projective
spaces. Consider the vector space V' = F™ over a normed field F', with the standard
basis eq,...,e,. We equip V with the usual Euclidean/hermitian norm in the case
F is archimedean and with the max-norm

l(z1,...,20)| = mlax|xi\
if F' is nonarchimedean. We let (-,-) denote the standard inner/hermitian product
on V in the archimedean case.

EXERCISE 1.67. Suppose that F' is nonarchimedean. Show that the metric
|v —w| on V satisfies the ultrametric triangle inequality.

If F is nonarchimedean, define the group K = GL(n,O), consisting of matrices
A such that A, A= € Mat,(O).

EXERCISE 1.68. If F' is a nonarchimedean local field, show that the group K
is compact with respect to the subset topology induced from Mat, (F) = F n®,

LEMMA 1.69. The group K acts isometrically on V.

PRrROOF. It suffices to show that elements g € K do not increase the norm on
V. Let a;; denote the matrix coefficients of g. Then, for a vector v =), vie; € V,
the vector w = g(v) has coordinates

’lUj = E ajivi.
i

Since |a;;| < 1, the ultrametric inequality implies

lw| = mjax|wj|» [w;| < max |ajivi] < [o.

Thus, |g(v)| < |v]. O

If F' is archimedean, we let X' < GL(V') denote the orthogonal/hermitian sub-
group preserving the inner/hermitian product on V. The following is a standard
fact from the elementary linear algebra:

THEOREM 1.70 (Singular Value Decomposition Theorem). If F' is archimedean,
then every matrizx M € End(V') admits a singular valued decomposition

M =UDYV,

where U,V € K and D is a diagonal matriz with nonnegative entries arranged in

the descending order. The diagonal entries of D are called the singular values of
M.

We will now prove an analogue of the singular value decomposition in the case
of nonarchimedean normed fields:

THEOREM 1.71 (Smith Normal Form Theorem). Let F be a field with discrete
norm and uniformizer © and ring of integers O. Then every matric M € Mat, (F)
admits a Smith Normal Form decomposition

M = LDU,
where D is diagonal with diagonal entries (dy,...,dy), d; = 7"

kv 2k > ... 2k,
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and L,U € K = GL(n,0). The diagonal entries d; € F are called the invariant
factors of M.

PRrROOF. First, note that permutation matrices belong to K; the group K also
contains upper and lower triangular matrices with coefficients in O, whose diagonal
entries are units in F. We now apply Gauss Elimination Algorithm to the matrix
M. Note that the row operation of adding the z-multiple of the i-th row to the
j-th row amounts to multiplication on the left with the lower-triangular elementary
matrix E;;(z) with the ij-entry equal z. If z € O, then E;; € K. Similarly,
column operations amount to multiplication on the right by an upper-triangular
elementary matrix. Observe also that dividing a row (column) by a unit in F
amounts to multiplying a matrix on left (right) by an appropriate diagonal matrix
with unit entries on the diagonal.

We now describe row operations for the Gauss Elimination in detail (column op-
erations will be similar). Consider (nonzero) i-th column of a matrix A € End(F™).
We first multiply M on left and right by permutation matrices so that a;; has the
largest norm in the i-th column. By dividing rows on A by units in F', we achieve
that every entry in the i-th column is a power of 7. Now, eliminating nonzero en-
tries in the i-th column will require only row operations involving 7% -multiples of
the i-th row, where s;; > 0, i.e., 7%9 € O. Applying this form of Gauss Algorithm
to M, we convert M to a diagonal matrix A, whose diagonal entries are powers of
m and

A=L'MU', L' ;M € GL(n,0).
Multiplying A on left and right by permutation matrices, we rearrange the diagonal
entries to have weakly decreasing exponents. ([

Note that both singular value decomposition and Smith normal form decom-
position both have the form:

M =UDV, UV €K,

and D is diagonal. Such decomposition of the Mat, (F) is called the Cartan de-
composition. To simplify the terminology, we will refer to the diagonal entries of D
as singular values of M in both archimedean and nonarchimedean cases.

EXERCISE 1.72. Deduce the Cartan decomposition in FF = R or F = C, from
the statement that given any Euclidean/hermitian bilinear form ¢ on V = F",
there exists a basis orthogonal with respect to ¢ and orthonormal with respect to
the standard inner product

1Y+ o+ TRY,-

We now turn our discussion to projective spaces. The F-projective space P =
FP" is the quotient of F"*1\ {0} by the action of F* wia scalar multiplication.
We let [v] denote the projection of a nonzero vector v € V. = F"*! to FP". The
j-th affine coordinate patch on P is the affine subspace A; C V,

A] = (-rla"'71a"'7xn+l)7
where 1 appears in the j-th coordinate.

NoTATION 1.73. Given a nonzero vector v € V' let [v] denote the projection of
v to the projective space P(V'); similarly, for a subset W C V' we let [W] denote the
image of W \ {0} under the canonical projection V' — P(V'). Given an invertible
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linear map g : V — V', we will retain the notation g for the induced projective map
P(V) = P(V).

Suppose now that F' is a normed field. Our next goal is to define the chordal
metric on FP". In the case of an archimedean field F', we define the Euclidean or
hermitian norm on V AV by declaring basis vectors

e;Nej, 1 <i<j<n+1
to be orthonormal. Then
v Awl? = o |w]? — (v, w) (w,v).

Note that if u, v are unit vectors with Z(v,w) = ¢, then |v A w| = | sin(y)|.
In the case when F' is nonarchimedean, we equip V AV with the max-norm so
that

v Aw| = Irile}x |ziy; — @y
where v = (1,..., Tpt1)s W= (Y1, Ynt1)-
LEMMA 1.74. Suppose that u is a unit vector and v € V is such that |u; —v;| < €
for alli. Then
[vAw| <2(n+ 1.
ProOF. We will consider the archimedean case since the nonarchimedean case

is similar. For every i let ; = v; — u;. Then
2

|uivj - Uj’Uz'|2 g |’U,15] - Uj5i|2 < 4de
Thus,
lu Av]? <4(n+1)%% O
DEFINITION 1.75. The chordal metric on P = FP™ is defined by

d([v]; [w])

v Al

ol fwl”
In the nonarchimedean case this definition is due to A. Néron [N64].

EXERCISE 1.76. 1. If F' is nonarchimedean, show that the group GL(n+1,0)
preserves the chordal metric.

2. If F' =R, show that the orthogonal group preserves the chordal metric.
3. If FF = C, show that the unitary group preserves the chordal metric.

It is clear that d(Av, pw) = d(v,w) for all nonzero scalars A, u and nonzero
vectors v, w. It is also clear that d(v,w) = d(w,v) and d(v,w) = 0 if and only if

[v] = [w]. What is not so obvious is why d satisfies the triangle inequality. Note,
however, that in the case of a nonarchimedean field F,
d([v], [w]) <1

for all [v], [w] € P. Indeed, pick unit vectors v, w representing [v], [w]; in particular,
v;, w; belong to O for all 4, j. Then, the denominator in the definition of d([v], [w])
equals 1, while the numerator is < 1, since O is a ring.

ProprosITION 1.77. If F is nonarchimedean, then d satisfies the triangle in-
equality.
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Proor. We will verify the triangle inequality by giving an alternative descrip-
tion of the function d. We define affine patches on P to be the affine hyperplanes

Aj={zeV:iz;=1}CV

together with the (injective) projections A; — P. Every affine patch is, of course,
just a translate of F'", so that e; is the translate of the origin. We, then, equip A,
with the restriction of the metric |[v — w| from V. Let B; C A; denote the closed
unit ball centered at e;. In other words,

B;=A;nO™.

We now set d;(z,y) = |z —y| if x,y € B; and d;(x,y) = 1 otherwise. It follows
immediately from the ultrametric triangle inequality that d; is a metric. We, then,
define for [z], [y] € P the function dist([z], [y]) by:

1. If there exists j so that z,y € B; project to [z],[y], then dist([x],[y]) :=
dj(z,1).

2. Otherwise, set dist([z], [y]) = 1.

If we knew that dist is well-defined (a priori, different indices j give different
values of dist), it would be clear that dist satisfies the ultrametric triangle inequality.
Proposition will, now, follow from

LeMMA 1.78. d([z], [y]) = dist([z], [y]) for all points in P.

PRrROOF. The proof will break in two cases:

1. There exists k such that [z], [y] lift to z,y € Bi. To simplify the notation,
we will assume that £ = n + 1. Since z,y € Byy1, |z < 1,y < 1 for all ¢, and
Zpt1 = Ynt1 = 1. In particular, |z| = |y| = 1. Hence, for every i,

|zi — yil = [TiYns1 — Tjynsa] < max |2y — xjy:] < d([7], [y]),
which implies that

dist([2], [y]) < d([2], [v])-
We will now prove the opposite inequality:

Vi, j o |wiyy — 2yl < ac= -yl
There exist z;,z; € F so that

yi=ai(l+2z), vy =z;(1+z),
where, if z; # 0,2; # 0,

Yi — Zi Yji —Zj
Z; = s Zj = J J.
iz Xy

We will consider the case x;x; # 0, leaving the exceptional cases to the reader.
Then,

a a

lzil < 0 lml <7

4]

Computing x;y; — x;y; using the new variables z;, z;, we obtain:

|5]”

[iy; — x5yl = |wi; (14 25) =z (1 + 20)| = [2525(25 — )| <
a a
s ma il ) < oy mae (25, ) < amax (il ) <
i J

since x;, x; € O.
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2. Suppose that (1) does not happen. Since d([z], [y]) < 1 and dist([z], [y]) = 1
(in the second case), we just have to prove that

d([z], [y]) = 1.

Consider representatives z, y of points [x], [y] and let 4, j be the indices such that
|i| = ||, ly;] = lyl.

Clearly, 4, j are independent of the choices of the vectors x,y representing [z], [y].
Therefore, we choose x so that z; = 1, which implies that 3 € O for all k. If y; =0
then

|$iyj - xjyi| = |?Jj|
and

d([], [y]) = mxwllyl

Thus, we assume that y; # 0. This allows us to choose y € A; as well. Since (1)
does not occur, y ¢ O™, which implies that |y;| > 1. Now,

=1

lziy; — z5uil _ ly; — 25
d(fal, ly) > — ==
EARITT |1

Since z; € O and y; ¢ O, the ultrametric inequality implies that |y; — x;| = |y;|.
Therefore,

v =35l _ sl _
;] ly;|
and d([z], [y]) = 1. This concludes the proof of lemma and proposition. O

We now consider real and complex projective spaces. Choosing unit vectors
u, v as representatives of points [u], [v] € P, we get:

d([ul, [v]) = sin(£(u, v)),

where we normalize the angle to be in the interval [0, 71]. Consider now three points
[u], [v], [w] € P; our goal is to verify the triangle inequality

d([u], [w]) < d([u], [v]) + d([v], [w]).
We choose unit vectors u, v, w representing these points so that
Ogazé(um)gg, Oéﬂzé(ww)gg.
Then,
v =~L(w,w) <a+p
and the triangle inequality for the metric d is equivalent to the inequality
sin(7y) < sin(«) + sin(f).

We leave verification of the last inequality as an exercise to the reader. Thus, we
obtain

THEOREM 1.79. Chordal metric is a metric on P in both archimedean and
nonarchimedean cases.
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EXERCISE 1.80. Suppose that F' is a normed field (either nonarchimedean or
archimedean).

1. Verify that metric d determines the topology on P which is the quotient
topology induced from V' \ {0}.

2. Assuming that F' is local, verify that P is compact.

3. If the norm on F is complete, show that the metric space (P, d) is complete.

4. If H is a hyperplane in V = F"t! given as Ker f, where f : V — F is a
linear function, show that

/()]
ol LA

1.9. Kernels and distance functions

dist([v], [H]) =

A kernel on a set X is a symmetric map ¢ : X x X — R, such that ¢(x,z) = 0.
Fix p € X and define the associated Gromov kernel

Kry) = 5 (6(,0) + 0(p,) — 9(,9)).

If X were a metric space and ¥(z,y) = dist2(x,y), then this quantity is just the
Gromov product in X where distances are replaced by their squares (see Section
9.3 for the definition of Gromov product in metric spaces). Clearly,

Vee X, k(z,x)=1v(z,p).

DEFINITION 1.81. 1. A kernel v is positive semidefinite if for every natural

number n, every subset {z1,...,2,} C X and every vector A € R",
i=1 j=1

2. A kernel 1 is conditionally negative semidefinite if for every n € N, every
subset {x1,...,2,} C X and every vector A € R™ with )" | A\; = 0, the following
holds:

n

(1.11) iz A (i, i) 0.

This is not a particularly transparent definition. A better way to think about
this definition is in terms of the vector space V = V(X)) of consisting of functions
with finite support X — R. Then each kernel ¢ on X defines a symmetric bilinear

form on V' (denoted ¥):
> (. y) f(x)g(y).

z,yeX
With this notation, the left hand side of (1.10) becomes simply ¥(f, f), where
Xi = f(z;), Supp(f) C {z1,...,2,} C X.
Thus, a kernel is positive semidefinite if and only if ¥ is a positive semidefinite
bilinear form. Similarly, ¢ is conditionally negative semidefinite if and only if the

restriction of —W to the subspace Vj consisting of functions with zero average, is a
positive semidefinite bilinear form.

NoTATION 1.82. We will use the lower case letters to denote kernels and the
corresponding upper case letters to denote the associated bilinear forms on V.
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Below is yet another interpretation of the conditionally negative semidefinite
kernels. For a subset {x1,...,2,} C X define the symmetric matrix M with the
entries

mij = —Y(xi, x5), 1<d,5<n.
For A = (A1,...,Ay), the left hand-side of the inequality (1.11) equals
g(A) = ATMA,

a symmetric bilinear form on R™. Then, the condition (1.11) means that ¢ is
positive semi-definite on the hyperplane
n

> Ai=0

i=1
in R™. Suppose, for a moment, that this form is actually positive-definite, Since
W(z;,x;) = 0, it follows that the form ¢ on R™ has signature (n—1, 1). The standard
basis vectors ey, ..., e, in R are null-vectors for ¢; the condition m;; < 0 amounts
to the requirement that these vectors belong to the same, say, positive, light cone.

The following theorem gives yet another interpretation of conditionally negative

semidefinite kernels in terms of embedding in Hilbert spaces. It was first proven
by J. Schoenberg in [Sch38] in the case of finite sets, but the same proof works for
infinite sets as well.

THEOREM 1.83. A kernel b on X is conditionally negative definite if and only
if there exists a map F : X — H to a Hilbert space so that

b(a,y) = |F(z) = Fy)|*.
PROOF. 1. Suppose that the map F exists. Then, for every p = xg € X, the
associated Gromov kernel k(z,y) equals
k(z,y) = (F(z), F(y)),
and, hence, for every finite subset {xg,z1,...,2,} C X, the corresponding matrix
with the entries k(z;, ;) is the Gramm matrix of the set
{yi := F(x;) — F(xg) :i=1,...,n} CH.

Hence, this matrix is positive semidefinite. Accordingly, Gromov kernel determines
a positive semidefinite bilinear form on the vector space V = V(X).

We will verify that 1 is conditionally negative semidefinite by considering sub-
sets X in X of the form {xzg,z1,...,2,}. (Since the point xy was arbitrary, this
will suffice.)

Let f: Xo — R be such that

(1.12) Zf(xi) =0.

=0
Thus,
f(wo) i= =3 flan).
i=1
Set y; := F(x;),i =0,...,n. Since the kernel K is positive semidefinite, we have
(1.13) > (o = wil® + lyo — wi* = lyi — ws?) fwi) f () =

7,j=1

28



2 Z k(xi, ;) f(z:) f(z5) = 0.
i,7=1

The left hand side of this equation equals

2 (Z f(:m) A D lwo = wslPFay) | -
i=1 Jj=1

S lyi =yl f (@) £ ().

ij=1

Since f(zo) := — >+, f(x;), we can rewrite this expression as

—f(x0)?[yo — ol — 2 Zlyoﬂ/ﬂ f(zo) f Z lyi — ys 1 f () f ) =

Jj=1 7,7=1

Z lyi — y]‘ fza)f Z (@i, ) (i) f(z5).

2,j=0 1,7=0
Taking into account the inequality (1.13), we conclude that
(1.14) Z (@i, ) f(xi) f(z;) < 0.
i,j=0
In other words, the kernel ¥ on X is conditionally negative semidefinite.

2. Suppose that ¢ is conditionally negative definite. Fix p € X and define the
Gromov kernel

k(z,y) = (2, 9)p =

The key to the proof is:

(W(x,p) +¥(p,y) — v(x,y)) .

DO =

LEMMA 1.84. k is a positive semidefinite kernel on X.

PrOOF. Consider a subset Xg = {x1,...,2,} C X and a function f : Xy — R.
a. We first consider the case when p ¢ X,. Then we set 2y := p and extend

the function f to p by
- Z f(@s).
i=1

The resulting function f : {zg,...,2,} — R satisfies (1.12) and, hence,

S @i zs) f(2:) f(2;) < 0.

4,j=0
The same argument as in the first part of the proof of Theorem 1.83 (run in the
reverse) then shows that

n
> k@i, @) (@) f(2) > 0.
i,j=1
Thus, k is positive semidefinite on functions whose support is disjoint from {p}.
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b. Suppose that p € Xo, f(p) = ¢ # 0. We define a new function g(z) :=
f(x) — cdp. Here §, is the characteristic function of the subset {p} C X. Then
p ¢ Supp(g) and, hence, by the Case (a),

K(g,9) = 0.
On the other hand,

K(f,f) =F(g.9) +2cK(g.6,) + K (5,,0,) = F(g.9),
since the other two terms vanish (as k(x,p) = 0 for every x € X). Thus, K is
positive semidefinite. O

Now, consider the vector space V' = V(X) equipped with the positive semi-
definite bilinear form (f,g) = K(f,g). Define the Hilbert space H as the metric
completion of

VI{feV:(ff)=0}
Then we have a natural map F': X — H which sends « € X to the projection of
the d-function d,; we obtain:

(F(x), F(y)) = k(z,y).
Let us verify now that
(1.15) (F(z) = F(y), F(x) = F(y)) = ¥(z,y).
The left hand side of this expression equals
(F(x), F(x)) + (F(y), F(y)) — 2k(z,y) = (2, p) + ¥(y,p) — 2k(z,y).
Then, the equality (1.15) follows from the definition of the Gromov kernel k. O

According to [Sch38|, for every conditionally negative definite kernel ¢ : X x
X — R, and every 0 < a < 1, the power ¢ is also a conditionally negative definite
kernel.
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CHAPTER 2

Geometric preliminaries

2.1. Differential and Riemannian geometry

In this book we will use some elementary Differential and Riemannian geometry,
basics of which are reviewed in this section. All the manifolds that we consider are
second countable.

2.1.1. Smooth manifolds. We expect the reader to know basics of differen-
tial topology, that can be found, for instance, in [GP10], [Hir76], [War83]. Below
is only a brief review.

Recall that, given a smooth n—dimensional manifold M, a k—dimensional sub-
manifold is a closed subset N C M with the property that every point p € N is
contained in the domain U of a chart ¢ : U — R” such that o(UNN) = o(U)NR*.

If £ = n then, by the inverse function theorem, N is an open subset in M;
in this case N is also called an open submanifold in M. (The same is true in the
topological category, but the proof is harder and requires Brouwer’s Invariance of
Domain Theorem, see e.g. [Hat02], Theorem 2B.3.)

Suppose that U C R” is an open subset. A piecewise-smooth function f :U —
R™ is a continuous function such that for every x € U there exists a neighborhood
V of x in U, a diffeomorphism ¢ : V. — V' C R", a triangulation T of V', so that
the composition

foo (V' T) »R™

is smooth on each simplex. Note that composition g o f is again piecewise-smooth,
provided that g is smooth; however, composition of piecewise-smooth maps need
not be piecewise-smooth.

One then defines piecewise smooth k—dimensional submanifolds N of a smooth
manifold M. Such N is a topological submanifold which is locally the image of R*
in R™ under a piecewise-smooth homeomorphism R™ — R™. We refer the reader to
[Thu97]| for the detailed discussion of piecewise-smooth manifolds.

If K =n — 1 we also sometimes call a submanifold a (piecewise smooth) hyper-
surface.

Below we review two alternative ways of defining submanifolds. Consider a
smooth map f : M — N of a m-dimensional manifold M = M™ to an n-
dimensional manifold N = N". The map f : M — N is called an immersion
if for every p € M, the linear map dfy, : T,M — Ty, N is injective. If, moreover,
f defines a homeomorphism from M to f(M) with the subspace topology, then f
is called a smooth embedding.

EXERCISE 2.1. Construct an injective immersion R — R? which is not a smooth
embedding.
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If N is a submanifold in M then the inclusion map 7 : N — M is a smooth
embedding. This, in fact, provides an alternative definition for k-dimensional sub-
manifolds: They are images of smooth embeddings with k—dimensional manifolds
(see Corollary 2.4). Images of immersions provide a large class of subsets, called
immersed submanifolds.

A smooth map f : M* — N™ is called a submersion if for every p € M, the
linear map df), is surjective. The following theorem can be found for instance, in
[GP10], [Hir76], [War83|.

THEOREM 2.2. (1) If f : M™ — N™ is an immersion, then for every
p € M and q = f(p) there exists a chart ¢ : U — R™ of M with p € U,
and a chart ¢ : V. — R™ of N with ¢ € V such that f = o fop ! :
o(U) = (V) is of the form

flz1, .. xm) = (@1,.. ., Tm, 0,...,0).
——
n—m times
(2) If f : M™ — N™ is a submersion, then for every p € M and q = f(p)

there exists a chart p : U — R™ of M withp € U, and a chart+ : V. — R"
of N with ¢ € V such that f = o fop™t:pU) — (V) is of the form

fler,. . xn, o xm) = (21, T0)

EXERCISE 2.3. Prove Theorem 2.2.

Hint. Use the Inverse Function Theorem and the Implicit Function Theorem
from Vector Calculus.
COROLLARY 2.4. (1) If f : M™ — N™ is a smooth embedding then

fF(M™) is a m-dimensional submanifold of N™.

(2) If f: M™ — N™ is a submersion then for every x € N™ the fiber f~1(x)
is a submanifold of dimension m —n.

EXERCISE 2.5. Every submersion f : M — N is an open map, i.e., the image
of an open subset in M is an open subset in N.

Let f: M™ — N™ be a smooth map and y € N is a point such that for some
z € f~(y), the map df, : T.M — TyN,y = f(z), is not surjective. Then the point
y € N is called a singular value of f. A point y € N which is not a singular value
of f is called a regular value of f. Thus, for every regular value y € N of f, the
preimage f~!(y) is either empty or a smooth submanifold of dimension m — n.

THEOREM 2.6 (Sard’s theorem). Almost every point y € N is a regular value
of f.

Sard’s theorem has an important quantitative improvement due to Y. Yomdin
which we will describe below. Let B be the closed unit ball in R»~!. Consider a
C"-smooth function f: B — R. For every multi-index i = (iy,..., )| set [i| := k,
and for k < n let

orf
be the i-th mized partial derivative of f. Let

10 := max 0" f ().

of =
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Define the C"™-norm of f as
[fllen :==  max [|0"f].

1,0<i|<n+1

Given € > 0 let E. C R denote the set
{yeR:3xe [ (y), V(@) <€}

Thus, the set F. consists of “almost” critical values of f. Yomdin’s theorem infor-
mally says that for small € the set E. is small. Below is the precise statement.

THEOREM 2.7 (Y. Yomdin, [Yom83]). There exists a constant ¢ = c(n, || f|lcn)
so that for every C™-smooth function f : B — R, and every € € (0,1) the set E.
can be covered by at most c/e intervals of length e/ (=1 " In particular:
1. Lebesgue measure of E. is at most
e,
2. Whenever an interval J C R has length £ > ce'/("=1) | there exists a subin-
terval J' C J\ E., so that J' has length at least

£ (0= cet/nmm)
€
2.1.2. Smooth partition of unity.

DEFINITION 2.8. Let M be a smooth manifold and U = {B; : i € I} a locally
finite covering of M by open subsets diffeomorphic to Euclidean balls. A collection
of smooth functions {n; : i € I} on M is called a smooth partition of unity for the
cover U if the following conditions hold:

(1) Zi n; = 1.
20y, <1, Viel.
(3) Supp(mi) C By, Viel.

LEMMA 2.9. Ewvery open cover U as above admits a smooth partition of unity.

2.1.3. Riemannian metrics. A Riemannian metric on a smooth n-dimen-
sional manifold M, is a positive definite inner product (-, -), defined on the tangent
spaces T, M of M; this inner product is required to depend smoothly on the point
p € M. We will suppress the subscript p in this notation; we let || - || denote the
norm on 7, M determined by the Riemannian metric. The Riemannian metric is
usually denoted g = g, = g(x),2 € M or ds®>. We will use the notation |dx|? to
denote the Euclidean Riemannian metric on R™:

da? = dx? + ...+ da?.
Here and in what follows we use the convention that for tangent vectors u, v,
da;dxj(u,v) = uv;
and dxf stands for dx;dx;.

A Riemannian manifold is a smooth manifold equipped with a Riemannian
metric.

Two Riemannian metrics g, h on a manifold M are said to be conformal to
each other, if h, = \(x)g,, where A(z) is a smooth positive function on M, called
conformal factor. In matrix notation, we just multiply the matrix A, of g, by
a scalar function. Such modification of Riemannian metrics does not change the
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angles between tangent vectors. A Riemannian metric g, on a domain U in R" is
called conformally-Euclidean if it is conformal to |dz|?, i.e., it is given by

M) |dz]? = M) (do? + ...+ dz?).

Thus, the square of the norm of a vector v € T,,U with respect to g, is given by

Az) va
i=1

Given an immersion f : M™ — N™ and a Riemannian metric g on N, one
defines the pull-back Riemannian metric f*(g) by

(v,w), = (df (v),df (w)), . p € M,q= f(p) €N,

where the right-hand side we use the inner product defined by g and in the left-
hand side the one defined by f*(g). It is useful to rewrite this definition in terms
of symmetric matrices, when M, N are open subsets of R". Let A, be the matrix-
function defining g. Then f*(g) is given by the matrix-function B,, where

y:f(z), B, = (D:cf)Ay (Darf)T

and D, f is the Jacobian matrix of f at the point x.

Let us compute how pull-back works in “calculus terms” (this is useful for
explicit computation of the pull-back metric f*(g)), when g(y) is a Riemannian
metric on an open subset U in R™. Suppose that

9(y) = Zgij(y)dyidyj

and f = (f1,..., fn) is a diffeomorphism V C R™ — U. Then
[ (g)=h,
h(z) = g5 (f(@))dfidf.
2%}

Here for a function ¢ : R™ — R, e.g., ¢(x) = fi(z),

k=1 k=1
and, thus,
Py 83% (9%‘1

A particular case of the above is when N is a submanifold in a Riemannian
manifold M. One can define a Riemannian metric on N either by using the inclusion
map and the pull-back metric, or by considering, for every p € N, the subspace
T,N of T, M, and restricting the inner product (-, ), to it. Both procedures define
the same Riemannian metric on N.

Measurable Riemannian metrics. The same definition makes sense if the
inner product depends only measurably on the point p € M, equivalently, the
matrix-function A, is only measurable. This generalization of Riemannian metrics
will be used in our discussion of quasi-conformal groups, Chapter 21, section 21.7.
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Length and distance. Given a Riemannian metric on M, one defines the
length of a path p : [a,b] — M by

b
(2.1) length(p) = [ '(6)]dr

By abusing the notation, we will frequently denote length(p) by length(p([a,b])).
Then, provided that M is connected, one defines the Riemannian distance func-
tion
dist(p, q) = ir;f length(p),

where the infimum is taken over all paths in M connecting p to q.

A smooth map f : (M,g9) — (N,h) of Riemannian manifolds is called a
Riemannian isometry if f*(h) = g. In most cases, such maps do not preserve
the Riemannian distances. This leads to a somewhat unfortunate terminological
confusion, since the same name isometry is used to define maps between metric
spaces which preserve the distance functions. Of course, if a Riemannian isome-
try f: (M,g) — (N,h) is also diffeomorphism, then it preserves the Riemannian
distance function.

A Riemannian geodesic segment is a path p : [a,b] C R — M which is a local
length-minimizer, i.e.:

There exists ¢ > 0 so that for all ¢1,ts in J sufficiently close to each other,

dist(p(t1), p(t2)) = length(p([t1, t2])) = cft1 — t2f.

If ¢ = 1, we say that p has unit speed. Thus, a unit speed geodesic is a locally-
distance preserving map from an interval to (M,g). This definition extends to
infinite geodesics in M, which are maps p : J — M, defined on intervals J C M,
whose restrictions to each finite interval are finite geodesics.

A smooth map f : (M, g) — (N, h) is called totally-geodesic if it maps geodesics
in (M, g) to geodesics in (N, h). If, in addition, f*(h) = g, then such f is locally
distance-preserving.

Injectivity and convexity radii. For every complete Riemannian manifold
M and a point p € M, there exists the exponential map

exp, : T, M — M

which sends every vector v € T,M to the point 7,(1), where 7,(t) is the unique
geodesic in M with v(0) = p and +/(0) = v. The injectivity radius InjRad(p) is the
supremum of the numbers r so that exp, |B(0,r) is a diffeomorphism to its image.
The radius of convezity ConRad(p) is the supremum of ’s so that r < InRad(p)
and C' = exp,(B(0,7)) is a convex subset of M, i.e., every z,y € C are connected
by a (distance-realizing) geodesic segment entirely contained in C. It is a basic fact
of Riemannian geometry that for every p € M,

ConRad(p) > 0,
see e.g. [dC92|.

2.1.4. Riemannian volume. For every n-dimensional Riemannian manifold
(M, g) one defines the volume element (or volume density) denoted dV (or dA if M
is 2-dimensional). Given n vectors vy, ..., v, € Tp,M, dV (v1A...Avy,) is the volume
of the parallelepiped in T,,M spanned by these vectors, this volume is nothing but
V] det(G(v1, ..., v,))], where G(vy,...,v,) is the Gramm matrix with the entries
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(vi,v;). If ds* = p?(x)|dz|?, is a conformally-Euclidean metric, then its volume
density is given by
Pt (x)dxy ... dxy,.
Thus, every Riemannian manifold has a canonical measure, given by the integral
of its volume form

mes(E):/AdV.

THEOREM 2.10 (Generalized Rademacher’s theorem). Let f : M — N be a
Lipschitz map of Riemannian manifolds. Then f is differentiable almost every-
where.

EXERCISE 2.11. Deduce Theorem 2.10 from Theorem 1.40 and the fact that
M is second countable.

We now define volumes of maps and submanifolds. The simplest and the most
familiar notion of volume comes from the vector calculus. Let 2 be a bounded
region in R™ and f : 2 — R™ be a smooth map. Then the geometric volume of f
is defined as

(2.2) Vol(f) ::/Q|Jf(:y)|dm1...dxn

where J; is the Jacobian determinant of f. Note that we are integrating here a
non-negative quantity, so geometric volume of a map is always non-negative. If f
were 1-1 and Jy(z) > 0 for every x, then, of course,

Vol(f) :/QJf(at)dml...dwn — Vol(F().

More generally, if f: Q — R™ (now, m need not be equal to n), then

Vol(f) =/Q\/m

where G¢ is the Gramm matrix with the entries <%, %>, where brackets denote
J 2 J

the usual inner product in R™. In case f is 1-1, the reader will recognize in this

formula the familiar expression for the volume of an immersed submanifold ¥ =

f(Q) in R™,
Vol(f):/ZdS.

The Gramm matrix above makes sense also for maps whose target is an m-
dimensional Riemannian manifold (M, g), with partial derivatives replaced with
vectors df (X;) in M, where X; are coordinate vector fields in Q:

7]
Xl:£’1:1”n

Furthermore, one can take the domain of the map f to be an arbitrary smooth
manifold N (possibly with boundary). Definition still makes sense and is indepen-
dent of the choice of local charts on NV used to define the integral: this independence
is a corollary of the change of variables formula in the integral in a domain in R™.
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More precisely, consider charts ¢q : Uy — Vi, C N, so that {V,}aes is a locally-
finite open covering of N. Let {n,} be a partition of unity on N corresponding to
this covering. Then for {, =14 © Yo, fo = f © ¢a,

Vol(f) = Z/U Car/| det(Gy ) |dxy . . . day

acJ
In particular, if f is 1-1 and ¥ = f(N), then

Vol(f) = Vol(%).

REMARK 2.12. The formula for Vol(f) makes sense when f : N — M is merely
Lipschitz, in view of Theorem 2.10.

Thus, one can define the volume of an immersed submanifold, as well as that of
a piecewise smooth submanifold; in the latter case we subdivide a piecewise-smooth
submanifold in a union of images of simplices under smooth maps.

By abuse of language, sometimes, when we consider an open submanifold /V in
M, so that boundary ON of N a submanifold of codimension 1, while we denote
the volume of N by Vol(N), we shall call the volume of ON the area, and denote
it by Area (ON).

EXERCISE 2.13. (1) Suppose that f: 2 C R® — R" is a smooth map so
that |d, f(u)] < 1 for every unit vector u and every z € Q. Show that
|Jr(x)] < 1 for every x and, in particular,

Vol(f()) = |/Qdex1...d:En| < Vol(f) < Vol(Q).

Hint: Use that under the linear map A = d, f, the image of every r-ball
is contained in r-ball.

(2) Prove the same thing if the map f is merely 1-Lipschitz.
More general versions of the above exercises are the following.

EXERCISE 2.14. Let (M, g) and (N, h) be n-dimensional Riemannian manifolds.

(1) Let f: M — N be a smooth map such that for every € M, the norm of
the linear map

df : (T (,),) = (Tr@)N. ()

is at most L.
Prove that |Jy(x)| < L™ for every « and that for every open subset U
of M
Vol(f(2)) < L"Vol(Q).

(2) Prove the same statement for an L-Lipschitz map f: M — N.

A consequence of Theorem 2.2 is the following.

THEOREM 2.15. Consider a compact Riemannian manifold M™, a submersion
f:M™ — N", and a point p € N. For every x € N set M, := f~*(z). Then, for
every p € N and every € > 0 there exists an open neighborhood W of p such that
for every x € W,

l—e< Vol(M,)

<5+ S 1l+e
V() S'TC
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Proor. First note that, by compactness of M, for every neighborhood U of
M,, there exists a neighborhood W of p such that f~1(W) c U.

According to Theorem 2.2, (2), for every x € M, there exists a chart of M,
0y : Uy — Uy, with U, containing x, and a chart of N, ¢, : V, = V, with V
containing p, such that v, o f o p, ! is a restriction of the projection to the first n
coordinates. Without loss of generality we may assume that U, is an open cube in
R™. Therefore, V, is also a cube in R”, and U, =V, x Z,,, where Z, is an open
subset in R™™".

Since M, is compact, it can be covered by finitely many such domains of charts
Uy,...,Ug. Let Vq,...,V, be the corresponding domains of charts containing p.
For the open neighborhood U = Ule U; of M, consider an open neighborhood W
of p, contained in ﬂle V;, such that f~1(W) C U.

For every x €¢ W, M, = Ule(Ui NM,). Fixl € {1,...,k}. Let (9:5(y))1<ii<n
be the matrix-valued function on U;, defining the pull-back by ¢; of the Riemannian
metric on M .

Since g;; is continuous, there exists a neighborhood W of p = v;(p) such that
for every z € W; and for every £ € Z; we have,

(1- 62 < det [9i5 (%, )], 1 <ij<m
= det [gij(ﬁaf)]nJrlgi,jgm
Recall that the volumes of M, N U; and of M, N U, are obtained by integrating

respectively (det [g;;(Z, D]n+1<¢,j<k)l/2 and (det [g;; (P, f)}n+1<i,j<k)1/2 on Z;. The
volumes of M, and M, are obtained by combining this with a partition of unity.

It follows that for = € ﬂle v (W),

Vol(My)
l—-e< ———+<<1 .
‘ Vol(M,) e

< (1462,

Finally, we recall an important formula for volume computations:

THEOREM 2.16 (Coarea formula, see e.g. Theorem 6.3 [Cha06] ). Let U be an
open connected subset with compact closure U in a Riemannian manifold M and
let f:U — (0,00) be a smooth submersion with a continuous extension to U such
that f restricted to U \ U is constant. For everyt € (0,00) let H; denote the level
set f=1(t), and let dA; be the Riemannian area density induced on H;.

Then, for every function g € LY(U),

/g|gradf|dV:/ dt/ gdA,
U 0 Hi

where AV is the Riemannian volume density of M

2.1.5. Growth function and Cheeger constant. In this section we present
two basic notions initially introduced in Riemannian geometry and later adapted
and used in group theory and in combinatorics.

Given a Riemannian manifold (M, ¢g) and a point xg € M, we define the growth
function

Sz, (1) := Vol B(xg,T),

the volume of the metric ball of radius r and center at x in (M, g)
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REMARKS 2.17. (1) For two different points xq, o, we have
G120 (1) < Bagy, (r+ d), where d = dist(xo, yo) .

(2) Suppose that the action of the group of isometries of M is cobounded,
i.e., there exists x such that the Isom(M)-orbit of B(xg, k) equals M. In
this case, for every two basepoints xg, yg

®M,fbo (T) < 6JVLyO (T + H) :

Thus, in this case the growth rate of the function & does not depend on
the choice of the basepoint.
We refer the reader to Section 12.1 for the detailed discussion of volume growth
and its relation to group growth.

EXERCISE 2.18. Assume again that the action Isom(M) ~ M is cobounded
and that (M, g) is complete.

(1) Prove that the growth function is almost sub-multiplicative, that is:
Gty (1 +1)K) < Gur g (15) G nr e, ((E+ 1)K) -
(2) Prove that the growth function of M is at most exponential, that is there
exists a > 1 such that

Sarz(x) < a®, forevery x > 0.

DEFINITION 2.19. An isoperimetric inequality in a manifold M is an inequality
satisfied by all open submanifolds €2 with compact closure and smooth boundary,
of the form

Vol(R2) < f(2)g (Aread) ,

where f and g are real-valued functions, g defined on R .
DEFINITION 2.20. The Cheeger (isoperimetric) constant h(M) (or isoperimetric
ratio) of M is the infimum of the ratios
Area(09)
min [Vol(Q), Vol(M \ Q)]
where (Q varies over all open submanifolds with compact closure and smooth bound-
ary.

If in particular h(M) > k > 0 then the following isoperimetric inequality holds
in M: )
Vol(R2) < ;Area(aﬂ) for every Q.

This notion was defined by Cheeger for compact manifolds in [Che70]. Further
details can be found for instance in P. Buser’s book [Bus10]|. Note that when M
is a Riemannian manifold of infinite volume, one may replace the denominator in
the ratio defining the Cheeger constant by Vol(f2).

Assume now that M is the universal cover of a compact Riemannian manifold
N. A natural question to ask is to what extent the growth function and the Cheeger
constant of M depend on the choice of the Riemannian metric on N. The first
question, in a way, was one of the origins of the geometric group theory.
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V.A. Efremovich [Efr53] noted that two growth functions corresponding to
two different choices of metrics on N increase at the same rate, and, moreover,
that their behavior is essentially determined by the fundamental group only. See
Proposition 12.12 for a slightly more general statement.

A similar phenomenon occurs with the Cheeger constant: Positivity of h(M)
does not depend on the metric on N, it depends only on a certain property of
71 (NV), namely, the non-amenability, see Remark 16.12. This was proved much later
by R. Brooks [Bro81la, Bro82a]. Brooks’ argument has a global analytic flavor,
as it uses the connection established by Cheeger [Che70]| between positivity of the
isoperimetric constant and positivity of spectrum of the Laplace-Beltrami operator
on M. Note that even though in the quoted paper Cheeger only considers compact
manifolds, the same argument works for universal covers of compact manifolds.
This result was highly influential in global analysis on manifolds and harmonic
analysis on graphs and manifolds.

2.1.6. Curvature. Instead of defining the Riemannian curvature tensor, we
will only describe some properties of Riemannian curvature. First, if (M, g) is a 2-
dimensional Riemannian manifold, one defines Gaussian curvature of (M, g), which
is a smooth function K : M — R, whose values are denoted K (p) and K.

More generally, for an n-dimensional Riemannian manifold (M,g), one de-
fines the sectional curvature, which is a function A2M — R, denoted K,(u,v) =
K, o(u,v):

(R(u,v)u,v)

|u A v]?
provided that w,v € T,M are linearly independent. Here R is the Riemannian
curvature tensor and |uAv| is the area of the parallelogram in 7), M spanned by the
vectors u,v. Sectional curvature depends only on the 2-plane P in T, M spanned
by u and v. The curvature tensor R(u,v)w does not change if we replace the metric
g with a conformal metric h = ag, where a > 0 is a constant. Thus,

Kpp(u,v) = afzKp,g(u, v).

Totally geodesic Riemannian isometric immersions f : (M, g) — (N, h) preserve
sectional curvature:

Ky(u,v) =

Kp(uvv) :Kq(df(u)vdf(v))v q:f(p)'
In particular, sectional curvature is invariant under Riemannian isometries of equidi-

mensional Riemannian manifolds. In the case when M is 2-dimensional, K, (u,v) =
K, is the Gaussian curvature of M.

Gauss-Bonnet formula. Our next goal is to connect areas of triangles to
curvature.

THEOREM 2.21 (Gauss-Bonnet formula). Let (M, g) be a Riemannian surface
with the Gaussian curvature K(p),p € M and the area form dA. Then for every
2-dimensional triangle A C M with geodesic edges and vertex angles «, 3,7,

/K(p)dA:(a+ﬂ+7)f7r.

In particular, if K(p) is constant equal K, we get
—kArea(A) =7 — (a+ B+ 7).
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The quantity m — (a + 8 + ) is called the angle deficit of the triangle A.

Manifolds of bounded geometry. A (complete) Riemannian manifold M
is said to have bounded geometry if there are constants a,b and € > 0 so that:

1. Sectional curvature of M varies in the interval [a, b].

2. Injectivity radius of M is > e.

The numbers a,b, e are called geometric bounds on M. For instance, every
compact Riemannian manifold M has bounded geometry, every covering space of
M (with pull-back Riemannian metric) also has bounded geometry.

THEOREM 2.22 (See e.g. Theorem 1.14, [Att94]). Let M be a Riemannian
manifold of bounded geometry with geometric bounds a,b,e. Then for every x € M
and 0 < r < €/2, the exponential map

exp, : B(0,r) = B(z,r) C M
is an L-bi-Lipschitz diffeomorphism, where L = L(a,b,€).

This theorem also allows one to refine the notion of partition of unity in the
context of Riemannian manifolds of bounded geometry:

LEMMA 2.23. Let M be a Riemannian manifold of bounded geometry and let
U ={B; = B(z,7i) : i € I} a locally finite covering of M by metric balls so that
InjRady (x;) > 2r; for every i and

B <SCZ‘, Z’I’ﬁ) NB <:Cj7irj) = @, Vi 7&]

Then U admits a smooth partition of unity {n; : i € I} which, in addition, satisfies
the following properties:

1. n; =1 on every ball B(x;, %5).

2. Every smooth functions n; is L—Lipschitz for some L independent of i.

Curvature and volume.

Below we describe without proof certain consequences of uniform lower and
upper bounds on the sectional curvature on the growth of volumes of balls, that
will be used in the sequel. The references for the result below are [BCO01, Section
11.10], [CGT82], [Gro86], [G60|. See also [GHLO4], Theorem 3.101, p. 140.

Below we will use the following notation: For k € R, A.(r) and Vi (r) will
denote the area of the sphere, respectively the volume of the ball of radius r, in
the n—dimensional space of constant sectional curvature x. We will also denote by
A(x,r) the area of the geodesic sphere of radius r and center z in a Riemannian
manifold M. Likewise, V' (z, ) will denote the volume of the geodesic ball centered
at = and of radius r in M.

THEOREM 2.24 (Bishop—Gromov—Giinther). Let M be a complete n—dimensional
Riemannian manifold.

(1) Assume that the sectional curvature on M is at least a. Then, for every
point x € M:

o A(x,r) < Au(r) and V(x,r) < Vy(r).

%

o The functions r i(gc(’:)) and r — V(JETT)) are non-increasing.
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(2) Assume that the sectional curvature on M is at most b. The, for every
x € M with injectivity radius p, = InjRady(x):
e Forallr € (0,py), we have A(z,r) = Ap(r) and V(z,r) = Vi(r).

o The functions r 1?4(:(}? and r ‘;(:ET’;) are non-decreasing on

(O,px) .

The results (1) in the theorem above are also true if the Ricci curvature of M
is at least (n — 1)a.

Theorem 2.24 follows from infinitesimal versions of the above inequalities (see
Theorems 3.6 and 3.8 in [Cha06]). A consequence of the infinitesimal version of
Theorem 2.24, (1), is the following theorem which will be useful in the proof of
quasi-isometric invariance of positivity of the Cheeger constant:

THEOREM 2.25 (Buser’s inequality [Bus82], [Cha06], Theorem 6.8). Let M be
a complete n—dimensional manifold with sectional curvature at least a. Then there
erists a positive constant A depending on n,a and r > 0, such that the following
holds. Given a hypersurface H C M and a ball B(z,r) C M such that B(z,r)\ H
is the union of two open subsets O10y separated by H, we have:

min [Vol(O1), Vol(O2)] < Mrea[H N B(z,r)].

2.1.7. Harmonic functions. For the detailed discussion of the material in
this section we refer the reader to [Li04]| and [SY94].

Let M be a Riemannian manifold. Given a smooth function f : M — R, we
define the energy of f as the integral

E(f) = A v - /M|Vf|2dv.

Here the gradient vector field V f is obtained by dualizing the differential 1-form
df using the Riemannian metric on M. Note that energy is defined even if f only
belongs to the Sobolev space Wllof (M) of functions differentiable a.e. on M with
locally square-integrable partial derivatives.

THEOREM 2.26 (Lower semicontinuity of the energy functional). Let (f;) be a
sequence of functions in W2 (M) which converges (in WL2(M)) to a function f.
Then

B(f) < lim inf E(f,).

DEFINITION 2.27. A function h € Wllof is called harmonic if it is locally energy-

minimizing: For every point p € M and a small metric ball B = B(p,r) C M,

E(h|B) < E(u), Yu:B — R,ulaop = hlop.

Equivalently, for every relatively compact open subset Q C M with smooth

boundary
E(h|B) < E(u), Yu:Q — R, ulsga = hlsa.

It turns out that harmonic functions h on M are automatically smooth and,
moreover, satisfy the equation Ah = 0, where A is the Laplace—Beltrami operator
on M:

Ay = divVu
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Here for a vector field X on M, the divergence div X is a function on M satisfying
div XdV = LxdV,
where Lx is the Lie derivative along the vector field X:
Lx : QF(M) — QF(M),
Lx(w) =ixdw+ d(ixw),
x QY M) = QY M), ix(w)(X1,. .., Xe) =w(X, X1,..., X))

In local coordinates (assuming that M is n-dimensional):

divX = Zf@m (\/@Xl)

where

|g] = det((g:5)),
and

) " Ou
Ty =Y g0 2
T €j
j=1
and (¢) = (gi;) ™", the inverse matrix of the metric tensor. Thus,
- Ju
£ i (o).
b 3:0
In terms of the Levi-Civita connection V on M,
A(u) = TTQCG(H(U))v H(u)(Xla XJ) = invXj (u) - VVXin (U),

n

Trace(H) = Z g Hyj,
i,j=1
where X;, X; are vector fields on M.

If M = R™ with the flat metric, then A is the usual Laplace operator:

Au_Za 2u

THEOREM 2.28 (Yau’s gradient estimate). Suppose that M™ is a complete n-
dimensional Riemannian manifold with Ricci curvature = a. Then for every har-
monic function h on M, every x € M with InjRad(x) > e,

|Vh(z)| < h(z)C(e, n).

THEOREM 2.29 (Compactness property). Suppose that (f;) is a sequence of
harmonic functions on M so that there exists p € M for which the sequence (f;(p))
is bounded. Then the family of functions (f;) is precompact in Wlif(]\/[) Further-
more, every limit of a subsequence in (f;) is a harmonic function.

THEOREM 2.30 (Maximum Principle). Let Q@ C M be a relatively compact
domain with smooth boundary and h : M — R be a harmonic function. Then h|Q
attains mazimum on the boundary of Q0 and, moreover, if h|Q) attains its mazimum
at a point of Q, then h is constant.
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2.1.8. Alexandrov curvature and CAT(x) spaces. In the more general
setting of metric spaces it is still possible to define a notion of (upper and lower
bound for the) sectional curvature, which moreover coincide with the standard ones
for Riemannian manifolds. This is done by comparing geodesic triangles in a metric
space to geodesic triangles in a model space of constant curvature. In what follows,
we only discuss the metric definition of upper bound for the sectional curvature,
the lower bound case is similar but less used.

For a given k € R, we denote by X, the model surface of constant curvature
k. If Kk = 0 then X, is the Euclidean plane, if k < 0 then X, will be discussed in
detail in Chapter 8, it is the upper half-plane with the rescaled hyperbolic metric:

2 2
X, = (UZ, |m—1dxy“;Cly) .

If kK > 0 then X, is the 2—dimensional sphere S (0, ) in R3 with the Riemannian

1
NG
metric induced from R3.

Let X be a geodesic metric space, and let A be a geodesic triangle in X. Given
k > 0 we say that A is k—compatible if its perimeter is at most % By default,

every triangle is k—compatible for k < 0.
We will prove later on (see §8.10) the following:

LEMMA 2.31. Let k € R and let a < b < ¢ be three numbers such that ¢ < a-+b
and a+b+c < 2—\/% if k > 0. Then there exists a geodesic triangle in X, with
lengths of edges a,b and c, and it is unique up to congruence.

Therefore, for every x € R and every k—compatible triangle A = A(A, B,C) C
X with vertices A, B,C € X and lengths a, b, ¢ of the opposite sides, there exists a
triangle (unique, up to congruence)

A(4, B,C) C X,
with the side-lengths a,b,c. The triangle A(A,B,C’) is called the xk—comparison
triangle or a k—Alexandrov triangle.
_ For every point P on, say, the side [AB] of A, we define the k—comparison point
P € [A, B], so that

d(A,P) =d(A, P).
Thus, for P € [A, B],Q € [B, C] we define k—comparison points P,Q e A.

DEFINITION 2.32. We say that the triangle A is CAT (k) if it is k—compatible
and for every pair of points P and () on the triangle, their x-comparison points
P, Q) satisfy

distx, (P,Q) > distx (P, Q) .

DEFINITION 2.33. (1) A CAT(k)-domain in X is an open convex set
U C X, and such that all the geodesic triangles entirely contained in U
are CAT (k).

(2) We say that X has Alexandrov curvature at most k if it is covered by
CAT(k)-domains.
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Note that a CAT(k)-domain U for k£ > 0 must have diameter strictly less than
. Otherwise, one can construct geodesic triangles in U with two equal edges and

$h

K
e third reduced to a point, with perimeter >

The point of Definition 2.33 is that it applies to non-Riemannian metric spaces
where such notions as tangent vectors, Riemannian metric, curvature tensor cannot
be defined, while one can still talk about curvature being bounded from above by
K.
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PROPOSITION 2.34. Let X be a Riemannian manifold. Its Alexandrov curvature
is at most k if and only if its sectional curvature in every point is < K .

PRrROOF. The “if” implication follows from the Rauch-Toponogov comparison
theorem (see [dC92, Proposition 2.5]). For the “only if” implication we refer to
[Rin61] or to [GHLO04, Chapter III]. O

DEFINITION 2.35. A metric space X is called a CAT(k)-space if the entire X
is a CAT(k)-domain. We will use the definition only for x < 0. A metric space X
is said to be a CAT(—o0)-space if X is a CAT(k)-space for every k.

Note that for the moment we do not assume X to be metrically complete.
This is because there are naturally occurring incomplete C'AT'(0) spaces, called
FEuclidean buildings, which, nevertheless, are geodesically complete (every geodesic
segment is contained in a complete geodesic). On the other hand, Hilbert spaces
provide natural examples of complete CAT(0) metric spaces.

EXERCISE 2.36. Let X be a simplicial tree with a path-metric d. Show that
(X,d) is CAT(—o0).

In the case of non-positive curvature there exists a local-to-global result.

THEOREM 2.37 (Cartan-Hadamard Theorem). If X is a simply connected com-

plete metric space with Alexandrov curvature at most k for some k < 0, then X is
a CAT(k)-space.

We refer the reader to [Bal95] and [BH99] for proofs of this theorem, and a
detailed discussion of C AT (k)-spaces, with k < 0.

DEFINITION 2.38. Simply-connected complete Riemannian manifolds of sec-
tional curvature < 0 are called Hadamard manifolds. Thus, every Hadamard man-
ifold is a C'AT(0) space.

An important property of C AT (0)-spaces is convezity of the distance function.
Suppose that X is a geodesic metric space. We say that a function F': X x X — R
is convez if for every pair of geodesics a(s),8(s) in X (which are parameterized
with constant, but not necessarily unit, speed), the function

f(s) = Fla(s), B(s))

is a convex function of one variable. Thus, the distance function dist of X is convex,
whenever for every pair of geodesics [ag, a1] and [bg, b1] in X, the points a5 € [ag, a1]
and bs € [bo, b1] such that dist(ag, as) = sdist(ag, a1) and dist(bg, bs) = sdist(bg, by)
satisfy

(2.3) dist(as, bs) < (1 — s)dist(ag, bo) + sdist(a1,b1) .
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Note that in the case of a normed vector space X, a function f: X x X — R
is convex if and only if the sup-graph

{(z,y,t) € X* xR f(z,y) >t}
is convex.

PROPOSITION 2.39. A geodesic metric space X is CAT(0) if and only if the
distance on X is convexz.

PRrOOF. Consider two geodesics [ag,bg] and [a1,b1] in X. On the geodesic
[ao, b1] consider the point ¢, such that dist(ag, ¢s) = sdist(ag, b1) . The fact that the
triangle with edges [ao, a1], [ao, b1] and [a1, b1] is CAT'(0) and the Thales theorem in
R?, imply that dist(as, cs) < sdist(a1,b1). The same argument applied to the trian-
gle with edges [ag, b1], [ao, Do), [bo, b1], implies that dist(cs, bs) < (1 — s)dist(aqg, bo).
The inequality (2.3) follows from

dist(as, bs) < dist(as, ¢s) + dist(cs, bs) .

ay
as

o

by

FIGURE 2.1. Argument for convexity of the distance.

Conversely, assume that (2.3) is satisfied.

In the special case when ag = a;, this implies the comparison property in
Definition 2.32 when one of the two points P, is a vertex of the triangle. When
_ L . dist(A,P) _ dist(B,Q)

ag = by, (2.3) again implies the comparison property when Tet(A D) = dsi(B0) -

We now consider the general case of two points P € [A, B] and @ € [B, C] such

that g:ﬁgﬁ’g; = s and gi:gggg =t with s < t. Consider B’ € [A, B] such that
dist[A, B'] = $dist[A, B]. Then, according to the above, dist(B’,C) < dist(B’, C),
and dist(P, Q) < tdist(B’,C) < tdist(B', C) = dist(P, Q). 0

COROLLARY 2.40. FEvery CAT(0)-space X 1is uniquely geodesic.
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PROOF. It suffices to apply the inequality (2.3) to any geodesic bigon, that is,
in the special case when ag = by and a; = b;. [l

2.1.9. Cartan’s fixed point theorem. Let X be a metric space and A C X
be a subset. Define the function

p(@) = pale) = sup d*(z,a).
acA

PROPOSITION 2.41. Let X be a complete CAT(0) space. Then for every bounded
subset A C X, the function p = p4 attains unique minimum in X.

PRrROOF. Consider a sequence (x,) in X such that

Jim p(zn) =r = inf p(z).

We claim that the sequence (x,,) is Cauchy. Given € > 0 let z = z;,2’ = z; be
points in this sequence such that

r<p(z)<r+e r<pl)<r+e
Let p be the midpoint of [z, 2'] C X; hence, r < p(p). Let a € A be such that
p(p) — e < d*(p,a).

Consider the Euclidean comparison triangle T = T'(&, #', &) for the triangle T'(z, 2’, a).
In the Euclidean plane we have (by the parallelogram identity (1.2)):

d*(z,7') + 4d%(a, p) = 2 (d*(a, &) + d*(a, 7)) .
Applying the comparison inequality for the triangles T and T, we obtain:
d(a,p) < d(a,p).
Thus:
d(z,2')* +4(r — e) < &*(z,2) + 4d*(a,p) < 2 (d*(a,z) + d*(a,2")) <

2(p(z) + p(')) < 4r + 4e.

It follows that
d(z,z')?* < 8e
and, therefore, the sequence (x,) is Cauchy. By completeness of X, the function

p attains minimum in X; the same Cauchy argument implies that the point of
minimum is unique. ([

As a corollary, we obtain a fixed-point theorem for isometric group actions
on complete CAT'(0) spaces, which was first proven by Cartan in the context of
Riemannian manifolds of nonpositive curvature:

THEOREM 2.42. Let X be a complete CAT(0) metric space and G ~ X be a
group acting isometrically with bounded orbits. Then G fizes a point in X.

PRrROOF. Let A denote a bounded orbit of G in X and let p4 be the correspond-

ing function on X. Then, by uniqueness of the minimum point m of p 4, the group
G will fix m. O
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COROLLARY 2.43. 1. Ewvery finite group action on a complete CAT(0) space
has a fized point. For instance, every action of a finite group on a tree or on a
Hilbert space fizes a point.

2. If G is a compact group acting isometrically and continuously on a Hilbert
space H, then G fixzes a point in H.

2.1.10. Ideal boundary, horoballs and horospheres. In this section we
define the ideal boundary of a metric space. This is a particularly significant object
when the metric space is CAT(0), and it generalizes the concept introduced for
non-positively curved simply connected Riemannian manifolds by P. Eberlein and
B. O’Neill in [EO73, Section 1.

Let X be a geodesic metric space. Two geodesic rays p; and py in X are called
asymptotic if they are at finite Hausdorff distance; equivalently if the function
t — dist(p1(t), p2(t)) is bounded on [0, c0) .

Clearly, being asymptotic is an equivalence relation on the set of geodesic rays
in X.

DEFINITION 2.44. The ideal boundary of a metric space X is the collection of
equivalence classes of geodesic rays. It is usually denoted either by d,,X or by
X (00).

An equivalence class o € 9, X is called an ideal point or point at infinity of X,
and the fact that a geodesic ray p is contained in this class is sometimes expressed
by the equality p(oo0) = a.

The space of geodesic rays in X has a natural compact-open topology, or,
equivalently, topology of uniform convergence on compacts (recall that we regard
geodesic rays as maps from [0,00) to X). Thus, we topologize 0,,X by giving it
the quotient topology 7.

EXERCISE 2.45. Every isometry g : X — X induces a homeomorphism ¢ :
Ose X — 00 X.

This exercise explains why we consider rays emanating from different points of
X: otherwise most isometries of X would not act on 0, X.

Convention. From now on, in this section, we assume that X is a complete
CAT(0) metric space.

LEMMA 2.46. If X is locally compact then for every point x € X and every
point a € 0o X there exists a unique geodesic ray p with p(0) = x and p(c0) = .
We will also use the notation [z, ) for the ray p.

PROOF. Let r : [0,00) — X be a geodesic ray with r(co) = «. For every
n € N, according to Corollary 2.40, there exists a unique geodesic g,, joining x and
r(n). The convexity of the distance function implies that every g, is at Hausdorff
distance dist(z,7(0)) from the segment of r between r(0) and r(n).

By the Arzela-Ascoli Theorem, a subsequence g,, of geodesic segments con-
verges in the compact-open topology to a geodesic ray p with p(0) = . Moreover,
p is at Hausdorff distance dist(x,r(0)) from r.

Assume that p; and po are two asymptotic geodesic rays with pq(0) = p2(0) =
x . Let M be such that dist(p1(t), p2(t)) < M, for every t > 0. Consider ¢ € [0, 00),
and € > 0 arbitrarily small. Convexity of the distance function implies that

dist(pa (1), pa(t)) < edist(p1 (t/2), pa(t/€)) < eM.
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It follows that dist(p1(¢), p2(t)) = 0 and, hence, p; = po. O

In particular, for a fixed point p € X one can identify the set X := X L1 050 X
with the set of geodesic segments and rays with initial point p. In what follows,
we will equip X with the topology induced from the compact-open topology on the
space of these segments and rays.

EXERCISE 2.47. (1) Prove that the embedding X < X is a homeomor-
phism to its image.
(2) Prove that the topology on X is independent of the chosen basepoint p.
In other words, given p and ¢ two points in X, the map [p,z] — [qg, 2]
(with z € X) is a homeomorphism.

(3) In the special case when X is a Hadamard manifold, show that for every
point p € X, the ideal boundary 0., X is homeomorphic to the unit sphere
S in the tangent space T, M via the map v € S C T,M — exp,(Ryv) €
00X

An immediate consequence of the Arzela—Ascoli Theorem is that X is compact.

Consider a geodesic ray r : [0,00) — X, and an arbitrary point © € X . The
function t — dist(x,r(t)) — t is decreasing (due to the triangle inequality) and
bounded from below by —dist(x,r(0)). Therefore, there exists a limit

(2.4) fr(z) == tlgglo [dist(z,r(t)) — t] .

DEFINITION 2.48. The function f,. : X — R thus defined, is called the Buse-
mann function for the ray r.

For the proof of the next lemma see e.g. [Bal95], Chapter 2, Proposition 2.5.

LEMMA 2.49. Ifr1 and ro are two asymptotic rays then fr, — fr, is a constant
function.

In particular, it follows that the collections of sublevel sets and the level sets of
a Busemann function do not depend on the ray r, but only on the point at infinity
that r represents.

EXERCISE 2.50. Show that f, is linear with slope —1 along the ray r. In
particular,

A fr(t) = —oo.
DEFINITION 2.51. A sublevel set of a Busemann function, f,~!(—oc,a is called
a (closed) horoball with center (or footpoint) a = r(c0); we sometime denote such
a set B(a). A level set f,"!(a) of a Busemann function is called a horosphere with
footpoint «, it is denoted H (). Lastly, an open sublevel set f~!(—oc,a) is called
an open horoball with footpoint o = r(o0), and denoted B(«) .

LEMMA 2.52. Let r be a geodesic ray and let B be the open horoball f;~(—o0,0) .
Then B = ;5o B(r(t),t) .
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PRrROOF. Indeed, if for a point z, f.(z) = lim;_,oo[dist(z,7(t)) — ] < 0, then for
some sufficiently large ¢, dist(x,r(t)) —t < 0. Whence = € B(r(¢),1t).

Conversely, suppose that © € X is such that for some s > 0, dist(z,r(s)) —s =
ds < 0. Then, because the function ¢ — dist(z,7(¢)) — t is decreasing, it follows
that for every t > s,

dist(z,7(t)) —t < ds.
Whence, f.(x) < ds <0. O

LEMMA 2.53. Let X be a CAT(0) space. Then every Busemann function on
X is convex and 1-Lipschitz.

PROOF. Note that distance function on any metric space is 1-Lipschitz (by the
triangle inequality). Since Busemann functions are limits of normalized distance
functions, it follows that Busemann functions are 1-Lipschitz as well. (This part
does not require CAT'(0) assumption.) Similarly, since distance function is convex,
Busemann functions are also convex as limits of normalized distance functions. [

Furthermore, if X is a Hadamard manifold, then every Busemann function f,
is smooth, with gradient of constant norm 1, see [BGS85].

LEMMA 2.54. Assume that X is a complete CAT(0) space. Then:
e Open and closed horoballs in X are convex sets.

o A closed horoball is the closure of an open horoball.

PRrROOF. The first property follows immediately from the convexity of Buse-
mann functions. Let f = f, be a Busemann function. Consider the closed horoball

B={x: f(x) <t}
Since this horoball is a closed subset of X, it contains the closure of the open
horoball

B={x: f(x) <t}
Suppose now that f(z) = t. Since lims_, f($) = —o0, there exists s such that
f(r(s)) < t. Convexity of f implies that

fly) < flx) =t, Vyelw,r(s)]\{z}.

Therefore, = belongs to the closure of the open horoball B, which implies that B
is the closure of B. O

EXERCISE 2.55. 1. Suppose that X is the Euclidean space R™, r is the geodesic
ray in X with 7(0) = 0 and r'(0) = u, where u is a unit vector. Show that

fr(z) = —2 - u.

In particular, closed (resp. open) horoballs in X are closed (resp. open) half-spaces,
while horospheres are hyperplanes.

2. Construct an example of a proper CAT(0) space and an open horoball
B C X, B # X, so that B is not equal to the interior of the closed horoball B.
Can this happen in the case of Hadamard manifolds?
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2.2. Bounded geometry

In this section we review several notions of bounded geometry for metric spaces.

2.2.1. Riemannian manifolds of bounded geometry.

DEFINITION 2.56. We say a Riemannian manifold M has bounded geometry if
it is connected, it has uniform upper and lower bounds for the sectional curvature,
and a uniform lower bound for the injectivity radius InjRad(x) (see Section 2.1.3).

Probably the correct terminology should be “uniformly locally bounded geom-
etry”, but we prefer shortness to an accurate description.

A connected Riemannian manifold without boundary, so that the isometry
group of M acts cocompactly on M (see section 3.1.1), has bounded geometry.

REMARK 2.57. In the literature the condition of bounded geometry on a Rie-
mannian manifold is usually weaker, e.g. that there exists L > 1 and R > 0 such
that every ball of radius R in M is L-bi-Lipschitz equivalent to the ball of radius
R in R™ (|Gro93|, §0.5.A3) or that the Ricci curvature has a uniform lower bound
(|Cha06|, [Cha01]).

For the purposes of this book, the restricted condition in Definition 2.56 suffices.

In what follows we keep the notation V,(r) from Theorem 2.24 to designate
the volume of a ball of radius r in the n—dimensional space of constant sectional
curvature k.

LEMMA 2.58. Let M be complete n—dimensional Riemannian manifold with
bounded geometry, let a < b and p > 0 be such that the sectional curvature is at
least a and at most b, and that at every point the injectivity radius is larger than p.

(1) For every 6 > 0, every d—separated set in M is ¢-uniformly discrete, with

o(r) = V‘Q/(:(J;)’\) , where X\ is the minimum ofg and p.

(2) For every 2p > § > 0 and every maximal §—separated set N in M, the

Vo (%)

multiplicity of the covering {B(x,6) | v € N} is at most - )
v(2

PROOF. (1) Let S be a d—separated subset in M.
According to Theorem 2.24, for every point x € S and radius r» > 0 we have:

Va(r+X) > Vol [Bus(w,r + )] > card [B(x,r) N 5] V().

This implies that card E(m,r) N S] < VaV(ij\_))\ ) , whence S with the induced

metric is ¢-uniformly discrete, with the required ¢.

(2) Let F be a subset in N such that (), B(z,0) is non-empty. Let y be
a point in this intersection. Then the ball B (y, 3—25) contains the disjoint union
L,cr B (x, %) , whence

Vs (325> > Vol [BM (y, 325)] > card F'V, (g) .
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2.2.2. Metric simplicial complexes of bounded geometry. Let X be a
simplicial complex and d a path-metric on X. Then (X, d) is said to be a metric
simplicial complex if the restriction of d to each simplex is isometric to a Euclidean
simplex. The main example of a metric simplicial complex is a generalization of a
graph with the standard metric described below.

Let X be a connected simplicial complex. As usual, we will often conflate X
and its geometric realization. Metrize each k-simplex of X to be isometric to the
standard k-simplex AF in the Euclidean space:

AF = RO N {zo+... 4 x, =1}

Thus, for each m-simplex ¢ and its face o, the inclusion o — ¢™ is an isometric
embedding. This allows us to define a length-metric on X so that each simplex is
isometrically embedded in X, similarly to the definition of the standard metric on a
graph. Namely, a piecewise-linear (PL) path p in X is a path p : [a,b] — X, whose
domain can be subdivided in finitely many intervals [a;, a;+1] so that p|la;, a;y1] is
a piecewise-linear path whose image is contained in a single simplex of X. Lengths
of such paths are defined using metric on simplices of X. Then

d(z,y) = ilgf length(p)

where the infimum is taken over all PL paths in X connecting = to y. The metric
d is then a path-metric; we call this metric the standard metric on X.

EXERCISE 2.59. Verify that the standard metric is complete and that X is a
geodesic metric space.

DEFINITION 2.60. A metric simplicial complex X has bounded geometry if it is
connected and if there exist L > 1 and N < oo so that:
e every vertex of X is incident to at most N edges;
e the length of every edge is in the interval [L™1, L].
In particular, the set of vertices of X with the induced metric is a uniformly
discrete metric space.

Thus, a metric simplicial complex of bounded geometry is necessarily finite-
dimensional.

EXAMPLES 2.61. e If Y is a finite connected metric simplicial complex,
then its universal cover (with the pull-back path metric) has bounded
geometry.

e A connected simplicial complex has bounded geometry if and only if there
is a uniform bound on the valency of the vertices in its 1-skeleton.

Metric simplicial complexes of bounded geometry appear naturally in the con-
text of Riemannian manifolds with bounded geometry. Given a simplicial complex
X, we will equip it with the standard metric, where each simplex is isometric to a
Euclidean simplex with unit edges.

THEOREM 2.62 (See Theorem 1.14, [Att94]). Let M be an n-dimensional
Riemannian manifold of bounded geometry with geometric bounds a,b,e. Then
M admits a triangulation X of bounded geometry (whose geometric bounds de-

pend only on n,a,b,e) and an L-bi-Lipschitz homeomorphism f : X — M, where
L= L(n,a,b,e).
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Another procedure of approximation of Riemannian manifolds by simplicial
complexes will be described in Section 5.3.
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CHAPTER 3
Algebraic preliminaries

3.1. Geometry of group actions

3.1.1. Group actions. Let G be a group or a semigroup and E be a set. An
action of G on E on the left is a map
p:GxE—E,  u(g.a)=g(a),
so that
(1) /’l’(]‘ﬂ :L') =T
(2) w(g1g2,x) = u(g1, (g2, x)) for all g1,g2 € G and = € E.
REMARK 3.1. If, in addition, G is a group, then the two properties above imply
that
plg,p(g ta)) ==
forallge Gand z € E.

An action of G on E on the right is a map
prExG—E, plag)=(a)g,
so that
(1) /L(xa 1) =3
(2) u(x,9192) = p(p(z,91),92) for all 1,90 € Gand x € E.

Note that the difference between an action on the left and an action on the
right is the order in which the elements of a product act.

If not specified, an action of a group G on a set F is always to the left, and it
is often denoted G ~ E.

If E is a metric space, an isometric action is an action so that u(g,-) is an
isometry of E for each g € G.

A group action G ~ X is called free if for every x € X, the stabilizer of x in

G,
G:={g9€G:g(x) =1}

is {1}.

Given an action g : G ~ X, amap f: X — Y is called G-invariant if

f (g, @) = f(x), VgeG,zeX

Given two actions g : G ~» X and v : G ~ Y, amap f: X — Y is called

G—equivariant if

f(u(g,z) =v(g, f(z)), VgeG,xzeX.

In other words, for each g € G we have a commutative diagram,
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A topological group is a group G equipped with the structure of a topological
space, so that the group operations (multiplication and inversion) are continuous
maps. If G is a group without specified topology, we will always assume that G is
discrete, i.e., is given the discrete topology.

If G is a topological group and F is a topological space, a continuous action of
G on F is a continuous map u satisfying the above action axioms.

A topological group action p : G ~ X is called proper if for every compact
subsets K7, Ko C X, the set

GKl,Kz Z{QEG:Q(Kl)ﬂKz 75@} c@G

is compact. If G has discrete topology, a proper action is called properly discontin-
uous action, as Gk, k, is finite.

EXERCISE 3.2. Suppose that X is locally compact and G ~ X is proper. Show
that the quotient X/G is Hausdorff.

A topological action G ~ X is called cocompact if there exists a compact C' C X
so that
G-C:= U gC = X.
geG
EXERCISE 3.3. If G ~ X is cocompact then X/G (equipped with the quotient
topology) is compact.
The following is a converse to the above exercise:

LEMMA 3.4. Suppose that X is locally compact and G ~ X is such that X/G
is compact. Then G acts cocompactly on X.

PROOF. Let p : X — Y = X/G be the quotient. For every x € X choose a
relatively compact (open) neighborhood U, C X of x. Then the collection

{p(Uw)}J;EX

is an open covering of Y. Since Y is compact, this open covering has a finite
subcovering

{p(Uy, :i=1,...,n}

C:= CJ c(Uy,)
i=1

is compact in X and projects onto Y. Hence, G- C' = X. O

The union

In the context of non-proper metric space the concept of cocompact group
action is replaced with the one of cobounded action. An isometric action G ~ X is
called cobounded if there exists D < oo such that for some point x € X,

U 9(B(x,D)) = X.
geG
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Equivalently, given any pair of points xz,y € X, there exists ¢ € G such that
dist(g(z),y) < 2D. Clearly, if X is proper, the action G ~ X is cobounded if and
only if it is cocompact. We call a metric space X quasi-homogeneous if the action
Isom(X) ~ X is cobounded.

Similarly, we have to modify the notion of a properly discontinuous action: An
isometric action G ~ X on a metric space is called properly discontinuous if for
every bounded subset B C X, the set

Gpe={9€G:9(B)NB #0}

is finite. Assigning two different meaning to the same notation of course, creates
ambiguity, the way out of this conundrum is to think of the concept of proper
discontinuity applied to different categories of actions: Topological and isometric.
In the former case we use compact subsets, in the latter case we use bounded
subsets. For proper metric spaces, both definitions, of course, are equivalent.

3.1.2. Lie groups. References for this section are [Hel01, OV90, War83].

A Lie group is a group G which has structure of a smooth manifold, so that
the binary operation G x G — G and inversion g — ¢~ !,G — G are smooth.
Actually, every Lie group G can be made into a real analytic manifold with real
analytic group operations. We will assume that G is a real n-dimensional manifold,
although one can also consider complex Lie groups.

EXAMPLE 3.5. Groups GL(n,R), SL(n,R), O(n), O(p, q) are (real) Lie groups.
Every countable discrete group (a group with discrete topology) is a Lie group.

Here O(p, q) is the group of linear isometries of the quadratic form

2 2 2 2
Y+ Ty =Xy — T Ty

of signature (p,q). The most important, for us, case is O(n,1) = O(1,n). The
group PO(n,1) = O(n,1)/ £ I is the group of isometries of the hyperbolic n-space.

EXERCISE 3.6. Show that the group PO(n,1) embeds in O(n, 1) as the sub-
group stabilizing the future light cone

x%+...+zi—zi+1>0, Tpt1 > 0.

The tangent space V = T.G of a Lie group G at the identity element e € G
has structure of a Lie algebra, called the Lie algebra g of the group G.

ExaMPLE 3.7. 1. The Lie algebra sl(n,C) of SL(n,C) consists of trace-free
n X n complex matrices. The Lie bracket operation on sl(n,C) is given by

[A, B] = AB — BA.

2. The Lie algebra of the unitary subgroup U(n) < GL(n,C) equals the space
of skew-hermitian matrices

u(n) = {A € Mat,(C): A = —A*}.

3. The Lie algebra of the orthogonal subgroup O(n) < GL(n,R) equals the
space of skew-symmetric matrices

o(n) = {A € Mat,(R) : A= —AT}.

EXERCISE 3.8. u(n) @ iwu(n) = Mat,(C), is the Lie algebra of the group
GL(n,C).
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THEOREM 3.9. For every finite-dimensional real Lie algebra g there exists
unique, up to isomorphism, simply-connected Lie group G whose Lie algebra is
isomorphic to g.

Every Lie group G has a left-invariant Riemannian metric. Indeed, pick a
positive-definite inner product (-,-), on V = T.G. For every g € G we consider
the left multiplication L, : G — G, Ly(z) = gx. Then L, : G — G is a smooth
map and the action of G on itself via left multiplication is simply-transitive. We
define the inner product (-,-), on TyG as the image of (-,-), under the derivative
Dg:T.G — T4G.

Every Lie group G acts on itself via inner automorphisms
p(g)(x) = grg™*.
This action is smooth and the identity element e € G is fixed by the entire group G.
Therefore G acts linearly on the tangent space V' = T.G at the identity e € G. The
action of G on V is called the adjoint representation of the group G and denoted
by Ad. Therefore we have the homomorphism

Ad: G — GL(V).

LEMMA 3.10. For every connected Lie group G the kernel of Ad: G — GL(V)
is contained in the center of G.

PROOF. There is a local diffeomorphism
exp:V =G

called the exponential map of the group G, sending 0 € V to e € G. In the case
when G = GL(n,R) this map is the ordinary matrix exponential map. The map
exp satisfies the identity

gexp(v)g™" = exp(Ad(g)v), YveV,geG.

Thus, if Ad(g) = Id then g commutes with every element of G of the form
exp(v),v € V. The set of such elements is open in G. Now, if we are willing
to use a real analytic structure on G then it would immediately follow that g be-
longs to the center of G. Below is an alternative argument. Let g € Ker(Ad). The
centralizer Z(g) of g in G is given by the equation

Z(g) ={h e G:[h,g] =1}.

Since the commutator is a continuous map, Z(g) is a closed subgroup of G. More-
over, as we observed above, this subgroup has nonempty interior in G (containing
e). Since Z(g) acts transitively on itself by, say, left multiplication, Z(g) is open
in G. As G is connected, we conclude that Z(g) = G. Therefore kernel of Ad is
contained in the center of G. O

THEOREM 3.11 (E. Cartan). Ewvery closed subgroup H of a Lie group G has
structure of a Lie group so that the inclusion H — G is an embedding of smooth
manifolds.

A Lie group G is called simple if G contains no connected proper normal sub-
groups. Equivalently, a Lie group G is simple if its Lie algebra g is simple, i.e., g is
nonabelian and contains no ideals.
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EXAMPLE 3.12. The group SL(2,R) is simple, but its center is isomorphic to
Zs.

Thus, a simple Lie group need not be simple as an abstract group. A Lie group
G is semisimple if its Lie algebra splits as a direct sum

g= 69?:191.’

where each g; is a simple Lie algebra.
3.1.3. Haar measure and lattices.

DEFINITION 3.13. A (left) Haar measure on a topological group G is a countably
additive, nontrivial measure p on Borel subsets of G satisfying:

(1) u(gE) = u(E) for every g € G and every Borel subset E C G.
(2) p(K) is finite for every compact K C G.
(3) Every Borel subset E C G is outer regular:

w(E) =inf{u(U): E C U, U is open in G}
(4) Every open set E C G is inner regular:
w(E) =sup{u(U): U C E, U is open in G}

By Haar’s Theorem, see [Bou63], every locally compact topological group G
admits a Haar measure and this measure is unique up to scaling. Similarly, one
defines right-invariant Haar measures. In general, left and right Haar measures are
not the same, but they are for some important classes of groups:

DEFINITION 3.14. A locally compact group G is unimodular if left and right
Haar measures are constant multiples of each other.

Important examples of Haar measures come from Riemannian geometry. Let
X be a homogeneous Riemannian manifold, G is the isometry group. Then X has a
natural measure w defined by the volume form of the Riemannian metric on X. We
have the natural surjective map G — X given by the orbit map g — ¢(0), where
0 € X is a base-point. The fibers of this map are stabilizers G, of points z € X.
Arzela-Ascoli theorem implies that each subgroup G, is compact. Transitivity of
the action G ~ X implies that all the subgroups G, are conjugate. Setting K = G,,
we obtain the identification X = G/K. Now, let u be the pull-back of w under the
projection map G — X. By construction, p is left-invariant (since the metric on X
is G—invariant).

DEFINITION 3.15. Let G be a topological group with finitely many connected
components and g a Haar measure on GG. A lattice in G is a discrete subgroup
I’ < G so that the quotient @ = T'\G admits a finite G—invariant measure (for the
action to the right of G on @) induced by the Haar measure. A lattice I' is called
uniform if the quotient ) is compact.

If G is a Lie group then the measure above can also be obtained by taking a
Riemannian metric on G which is left-invariant under G and right-invariant under
K, the maximal compact subgroup of G. Note that when G is unimodular, the
volume form thus obtained is also right-invariant under G.

Thus if one considers the quotient X := G/K, then X has a Riemannian metric
which is (left) invariant under G. Hence, T is a lattice if and only if I' acts on X
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properly discontinuously so that vol(I"\ X) is finite. Note that the action of I on
X is a priori not free.

THEOREM 3.16. A locally compact second countable group G is unimodular
provided that it contains a lattice.

PROOF. For arbitrary g € G consider the push-forward v = Ry(u) of the (left)
Haar measure ;¢ on G here R, is the right multiplication by g:

v(E) = u(Eg).
Then v is also a left Haar measure on G. By the uniqueness of Haar measure,
v = cp for some constant ¢ > 0.

LEMMA 3.17. Every discrete subgroup I' < G admits a measurable fundamental
set, i.e., a measurable subset of D C G such that

U =G, p(DND)=0, ¥yel\L
~yel

PrOOF. Since I' < G is discrete, there exists an open neighborhood V of 1 € G
such that I'NV = {1}. Let U C V be another open neighborhood of 1 € G such
that UU~! C V. Then for v € T we have

ywu=v,uelUu ecU=>y=vuvtleclU=y=1.

In other words, I'-images of U are pairwise disjoint. Since G is a second countable,
there exists a countable subset

E={¢g€G:ieN}
so that
Clearly, each set

W, :=Ugn \ | JTUg:

<n
is measurable, and so is their union

D= G W,.
n=1

Let us verify that D is a measurable fundamental set. First, note that for every
x € G there exists the least n such that x € Ug,,. Therefore,

¢= (Ugn\ UUgZ).
n=1 i<n
Next,

D= G (FUg,L\ UFUgi> =

n=1 <n
r-\J (Ugn\UUgi> > U (Ugn\UUgl) =G.
n=1 <n n=1 <n
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Therefore, I' - D = G. Next, suppose that
reyDND.

Then, for some n, m
x €W, NyWy,.
If m < n then
YW CT | Ug;
i<n
which is disjoint from W,,, a contradiction. Thus, W,, N vW,,, = ) for m < n and
all y € I'. If n < m then

W Ny Wy =7~ (YW, N W) = 0.
Thus, n = m, which implies that
Ugn NYUGgn #D=>UN~AU £ =~v=1.
Thus, for all y € T'\ {1}, yDN D = 0. O
Let D C G be a measurable fundamental set for a lattice I' < G. Then
0 < u(D) = p(T\G) < o0

since I is a lattice. For every g € G, Dg is again a fundamental set for I' and, thus,
w(D) = p(Dg). Hence, u(D) = u(Dg) = cv(D). Tt follows that ¢ = 1. Thus, p is
also a right Haar measure. O

3.1.4. Geometric actions. Suppose now that X is a metric space. We
will equip the group of isometries Isom(X) of X with the compact-open topology,
equivalent to the topology of uniform convergence on compact sets. A subgroup
G C Isom(X) is called discrete if it is discrete with respect to the subset topology.

EXERCISE 3.18. Suppose that X is proper. Show that the following are equiv-
alent for a subgroup G C Isom(X):

a. (G is discrete.

b. The action G ~ X is properly discontinuous.

c. For every z € X and an infinite sequence g; € G, lim; o, d(z, g;(x)) = oc.

Hint: Use Arzela—Ascoli theorem.

DEFINITION 3.19. A geometric action of a group G on a metric space X is an
isometric properly discontinuous cobounded action G ~ X.

For instance, if X is a homogeneous Riemannian manifold with the isometry
group G and I" < (G is a uniform lattice, then I' acts geometrically on X. Note that
every geometric action on a proper metric space is cocompact.

LEMMA 3.20. Suppose that a group G acts geometrically on a proper metric
space X. Then G\X has a metric defined by

(3.1)  dist(a,b) = inf{dist(p, q) ; p € Ga, q € Gb} = inf{dist(a, q) ; ¢ € Gb},

where @ = Ga and b= Gb.
Moreover, this metric induces the quotient topology of G\X.
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PRrROOF. The infimum in (3.1) is attained, i.e. there exists g € G such that
dist(a, b) = dist(a, gb).
Indeed, take gg € G arbitrary, and let R = dist(a, gb). Then
dist(a,b) = inf{dist(a,q) ; ¢ € GbN B(a, R)}.
Now, for every gb € B(a, R),
995 ' B(a, R) N B(a, R) # 0.

Since G acts properly discontinuously on X, this implies that the set GbN B(a, R)
is finite, hence the last infimum is over a finite set, and it is attained. We leave it
to the reader to verify that dist is the Hausdorff distance between the orbits G - a
and G - b. Clearly the projection X — G\X is a contraction. One can easily check
that the topology induced by the metric dist on G\X coincides with the quotient
topology. [

3.2. Complexes and group actions

3.2.1. Simplicial complexes. As we expect the reader to be familiar with
basics of algebraic topology, we will discuss simplicial complexes and (in the next
section) cell complexes only very briefly.

We will use the notation X to denote the i-th skeleton of the simplicial
complex X. A gallery in an n-dimensional simplicial complex X is a chain of n-

simplices o1, ..., 0k so that 0; N o;+1 is an n — 1-simplex for every i = 1,...,k — 1.
Let o, 7 be simplices of dimensions m and n respectively with the vertex sets
o0 = {vo, .-y Um}, 70 = {wo, ..., wp}

The product o x 7, of course, is not a simplex (unless nm = 0), but it admits a
standard triangulation, whose vertex set is

0@ x 7O,

This triangulation is defined as follows. Pairs u;; = (v;, w;) are the vertices of o x 7.
Distinct vertices
(Wio,jos - - - > Wir )

span a k-simplex in o x 7 if and only if jo < ... < ji.

A homotopy between simplicial maps fy, f1 : X — Y is a simplicial map
F : X x I — Y which restricts to f; on X x {i},i = 0,1. The tracks of the
homotopy F' are the paths p(t) = F(x,t),z € X.

Let X be a simplicial complex. Recall that besides usual cohomology groups
H*(X;A) (with coefficients in a ring A that the reader can assume to be Z or
Zs), we also have cohomology with compact support Hf(X, A) which are defined
as follows. Consider the usual cochain complex C*(X; A). We say that a cochain
o € C*(X; A) has compact support if it vanishes outside of a finite subcomplex in
X. Thus, in each chain group C*(X; A) we have the subgroup C*(X; A) consisting
of compactly supported cochains. Then the usual coboundary operator § satisfies

§:CH(X; A) - CH(X; A).

The cohomology of the new cochain complex (C¥(X;A),d) is denoted HX(X; A)
and is called cohomology of X with compact support. Maps of simplicial complexes
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no longer induce homomorphisms of H*(X; A) since they do not preserve the com-
pact support property of cochains; however, proper maps of simplicial complexes
do induce natural maps on H}. Similarly, maps which are properly homotopic
induce equal homomorphisms of H} and proper homotopy equivalences induce iso-
morphisms of H}. In other words, H} satisfies the functoriality property of the
usual cohomology groups as long as we restrict to the category of proper maps.

3.2.2. Cell complexes. A cell complex (or CW complex) X is defined as the
increasing union of subspaces denoted X (or X"), called n-skeleta of X. The
0-skeleton X (9 of X is a set with discrete topology. Assume that X ("1 is defined.
Let

Un = ujeJD;L,
a (possibly empty) disjoint union of closed n-balls D. Suppose that for each D?
we have a continuous attaching map e; : 0D} — X =1 This defines a map e =
e" : U, — X1 and an equivalence relation z = y = e(z), z € U,y € X1,
We then declare X (™ to be the quotient space of X"~ || U,, with the quotient
topology with respect to the above equivalence relation. We will use the notation
D7 /e; the image of D™ in X", i.e., the quotient D}/ =. We then equip

X::UXn

neN

with the weak topology, where a subset C' C X is closed if and only if the intersection
of C' with each skeleton is closed (equivalently, intersection of C' with the image
of each D™ in X is closed). By abuse of terminology, both the balls D? and their
projections to X are called n-cells in X. Similarly, we will conflate X and its
underlying topological space.

EXERCISE 3.21. A subset K C X is compact if and only if is closed and
contained in a finite union of cells.

Regular and almost regular cell complexes. A cell complex X is said to
be regular if every attaching map e; is 1-1. For instance, every simplicial complex
is a regular cell complex. A regular cell complex is called triangular if every cell
is naturally isomorphic to a simplex. (Note that X itself need not be simplicial
since intersections of cells could be unions of simplices.) A cell complex X is almost
reqular if the boundary S"~! of every cell D7 is given structure of a regular cell
complex K; so that the attaching map e; is 1-1 on every cell in S"~!. Almost
regular 2-dimensional cell complexes (with a single vertex) appear naturally in the
context of group presentations, see Definition 4.79.

Barycentric subdivision of an almost regular cell complex. Our goal
is to (canonically) subdivide an almost regular cell complex X so that the result is
a triangular regular cell complex X’ =Y where every cell is a simplex. We define
Y as an increasing union of regular subcomplexes Y;, (where Y,, C Y (™) but, in
general, is smaller).

First, set Yy := X(©). Suppose that ¥;,_; € Y(*~1) is defined, so that |Y,,_,| =
X (=1 " Consider attaching maps ej 1 0D} — X =1 We take the preimage of
the regular cell complex structure of ¥,,_; under e; to be a refinement L; of the
regular cell complex structure K; on S"~'. We then define a regular cell complex
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M; on D} by conning off every cell in L; from the origin o € D7. Then cells in M;
are the cones Cone,, (s), where s’s are cells in Lj;.

o

subdivide

FIGURE 3.1. Barycentric subdivision of a 2-cell.

Since, by the induction assumption, every cell in Y,,_; is a simplex, its preimage
s in 8"~ ! is also a simplex, this Cone,(s) is a simplex as well. We then attach
each cell D7 to Y, by the original attaching map e;. It is clear that the new
cells Cone,, (s) are embedded in Y;, and each is naturally isomorphic to a simplex.

Lastly, we set
Y = U Y,,.

Second barycentric subdivision. Note that the complex X’ constructed
above may not be a simplicial complex. The problem is that if x,y are distinct
vertices of Lj, their images under the attaching map e; could be the same (a point
z). Thus the edges [0}, ], [0;,y] in Y, 41 will intersect in the set {o;, z}. However,
if the complex X was regular, this problem does not arise and X’ is a simplicial
complex. Thus in order to promote X to a simplicial complex (whose geometric
realization is homeomorphic to | X|), we take the second barycentric subdivision X"
of X: Since X’ is a regular cell complex, the complex X" is naturally isomorphic
to a simplicial complex.

G-cell complexes. Let X be a cell complex and G be a group. We say that
X is a G-cell complex (or that we have a cellular action G ~ X) if G acts on X by
homeomorphisms and for every n we have a G-action G ~ U, so that the attaching
map e” is G-equivariant.

DEFINITION 3.22. A cellular action G ~ X is said to be without inversions if
whenever g € G preserves a cell s in X, it fixes this cell pointwise.

An action G ~ X on a simplicial complex is called simplicial if it sends simplices
to simplices and is linear on each simplex.

Assuming that X is naturally isomorphic to a simplicial complex and G ~ X
is without inversions, without loss of generality we may assume that G ~ X is
linear on every simplex in X.

The following is immediate from the definition of X", since barycentric subdi-
visions are canonical:
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LEMMA 3.23. Let X be an almost reqular cell complex and G ~ X be an action
without inversions. Then G ~ X induces a simplicial action without inversions
G X".

LEMMA 3.24. Let X be a simplicial complex and G ~ X be a free simplicial
action. Then this action is properly discontinuous on X (in the weak topology).

PRrROOF. Let K be a compact in X. Then K is contained in a finite union of
simplices 01, ...,0% in X. Let F C G be the subset consisting of elements g € G so
that gK N K # @. Then, assuming that F is infinite, it contains distinct elements
g, h such that g(o) = h(o) for some o € {01,...,0,}. Then f := h~lg(o) = 0.
Since the action G ~ X is linear on each simplex, f fixes a point in o. This
contradicts the assumption that the action of G on X is free. O

3.2.3. Borel construction. Recall that every group G admits a classifying
space E(G), which is a contractible cell complex admitting a free cellular action
G ~ E(G). The space E(G) is far from being unique, we will use the one obtained
by Milnor’s Construction, see for instance [Hat02, Section 1.B]. A benefit of this
construction is that E(G) is a simplicial complex and the construction of G ~ E(G)
is canonical. Simplices in E(G) are ordered tuples of elements of g: [go, ..., gn] is an
n-simplex with the obvious inclusions. To verify contractibility of E = E(G), note
that each i + 1-skeleton E*t! contains the cone over the i-skeleton E?, consisting
of simplices of the form

[17907' s 7gn]7907~ <s9n € G.
(The point [1,...,1] € E*! is the tip of this cone.) Therefore, the straight-line

homotopy to [1,...,1] gives the required contraction.
The group G acts on E(G) by the left multiplication

9% (90, 9n] = 990, -, 99n]

Clearly, this action is free and, moreover, each simplex has trivial stabilizer. The
action G ~ E(G) has two obvious properties that we will be using:

1. If G is finite then each skeleton F(G) is compact.

2. If G; < G5 then there exists an equivariant embedding F(G1) — E(G2).

We will use only these properties and not the actual construction of E(G) and
the action G ~ E(G).

Suppose now that X is a cell complex and G ~ X is a cellular action without
inversions. Our next goal is to replace X with a new cell complex X which admits
a homotopy-equivalence p : X — X so that the action G ~ X lifts (via p) to
a free cellular action G ~ X. The construction of G ~ X is called the Borel
Construction. We first explain the construction in the case when X is a simplicial
complex since the idea is much clearer in this case.

For each simplex o0 € X consider its (pointwise) stabilizer G, < G. Clearly, if
o1 C 09 then

Gy < Gy
For each simplex o define )?g :=0 X E(G,). The group G, acts naturally on )?,,.
Whenever o1 C Supp(o2) we have the natural embedding E(G,,) < E(G,,) and
hence embeddings

Xy, =01 X B(Ggy) D 01 X B(Gyy) C Xy,
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Henceforth, we glue )?02 to )A(gl by identifying the two copies of the product sub-
complex 01 X E(G,,). Let X denote the regular cell complex resulting from these
identifications.

For general cell complexes we have to modify the above construction. Define
the support Supp(o) of an n-cell o in X to be the smallest subcomplex in X whose
underlying space contains the image of S”~! under the attaching map of o. Since
G acts on X without inversions, for every o1 C Supp(os),

Go, < Go,

where G, is the stabilizer of o in G. As before, for each n-dimensional cell ¢ define
)?U := D™ x F(G,). The group G, acts on )?g preserving the product structure
and fixing D™ pointwise. Whenever oy C Supp(cz) we have the natural embedding
E(Gy,) — E(G,,) and hence embeddings

)?01 =01 X E(G,,) D 01 x E(G4,) C Supp(o2) x E(Gy,).

At the same time, we have the attaching map e,, : 9D™ — Supp(cz) and, thus the
attaching map

€oy = €gy X Id : OD™ x E(G,,) — Supp(o2) X E(G,,)

Here n is the dimension of the cell o5. We now define X by induction on skeleta of
X. We begin with X, obtained by replacing each 0-cell o in X with X,. Assume
that Xn 1 is constructed by glulng spaces XT, where 7’s are cells in X~ For
each n-cell o the attaching map ¢, defined above will yield an attaching map

OD™ x E(Gy) = Xp_1.

We then glue the spaces )/(\], to )/(\'n_l via these attaching maps. We have a natural
projection p : X — X which corresponds to the projection

X, = D" x E(G,) — D"

for each n-cell o in X. Since each D™ is contractible, it follows that p restricts to
a homotopy-equivalence

X, = X

for every n. Naturality of the construction ensures that the action G ~ X lifts to
an action G X it is clear from the construction that for each cell o, the stablhzer
of X, in G is G,. Since G, acts freely on E(G,), it follows that the action G ~ X
is free. Suppose now that G ~ X is properly discontinuous. Then, G, is finite
for each ¢ and, thus )A(g has finite i-skeleton for each i. Moreover, if X/G were
compact, then the action of G on each i-skeleton of X is compact as well.

The construction of the complex X and the action G ~ X is called the Borel
construction. One application of the Borel construction is the following

LEMMA 3.25. Suppose that G ~ X is a cocompact properly discontinuous ac-
tion. Then there exists a properly discontinuous, cellular, free action G ~ X which
is cocompact on each skeleton and so that X is homotopy-equivalent to X.
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3.2.4. Groups of finite type. If G is a group admitting a free properly
discontinuous cocompact action on a graph I'; then G is finitely generated, as, by the
covering theory, G = 71 (I'/G) /p.(m1(T")), where p : I' — I'/G is the covering map.
Groups of finite type F,, are higher-dimensional generalizations of this example.

DEFINITION 3.26. A group G is said to have type F,,, 1 < n < oo, if it admits

a free properly discontinuous cellular action on an n — 1-connected n-dimensional
cell complex Y, which is cocompact on each skeleton.

Note that we allow the complex Y to be infinite-dimensional.
EXERCISE 3.27. A group G is finitely-presented if and only if it has type F.
In view of Lemma 3.25, we obtain:

COROLLARY 3.28. A group G has type F,, if and only if it admits a properly
discontinuous cocompact cellular action on an n — 1-connected n-dimensional cell
complex X, which is cocompact on each skeleton.

PROOF. One direction is obvious. Suppose, therefore, that we have an action
G ~ X as above. We apply Borel construction to this action and obtain a free
properly discontinuous action G ~ X which is cocompact on each skeleton of X.
Ifn=o00, weletY := X. Otherwise, we let Y denote the n-skeleton of X. Recall
that the inclusion Y < X induces monomorphisms of all homotopy groups ;,
j <n—1. Since X is n — 1-connected, the same holds for X and hence Y. O

COROLLARY 3.29. FEwery finite group has type F

PROOF. Start with the action of G on a complex X which is a point and then
apply the above corollary. ([l

3.3. Subgroups

Given two subgroups H, K in a group G we denote by HK the subset
{hk; he H ke K} CG.

Recall that a normal subgroup K in G is a subgroup such that for every g € G,
gKg~! = K (equivalently gK = Kg). We use the notation K <1 G to denote that
K is a normal subgroup in G. When either H or K is a normal subgroup, the set
HK defined above becomes a subgroup of G.

A subgroup K of a group G is called characteristic if for every automorphism
¢: G — G, ¢(K) = K. Note that every characteristic subgroup is normal (since
conjugation is an automorphism). But not every normal subgroup is characteristic.

EXAMPLE 3.30. Let G be the group (Z2,+). Since G is abelian, every subgroup
is normal. But, for instance, the subgroup Z x {0} is not invariant under the
automorphism ¢ : Z2 — Z2 | ¢(m,n) = (n,m).

DEFINITION 3.31. A subnormal descending seriesindexsubnormal descending
series in a group G is a series

G=No>Ni>--->N,>---
such that N;y; is a normal subgroup in N; for every i > 0.
If all N; are normal subgroups of G then the series is called normal.

A subnormal series of a group is called a refinement of another subnormal series
if the terms of the latter series all occur as terms in the former series.
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The following is a basic result in group theory:

LEMMA 3.32. If G is a group, N < G, and A <« B < G, then BN/AN s
isomorphic to B/A(BNN).

DEFINITION 3.33. Two subnormal series
G=Ay>A1>...>A,={1} and G=By> B >...> B,, = {1}

are called isomorphic if n = m and there exists a bijection between the sets of
partial quotients {A; /4,11 |i=1,...,n—1}and {B;/B;y1|i=1,...,n— 1} such
that the corresponding quotients are isomorphic.

LEMMA 3.34. Any two finite subnormal series
G=Hy>H,>...>H,={1} and G=Ko> K, >...> K, = {1}
possess isomorphic refinements.
PRrROOF. Define H;; = (K; N H;)H; 1. The following is a subnormal series
Hyoy=H; >Hy >...2 Hyy = Hiy 1.

When inserting all these in the series of H; one obtains the required refinement.
Likewise, define K, = (Hs; N K, )K, 1 and by inserting the series

Ko=K.2Kn2...2 Ky =K,

in the series of K., we define its refinement.
According to Lemma 3.32

Hij/Hijpr = (KO Hi) Higy /(K VHy) Hiy ~ KO H; /(K O H ) (KGN Higq) .
Similarly, one proves that Kji/Kji+1 ~ KJ n Hz/(K]+1 n HZ)(Kj N Hi+1). O

DEFINITION 3.35. The center Z(G) of a group G is defined as the subgroup
consisting of elements h € G so that [h,g] =1 for each g € G.

It is easy to see that the center is a characteristic subgroup of G.

DEFINITION 3.36. A group G is a torsion group if all its elements have finite
order.

A group G is said to be without torsion (or torsion-free) if all its non-trivial
elements have infinite order.

Note that the subset TorG = {g € G | g of finite order} of the group G,

sometimes called the torsion of G, is in general not a subgroup.

DEFINITION 3.37. A group G is said to have property * wirtually if a finite
index subgroup H of G has the property *.
The following properties of finite index subgroups will be useful.

LEMMA 3.38. If N < H and H <« G, N of finite index in H and H finitely
generated, then N contains a finite index subgroup K which is normal in G.
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PROOF. By hypothesis, the quotient group F' = H/N is finite. For an arbitrary
g € G the conjugation by g is an automorphism of H, hence H/gNg~! is isomorphic
to F. A homomorphism H — F' is completely determined by the images in F' of
elements of a finite generating set of H. Therefore there are finitely many such
homomorphisms, and finitely many possible kernels of them. Thus, the set of
subgroups gNg~!, g € G, forms a finite list N, Ny,.., N,. The subgroup K =
Nyeg9Ng~' = NN Ny N---N Nj is normal in G and has finite index in N, since
each of the subgroups Ny, ..., Ni has finite index in H. O

PROPOSITION 3.39. Let G be a finitely generated group. Then:
(1) For every n € N there exist finitely many subgroups of index n in G.

(2) Every finite index subgroup H in G contains a subgroup K which is finite
index and characteristic in G.

PRrROOF. (1) Let H < G be a subgroup of index n. We list the left cosets of H:
H:gl 'H792'H,...,gn'H,

and label these cosets by the numbers {1,...,n}. The action by left multiplication
of G on the set of left cosets of H defines a homomorphism ¢ : G — S, such that
¢(G) acts transitively on {1,2,...,n} and H is the inverse image under ¢ of the
stabilizer of 1 in S,. Note that there are (n — 1)! ways of labeling the left cosets,
each defining a different homomorphism with these properties.

Conversely, if ¢ : G — S, is such that ¢(G) acts transitively on {1,2,...,n}
then G/¢~1(Stab (1)) has cardinality n.

Since the group G is finitely generated, a homomorphism ¢ : G — S, is deter-
mined by the image of a generating finite set of GG, hence there are finitely many
distinct such homomorphisms. The number of subgroups of index n in H is equal
to the number 7,, of homomorphisms ¢ : G — S,, such that ¢(G) acts transitively
on {1,2,...,n}, divided by (n — 1)L

(2) Let H be a subgroup of index n. For every automorphism ¢ : G — G,
©(H) is a subgroup of index n. According to (1) the set {@(H) | ¢ € Aut (G)} is
finite, equal {H, Hy, ..., Hy}. It follows that

K = ﬂ ©H)=HNH N...NHy.
peAut (G)

Then K is a characteristic subgroup of finite index in H hence in G. O

Let S be a subset in a group G, and let H < G be a subgroup. The following
are equivalent:

(1) H is the smallest subgroup of G containing S ;

(2) H=sca,<cCrs
(3) H= {8182~'-Sn; n€N,s; € Sor 3;1 € S for every i € {1,2,...,71}}.
The subgroup H satisfying any of the above is denoted H = (S) and is said
to be generated by S. The subset S C H is called a generating set of H. The
elements in S are called generators of H.
When S consists of a single element x, (S) is usually written as (x); it is the
cyclic subgroup consisting of powers of x.
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We say that a normal subgroup K < G is normally generated by a set R C K
if K is the smallest normal subgroup of G which contains R, i.e.

K= (] N.
RCNG
We will use the notation
K = ((R))
for this subgroup.

3.4. Equivalence relations between groups

DEFINITION 3.40. (1) Two groups G and G5 are called co-embeddable if
there exist injective group homomorphisms G; — G2 and Go — G;.

(2) The groups G and Ga are commensurable if there exist finite index sub-
groups H; < G;, ¢ = 1,2, such that H; is isomorphic to Hs.

An isomorphism ¢ : Hy — Hs is called an abstract commensurator of Gy
and Gs.

(3) We say that two groups G1 and G are virtually isomorphic (abbreviated
as VI) if there exist finite index subgroups H; C G; and finite normal
subgroups F; < H;, i = 1,2, so that the quotients Hy/F; and Hs/F» are
isomorphic.

An isomorphism ¢ : Hy/Fy — Hy/F; is called a virtual isomorphism of
G1 and G2. When Gy = G, ¢ is called virtual automorphism.

ExAMPLE 3.41. All countable free groups are co-embeddable. However, a free
group of infinite rank is not virtually isomorphic to a free group of infinite rank.

PROPOSITION 3.42. All the relations in Definition 3.40 are equivalence relation
between groups.

PRrROOF. The fact that weak commensurability is an equivalence relation is
immediate. It suffices to prove that virtual isomorphism is am equivalence relation.
The only non-obvious property is transitivity. We need

LEMMA 3.43. Let Fy, F5 be normal finite subgroups of a group G. Then their
normal closure F = ((Fy, F3)) (i.e., the smallest normal subgroup of G containing
Fy and Fy) is again finite.

PRrOOF. Let f1 : G — G1 = G/F1, fo : G1 — G1/f1(F») be the quotient maps.
Since the kernel of each f1, fo is finite, it follows that the kernel of f = fy 0 f7 is
finite as well. On the other hand, the kernel of f is clearly the subgroup F. O

Suppose now that G is VI to G2 and G5 is VI to G3. Then we have
F,<H; <G, |G;: Hi| <o0,|F;| <00, i=1,2,3,
and
F)<H) < Go,|Gs : H)| < 00, |Fj| < 00,
so that
Hy/F\ = Hy/F>, Hy/F; = H3/F;.
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The subgroup HY := Hy N H} has finite index in G3. By the above lemma, the
normal closure in HY

Ky = <<F2 n Hg,FQI n H£/>>
is finite. We have quotient maps
fi : Hé’ — Cz = fz(Hé/) < HZ/FZ,’L = 1,3,

with finite kernels and cokernels. The subgroups F; := f;(K3), are finite and normal
in C;, i =1,3. We let H/, F/ C H; denote the preimages of C; and E; under the
quotient maps H; — H;/F;, i = 1,3. Then |F/| < o0,|G; : H]| < oc0,i = 1,3.
Lastly,

H!/F = C;/E; 2 HY /|Ks,i=1,3.
Therefore, G1, G35 are virtually isomorphic. O

Given a group G, we define VI(G) as the set of equivalence classes of virtual
automorphisms of G with respect to the following equivalence relation. Two virtual
automorphisms of G, ¢ : Hi/Fy — Hy/F5 and ¢ : H{/F| — H}/F}, are equivalent
if for ¢ = 1, 2, there exist fli, a finite index subgroup of H; N H/, and f‘i, a normal
subgroup in ffz containing the intersections ﬁi N F; and ﬁi N F!, such that ¢ and
1 induce the same automorphism from H 1 /ﬁl to PNIQ / ﬁg.

Lemma 3.43 implies that the composition induces a binary operation on VI(G),
and that VI(G) with this operation becomes a group, called the group of virtual
automorphisms of G.

Let Comm(G) be the set of equivalence classes of abstract commensurators
of G with respect to an equivalence relation defined as above, with the normal
subgroups F; and F] trivial. As in the case of VI(G), the set Comm(G), endowed
with the binary operation defined by the composition, becomes a group, called the
abstract commensurator of the group G.

Let ' be a subgroup of a group G. The commensurator of I in G, denoted by
Commg(T), is the set of elements g in G such that the conjugation by g defines an

abstract commensurator of I': gI'g~! NT has finite index in both I" and gI'g~!.

EXERCISE 3.44. Show that Commg(T") is a subgroup of G.

EXERCISE 3.45. Show that for G = SL(n,R) and I" = SL(n,Z), Commg(T)
contains SL(n, Q).

3.5. Residual finiteness

Even though, studying infinite groups is our primary focus, questions in group
theory can be, sometimes, reduced to questions about finite groups. Residual finite-
ness is the concept that (sometimes) allows such reduction.

DEFINITION 3.46. A group G is said to be residually finite if
(G ={1},
iel
where {G; : i € I} is the set of all finite-index subgroups in G.

Clearly, subgroups of residually finite groups are also residually finite. In con-
trast, if G is an infinite simple group, then G cannot be residually-finite.
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LEMMA 3.47. A finitely generated group G is residually finite if and only if for
every g € G\ {1}, there exists a finite group ® and a homomorphism ¢ : G — ®,

so that ¢(g) # 1.

PROOF. Suppose that G is residually finite. Then, for every g € G \ {1} there
exists a finite-index subgroup G; < G so that g ¢ G;. Since G is finitely generated,
it contains a normal subgroup of finite index N; < G, so that N; < G;. Indeed, we

can take
N;:= ()G}
res

where S is a finite generating set of G and G¥ denotes the subgroup G;z~1. Then
N, is invariant under all inner automorphisms of G and, hence, is normal in G.
Clearly, g ¢ N; and |G : N;| < co. Now, setting ® := G/N;, we obtain the required
homomorphism ¢ : G — ®.

Conversely, suppose that for every g # 1 we have a homomorphism ¢, : G —
®,, where ®,, is a finite group, so that ¢, (g) # 1. Setting N, := Ker(py,), we get

ﬂ Ny = {1}.
geG

The above intersection, of course, contains the intersection of all finite index sub-
groups in G. (]

EXAMPLE 3.48. The group G = GL(n,Z) is residually finite. Indeed, we take
subgroups G, < G, G, = Ker(py), ¢, : G = GL(n,7Z,)). If g € G is a nontrivial
element, we consider its nonzero off-diagonal entry g;; # 0. Then g;; # 0 mod p,
whenever p > |g;;|. Thus, ¢,(g) # 1 and G is residually finite.

COROLLARY 3.49. Free group of rank 2 Fy is residually finite. Every free group
of (at most) countable rank is residually finite.

ProoF. We will see in Example 4.38 that F» embeds in SL(2,7Z). Furthermore,
every free group of (at most) countable rank embeds in F;. Now, the assertion
follows from the above example. O

The simple argument for GL(n,Z) is a model for a proof of a harder theorem:

THEOREM 3.50 (A. 1. Mal’cev [Mal40]). Let G be a finitely generated subgroup
of GL(n, R), where R is a commutative ring with unity. Then G is residually finite.

Mal’cev’s theorem is complemented by the following result, known as Selberg
Lemma [Sel60]:

THEOREM 3.51 (Selberg Lemma). Let G be a finitely generated subgroup of
GL(n,F), where F is a field of characteristic zero. Then G contains a torsion-free
subgroup of finite index.

We refer the reader to [Rat94, §7.5] and [Nic| for the proofs. Note that Selberg
Lemma fails for fields of positive characteristic, see e.g. [Nic].

3.6. Commutators, commutator subgroup
DEFINITION 3.52. The commutator of two elements h,k in a group G is
[h, k] = hkh~ k1.
Note that:
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e two elements h, k commute (i.e., hk = kh) if and only if [h, k] = 1.
o hk = [h, klkh;
Thus, the commutator [h, k] ‘measures de degree of non-commutativity’ of the
elements h and k. In Lemma 10.25 we will prove some further properties of com-
mutators.

Let H, K be two subgroups of G. We denote by [H, K] the subgroup of G
generated by all commutators [h, k] with h € H, k € K.

DEFINITION 3.53. The commutator subgroup (or derived subgroup) of G is the
subgroup G’ = [G, G]. As above, we may say that the commutator subgroup G’ of
G ‘measures the degree of non-commutativity’ of the group G.

A group G is abelian if every two elements of G commute, i.e., ab = ba for all
a,beqG.

EXERCISE 3.54. Suppose that S is a generating set of G. Then G is abelian if
and only if [a,b] =1 for all a,b € S.

PROPOSITION 3.55. (1) G’ is a characteristic subgroup of G;
(2) G is abelian if and only if G' = {1};
(3) Gup = G/G" is an abelian group (called the abelianization of G );

(4) if ¢ : G — A is a homomorphism to an abelian group A, then ¢ factors
through the abelianization: Given the quotient map p : G — Ggp, there
exists a homomorphism @ : Gap — A such that ¢ = @ o p.

PRrROOF. (1) The set S = {[z,y] | =,y € G} is a generating set of G’ and for
every automorphism ¢ : G — G, ¢¥(S) = S.

(2) follows from the equivalence zy = yx < [z,y] = 1, and (3) is an immediate
consequence of (2).

(4) follows from the fact that ¢(S) = {1}. O

Recall that the finite dihedral group of order 2n, denoted by Da,, or Is(n), is
the group of symmetries of the regular Euclidean n-gon, i.e. the group of isometries
of the unit circle S* C C generated by the rotation 7(z) = e+ z and the reflection
s(z) = z. Likewise, the infinite dihedral group D is the group of isometries of Z
(with the metric induced from R); the group Dy, is generated by the translation
t(z) = 2 4+ 1 and the symmetry s(z) = —z.

EXERCISE 3.56. Find the commutator subgroup and the abelianization for the
finite dihedral group Ds,, and for the infinite dihedral group D.

EXERCISE 3.57. Let S,, (the symmetric group on n symbols) be the group of
permutations of the set {1,2,...,n}, and A, C S, be the alternating subgroup,
consisting of even permutations.

(1) Prove that for every n & {2,4} the group A, is generated by the set of
cycles of length 3.
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(2) Prove that if n > 3, then for every cycle o of length 3 there exists p € S,
such that 02 = pop~!.

(3) Use (1) and (2) to find the commutator subgroup and the abelianization
for A,, and for S,,.

(4) Find the commutator subgroup and the abelianization for the group H of
permutations of Z defined in Example 4.7.

Note that it is not necessarily true that the commutator subgroup G’ of G
consists entirely of commutators {[z,y] : z,y € G} (see [Vav] for some finite group
examples). However, occasionally, every element of the derived subgroup is indeed
a single commutator. For instance, every element of the alternating group 4,, < S,
is the commutator in S, see [Ore51].

This leads to an interesting invariant (of geometric flavor) called the commu-
tator norm (or commutator length) £.(g) of g € G', which is the least number & so
that g can be expressed as a product

g= [1’171}1] T [‘rkaykL

as well as the stable commutator norm of g:

(g™
lim sup M
n—00 n

See [Bav91l, Cal08] for further details. For instance, if G is the free group on
two generators (see Definition 4.16), then every nontrivial element of G’ has stable
commutator norm greater than 1.
3.7. Semi-direct products and short exact sequences

Let G;,i € I, be a collection of groups. The direct product of these groups,

denoted
¢=]]¢:
icl
is the Cartesian product of sets G; with the group operation given by
(ai) - (bi) = (aib;).

Note that each group G; is the quotient of G by the (normal) subgroup

I ¢

JeN{i}
A group G is said to spit as a direct product of its normal subgroups N; <
G,i=1,...,k, if one of the following equivalent statements holds:
e G=N;j---Niand N, N N; = {1} for all i # j;
e for every element g of G there exists a unique k-tuple (nq,...,ng),n; €

N;,i=1,...,k such that g =nqy---ng.
Then, G is isomorphic to the direct product Ny X ... X Ni. Thus, finite direct
products G can be defined either extrinsically, using groups N; as quotients of G,
or intrinsically, using normal subgroups N; of G.

Similarly, one defines semidirect products of two groups, by taking the above
intrinsic definition and relaxing the normality assumption:
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DEFINITION 3.58. (1) (with the ambient group as given data) A group G
is said to split as a semidirect product of two subgroups N and H, which
is denoted by G = N x H if and only if N is a normal subgroup of G, H
is a subgroup of G, and one of the following equivalent statements holds:
e G=NH and NNH ={1}
e G=HN and NNH ={1};
e for every element g of G there exists a unique n € N and h € H such

that g = nh;
e for every element g of G there exists a unique n € N and h € H such
that g = hn;

there exists a retraction G — H, i.e., a homomorphism which re-
stricts to the identity on H, and whose kernel is V.

Observe that the map ¢ : H — Aut (N) defined by ¢(h)(n) = hnh™1,
is a group homomorphism.

(2) (with the quotient groups as given data) Given any two groups N and H
(not necessarily subgroups of the same group) and a group homomorphism
¢ : H— Aut (N), one can define a new group G = N X, H which is a
semidirect product of a copy of N and a copy of H in the above sense,
defined as follows. As a set, N x, H is defined as the cartesian product
N x H. The binary operation * on G is defined by

(nl,hl) * (ng,hg) = (’l’thp(hl)(nQ),hlhg), an,ng € N and hl,hz cH.

The group G = N %, H is called the semidirect product of N and H
with respect to .

REMARKS 3.59. (1) If a group G is the semidirect product of a normal
subgroup N with a subgroup H in the sense of (1) then G is isomorphic
to N X, H defined as in (2), where

o(h)(n) = hnh™*.

(2) The group N X, H defined in (2) is a semidirect product of the normal
subgroup Ny = N x {1} and the subgroup H = {1} x H in the sense of
(1)

(3) If both N and H are normal subgroups in (1) then G is a direct product
of N and H.

If ¢ is the trivial homomorphism, sending every element of H to the
identity automorphism of IV, then N x4 H is the direct product N x H.

Here is yet another way to define semidirect products. An ezact sequence is a

sequence of groups and group homomorphisms

Pn—1
G TS Gy P Gy

such that Imy,_1 = Kery, for every n. A short exact sequence is an exact
sequence of the form:

(3.2) 1 —N-56-5H— {1},

In other words, ¢ is an isomorphism from N to a normal subgroup N’ <1 G and
descends to an isomorphism G/N' ~ H.
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DEFINITION 3.60. A short exact sequence splits if there exists a homomorphism
o : H — G (called a section) such that

Yoo =Id.
When the sequence splits we shall sometimes write it as
1-N->G3H-1.

Then, every split exact sequence determines a decomposition of GG as the semidirect
product ¢(N) x o(H). Conversely, every semidirect product decomposition G =
N x H defines a split exact sequence, where ¢ is the identity embedding and
1 : G — H is the retraction.

ExAMPLES 3.61. (1) The dihedral group Dy, is isomorphic to Z,, x, Zs,

where o(1)(k) =n — k.

(2) The infinite dihedral group D is isomorphic to Z x, Zs, where ¢(1)(k)
—k.

(3) The permutation group S, is the semidirect product of A, and Zs =
{id, (12)}.

(4) The group (Afi(R), o) of affine maps f : R — R, f(z) = ax + b, with
a € R* and b € R is a semidirect product R x, R*, where ¢(a)(z) = ax.

PROPOSITION 3.62. (1) Ewery isometry ¢ of R™ is of the form ¢(x) =
Az + b, where b € R™ and A € O(n).

(2) The group Isom(R™) splits as the semidirect product R™ x O(n), with the
obvious action of the orthogonal O(n) on R™.

Sketch of proof of (1).  For every vector a € R™ we denote by T, the translation
of vector a, z +— = + a.

If $(0) = b then the isometry 9 = T_; o ¢ fixes the origin 0. Thus it suffices to
prove that an isometry fixing the origin is a linear map in O(n). Indeed:

e an isometry of R™ preserves straight lines, because these are bi-infinite
geodesics;

e an isometry is a homogeneous map, i.e. ¥(Av) = Ap(v); this is due to the
fact that (for 0 < A < 1) w = Av is the unique point in R™ satisfying

d(0,w) + d(w,v) = d(0,v).
e an isometry map is an additive map, i.e. ¥(a +b) = ¥(a) + 1(b) because
an isometry preserves parallelograms.

Thus, 1 is a linear transformation of R", ¢ (z) = Ax for some matrix A. Or-
thogonality of the matrix A follows from the fact that the image of an orthonormal
basis under v is again an orthonormal basis. O

EXERCISE 3.63. Prove statement (2) of Proposition 3.62. Note that R™ is
identified to the group of translations of the n-dimensional affine space via the map
b— Tb.

In sections 3.11 and 3.12 we discuss semidirect products and short exact se-
quences in more detail.
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3.8. Direct sums and wreath products

Let X be a non-empty set, and let G = {G, | z € X} be a collection of groups
indexed by X. Consider the set of maps Mapy(X,G) with finite support, i.e.,

Maps(X,6) :={f: X = | | Ga; f(z) € Gx, f(2) # 1q,

zeX
for only finitely many = € X}.

DEFINITION 3.64. The direct sum @, y G, is defined as Mapy (X, G), endowed
with the pointwise multiplication of functions:

(f-9) (@) = f(z)-g(z), Vo c X.

Clearly, if A, are abelian groups then @,y A, is abelian.
When G, = G is the same group for all x € X, the direct sum is the set of
maps

Mapy(X,G) :={f: X = G| f(z) # 1¢ for only finitely many « € X} ,
and we denote it either by @, G or by G®¥.

If, in this latter case, the set X is itself a group H, then there is a natural
action of H on the direct sum, defined by

¢: H— Aut <@ G) L o(h) f(x) = f(h 'z), Vo e H.

heH

Thus, we define the semi-direct product

(@)1

heH

DEFINITION 3.65. The semidirect product (,,c;; G) x, H is called the wreath
product of G with H, and it is denoted by G H. The wreath product G = Zs 1 Z
is called the lamplighter group.

3.9. Group cohomology

The purpose of this section is to introduce cohomology of groups and to give
explicit formulae for cocycles and coboundaries in small degrees. We refer the
reader to [Bro82b, Chapter III, Section 1] for the more thorough discussion.

Let G be a group and let M, N be left G-modules; then Homg(M,N) de-
notes the subspace of G-invariants in the G-module Hom(M, N), where G acts on
homomorphisms u : M — N by the formula:

(gu)(m) = g -u(g™'m).
If Cy is a chain complex and A is a G-module, then Homg(Cy, A) is the chain
complex formed by subspaces Homg(Ck, A) in Hom(Cy, A). The standard chain
complex C, = C,(Q) of G with coefficients in A is defined as follows:
Cv(G) = Z® Hf:o G, is the G-module freely generated by (k + 1)-tuples
(90, - - -, gx) of elements of G with the G-action given by
9-(90s---,91) = (990, - -+ 9)-
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The reader should think of each tuple as spanning a k-simplex. The boundary
operator on this chain complex is the natural one:
k

6k(90; s 7gk) = Z(_l)z(g(h oo mgiv o 'gk)7
i=0
where ¢; means that we omit this entry in the tuple. Then C, = C.(G) is the
simplicial chain complex of the simplicial complex defining the Milnor’s classifying
space EG of the group G (see Section 3.2.3). The dual cochain complex C* is
defined by:

C* = Hom(Ck, A),  6c(£)((90,---+9k+1)) = F(Ok+1(g0s - - -, grt1)), f € CF.

Suppose for a moment that A is a trivial G-module. Then, for BG = (EG)/G,
the simplicial cochain complex C*(BG, A) is naturally isomorphic to the subcom-
plex of G-invariant cochains in C*(G, A), i.e., the subcomplex (C*(G,A))% =
Homg(Cy, A). If A is a nontrivial G-module then the Homg(C,, A) is still isomor-
phic to a certain natural cochain complex based on the simplicial complex C,(BG)
(cochain complex with twisted coefficients, or coefficients in a certain sheaf), but
the definition is more involved and we will omit it.

DEFINITION 3.66. The cohomology groups of G with coefficients in the G-
module A are defined as H*(G, A) := H.(Homg(Cyx, A)). In other words,

H*(G, A) = Ker(6,)/Im(6x_1), H'(G,A) = Z'(G,A)/B"(G, A).
In particular, if A is a trivial G-module, then H*(G, A) = H*(BG, A).

So far, all definitions looked very natural. Our next step is to reduce the
number of variables in the definition of cochains by one using the fact that cochains
in Homg(Cy, A) are G-invariant. The drawback of this reduction, as we will see,
will be lack of naturality, but the advantage will be new formulae for cohomology
groups which are useful in some applications.

By G-invariance, for f € Homg(Cy, A) we have:

f(gov"'agk) :gO'f(17gO_191a'~'agO_1.gk)

In other words, it suffices to restrict cochains to the set of (k + 1)-tuples where the
first entry is 1 € G. Every such tuple has the form

(1,91,9192, -, 91 Gk)

(we will see below why). The latter is commonly denoted

[91]92] - - - gx]-

Note that computing the value of the coboundary,

Ok—1f(1,91,9192,-- - 91 9r) = Op—1f([g1]92] - - - [gx])

we get

or—1f(1, 91,9192, .-, 91 gr) =
flor o gvge) = f(L 0192, g1 gi) + (1,91, 919293, - 91 gk) — .. =
91-f(L,92, - 92+ gr) — f(l9192l93] - - - g]) + f (911929594l - - - 1g]) — .. =
g1+ f(lg2l - - gr]) — f(l9r921gsl - - -19k]) + f(lg1]g293lgal - - |gk]) — -
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Thus,
Oe—1f([g1lg2l .. lgr]) = g1 - f([g2] - |gx]) — f(lg192l93| .. |gr])+

f(lg119293]9al - - - |gx]) —

Then, we let C* (k > 1) denote the abelian group of functions f sending k-tuples
[g1] - - - |gr] of elements of G to elements of A; we equip these groups with the above
coboundary homomorphisms d;. For k = 0, we have to use the empty symbol [ ],
f([]) = a € A, so that such functions f are identified with elements of A. Thus,
Cy = A and the above formula for §; reads as:

do:a—cq, callg]) =9 -a—a.

The resulting chain complex (C,,d,) is called the inhomogeneous bar complex of G
with coefficients in A. We now compute the coboundary maps d; for this complex
for small values of k:

(1) do:aw fo, fallg]) =9g-a—a.
(2) 01(f)([91.92]) = g1 - f([92]) — f(l9192]) + f([92])-
(3) 02(f)([g11g92195]) = g1 - f(lg2l93)) — f(l9192195]) + f([g1lg295]) — f([g1]g2])-
Therefore, spaces of coboundaries and cocycles for (C., 6,) in small degrees are
(we now drop the bar notation for simplicity):

(1) BHG,A) ={fa: G = AVa€ Alfalg) =g a—a}.

(2) ZHG.A) = {f : G = Alf(g192) = Flon) + 91 - Flon)}-

(3) BZ(G A) ={h:GxG = A3f: G = A h(g1,92) = f(g1) — flg192) +

f(g2)}-
(4) Z2(G A) ={f : GxG = Alg1- f(g2.95) — f91,92) = f(9192,93) —
f(91,9293)}-
Let us look at the definition of Z!(G, A) more closely. In addition to the left

action of G on A, we define a trivial right action of G on A: a-g = a. Then a
function f: G — A is a 1-cocycle if and only if

f(g192) = f(g1) - 92+ 91 - f(g2)-

The reader will immediately recognize here the Leibnitz formula for the derivative
of the product. Hence, 1-cocycles f € Z'(G, A) are called derivations of G with
values in A. The 1-coboundaries are called principal derivations. If A is trivial as
a left G-module, then, of course, all principal derivations are zero and derivations
are just homomorphisms G — A.

Nonabelian derivations. The notions of derivation and principal derivation
can be extended to the case when the target group is nonabelian; we will use the
notation N for the target group with the binary operation * and g -n for the action
of G on N by automorphisms, i.e.,

g-n=e(g)(n), where¢:G — Aut(N) is a homomorphism.
DEFINITION 3.67. A function d : G — N is called a derivation if
d(g192) = d(g1) x g1 - d(g2), V91,92 € G.
A derivation is called principal if it is of the form d = d,,, where
dn(g) =n""%(g-n).
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The space of derivations is denoted Der(G, N) and the subspace of principal deriva-
tions is denoted Prin(G, N) or, simply, P(G,N).

EXERCISE 3.68. Verify that every principal derivation is indeed a derivation.

EXERCISE 3.69. Verify that every derivation d satisfies
e d(1)=1;

o dlg™\) =g [d(g)] "

We will use derivations in the context of free solvable groups in Section 11.2.
In section (§3.11) we will discuss derivations in the context of semidirect products,
while in §3.12 we explain how 2nd cohomology group H?(G, A) can be used to
describe central co-extensions.

Nonabelian cohomology. We would like to define the 1-st cohomology
HY(G, N), where the group N is nonabelian and we have an action of G on N.
The problem is that neither Der(G, N) nor Prin(G, N) is a group, so taking quo-
tient Der(G, N)/Prin(G, N) makes no sense. Nevertheless, we can think of the
formula

[ f+da,a€A,
in the abelian case (defining action of Prin(G, A) on Der(G, A)) as the left action
of the group A on Der(G, A):

a(f)=1f, flg)=-a+flg)+(g-a)
The latter generalizes in the nonabelian case, the group N acts to the left on
Der(G, N) by
n(f)=f. flg)=n""xflg)x(g-n).
Then, one defines H(G, N) as the quotient
N\Der(G,N).

EXAMPLE 3.70. 1. Suppose that G-action on N is trivial. Then Der(G,N) =
Hom(G,N) and N acts on homomorphisms f : G — N by postcomposition with
inner automorphisms. Thus, H!(G, N) in this case is

N\Hom(G, N),

the set of conjugacy classes of homomorphisms G — N.

2. Suppose that G = Z = (1) and the action ¢ of Z on N is arbitrary. We
have 7 := ¢(1) € Aut(N). Then H'(G, N) is the set of twisted conjugacy classes
of elements of N: Two elements my, mo € N are said to be in the same n-twisted
conjugacy class if there exists n € N so that

my =n"t xmy *n(n).

Indeed, every derivation d € Der(Z, N) is determined by the image m = d(1) € N.
Then two derivations d; so that m; = d;(1) (¢ = 1,2) are in the same N-orbit if
m1,my are in the same 7-twisted conjugacy class.
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3.10. Ring derivations

Our next goal is to extend the notion of derivation in the context of (noncom-
mutative) rings. Typical rings that the reader should have in mind are integer group
Tings.

Group rings. The (integer) group ring ZG of a group G is the set of formal
sums » geG Mg 95 where mg are integers which are equal to zero for all but finitely
many values of g. Then Z(G is a ring when endowed with the two operations:

e addition:

ngg—l—ang: Z(mg+n9)g

geG geG geqG

e multiplication defined by the convolution of maps to Z, that is

Zmaa+2nbb: Z Z manp | G-

aceG beG geG \ab=g

According to a Theorem of G. Higman [Hig40], every group ring is an integral
domain. Both Z and G embed as subsets of ZG by identifying every m € Z with
mlg and every g € G with 1g. Every homomorphism between groups ¢ : G — H
induces a homomorphism between group rings, which by abuse of notation we shall
denote also by ¢. In particular, the trivial homomorphism o : G — {1} induces a
retraction o : ZG — Z, called the augmentation. If the homomorphism ¢ : G — H
is an isomorphism then so is the homomorphism between group rings. This implies
that an action of a group G on another group H (by automorphisms) extends to
an action of G on the group ring ZH (by automorphisms).

Let L be aring and M be an abelian group. We say that M is a (left) L-module
if we are given a map

(lym)—L-m,Lx M — M,
which is additive in both variables and so that
(33) (fl *fg) -m = 61 . (fg . m),

where * denotes the multiplication operation in L.
Similarly, the ring M is the right L-module if we are given an additive in both
variables map

(m,0) »m -, M x L — M,
so that
(34) m(fl *ég) = (mél)ég
Lastly, M is an L-bimodule if M has structure of both left and right L-module.

DEFINITION 3.71. Let M be an L-bimodule. A derivation (with respect to this
bimodule structure) is a map d : L — M so that:

(1) d(ly + &3) = d(€1) + d(¢2),
(2) d(gl *fg) = d(gl) Ay + 11 d(ﬁg)

The space of derivations is an abelian group, which will be denoted Der(L, M).
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Below is the key example of a bimodule that we will be using in the context
of derivations. Let G, H be groups, ¢ : G — Bij(H) is an action of G on H by
set-theoretic automorphisms. We let L := ZG, M := ZH, where we regard the ring
M as an abelian group and ignore its multiplicative structure.

Every action ¢ : G ~ H determines the left L-module structure on M by:

(Z aigi) ! (Z bzhz) = Zaibigi . hi, a; € Z,bj € Z,
i J 4,J

where g - h = ¢(g)(h) for g € G,h € H. We define the structure of right L-module
on M by:

(m,£) = mo(£) = o({)m, o(f)€Z

where o : L — 7Z is the augmentation of ZG = L.
Derivations with respect for the above group ring bimodules will be called group
ring derivations.

EXERCISE 3.72. Verify the following properties of group ring derivations:
(Py) d(1g) = 0, whence d(m) = 0 for every m € Z;

(P2) dlg~') =—g " -d(g);

(Ps) d(g1--gm) = 32721 (91 - gi—1) - d(gi)o(git1 - gm) -

(Py) Every derivation d € Der(ZG,ZH) is uniquely determined by its values d(z)
on generators x of G.

Fox Calculus. We now consider the special case when G = H = Fyx, is
the free group on the generating set X. In this context, theory of derivations was
developed in [Fox53].

LEMMA 3.73. Every map d: X — M = ZG extends to a group ring derivation
d € Der(ZG,M).

ProOOF. We set
diz™) = -zt -d(z), VreX
and d(1) = 0. We then extend d inductively to the free group G by
d(yu) = d(y) +y - d(u),

where y = 2 € X or y = 2! and yu is a reduced word in the alphabet X U X 1.
We then extend d by additivity to the rest of the ring L = ZG. In order to verify
that d is a derivation, we need to check only that

d(uv) = d(u) + u - d(v),

where u,v € Fx. The verification is a straightforward induction on the length of
the reduced word u and is left to the reader. ([l

NoTaTION 3.74. To each generator z; € X we associate a derivation 0;, called
Foz derivative, defined by 0;x; = d;; € Z C ZG. In particular,

iz ) = —a;t.
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PROPOSITION 3.75. Suppose that G = F,. is free group of rank r < oo. Then
every derivation d € Der(ZG,ZG) can be written as a sum

d= Z k;0;, where k; =d(x;) €7Z.

i=1
Furthermore, Der(ZG,ZQG) is a free abelian group with the basis 0;,i =1,...,r.

PROOF. The first assertion immediately follows from Exercise 3.72 (part (Py)),
and from the fact that both sides of the equation evaluated on z; equal k;. Thus,
the derivations 0;,7 = 1,...,k generate Der(ZG,ZG). Independence of these gen-
erators follows from 0;x; = §;;. [l

3.11. Derivations and split extensions
Components of homomorphisms to semidirect products.

DEFINITION 3.76. Let G and L be two groups and let N, H be subgroups in G.

(1) Assume that G = N x H. Every group homomorphism F : L — G
splits as a product of two homomorphisms F = (f, f2), f1 : L = N and
fo: L — H, called the components of F.

(2) Assume now that G is a semidirect product N x H. Then every homo-
morphism F : L — G is determines (and is determined by) a pair (d, f),
where

e f: L — H is a homomorphism (the composition of F' and the re-
traction G — H);

e amap d =dr : L — N, called derivation associated with F. The
derivation d is determined by the formula

F(€) = d(0) f(£).
EXERCISE 3.77. Show that d is indeed a derivation.

EXERCISE 3.78. Verify that for every derivation d and a homomorphism f :
L — H there exists a homomorphism F': L — G with the components d, f.

Extensions and co-extensions.
DEFINITION 3.79. Given a short exact sequence
{1} — N —-G—H — {1},
we call the group G an extension of N by H or a co-extension of H by N.

Given two classes of groups A and B, the groups that can be obtained as
extensions of N by H with N € A and H € B, are called A-by-B groups (e.g.
abelian-by-finite, nilpotent-by-free etc.).

Two extensions defined by the short exact sequences
(1} — N 25 G 2 7 — (1)
(i =1,2) are equivalent if there exist isomorphisms
fii: N1 = Noy fo:Gy— Ga, f3:Hy — Hy
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that determine a commutative diagram:

1 > N1 Gl H1 > 1
f1 f2 f3
1 > N2 G2 H2 > 1

We now use the notion of isomorphism of exact sequences to reinterpret the
notion of split extension.

PROPOSITION 3.80. Consider a short exact sequence
(3.5) I-N5G5Q—1.

The following are equivalent:

(1) the sequence splits;

(2) there exists a subgroup H in G such that the projection w restricted to H
becomes an isomorphism.

(3) the extension G is equivalent to an extension corresponding to a semidirect
product N X Q;

(4) there exists a subgroup H in G such G = N x H.

PRrROOF. It is clear that (2) = (1).

(1) = (2): Leto:Q — o(H) C G be a section. The equality 7o o = idg
implies that 7 restricted to H is both surjective and injective.

The implication (2) = (3) is obvious.

(3) = (2):  Assume that there exists H such that 7|y is an isomorphism.
The fact that it is surjective implies that G = NH. The fact that it is injective
implies that H N N = {1}.

(2) = (4):  Since 7 restricted to H is surjective, it follows that for every
g € G there exists h € H such that 7(g) = 7(h), hence gh=* € Kerm = Im .

Assume that g € G can be written as g = t(nq)h; = t(n2)ho, with ny,ns € N
and hq, he € H. Then w(hy) = w(hy), which, by the hypothesis that 7 restricted to
H is an isomorphism, implies h; = hgo, whence ¢(n;) = ¢(n2) and ny = ns by the
injectivity of ¢.

(4) = (2):  The existence of the decomposition for every g € G implies that
m restricted to H is surjective.

The uniqueness of the decomposition implies that H N Im¢ = {1}, whence 7
restricted to H is injective. O

REMARK 3.81. Every sequence with free nonabelian group @ splits: Construct
a section o : Q — G by sending each free generator z; of @) to an element Z; € G
so that 7(Z;) = ;. In particular, every group which admits an epimorphism to a
free nonabelian group F', also contains a subgroup isomorphic to F'.

EXAMPLES 3.82. (1) The short exact sequence
1— 2Z)" — 2" — 725 — 1

does not split.
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(2) Let F,, be a free group of rank n (see Definition 4.16) and let F) be its
commutator subgroup (see Definition 3.53). Note that the abelianization
of F,, as defined in Proposition 3.55, (3), is Z™. The short exact sequence

1—F —F,—7Z"—1

does not split.

From now on, we restrict to the case of exact sequences
(3.6) 15A5G5Q—1,

where A is an abelian group. Recall that the set of derivations Der(Q, A) has
natural structure of an abelian group.

REMARKS 3.83. (1) The short exact sequence (3.6) uniquely defines an
action of @ in A. Indeed G acts on A by conjugation and, since the kernel
of this action contains A, it defines an action of Q on A. In what follows
we shall denote this action by (¢,a) — ¢-a, and by ¢ the homomorphism
Q@ — Aut(A) defined by this action.

(2) If the short exact sequence (3.6) splits, the group G is isomorphic to
Ax,Q.

Classification of splittings.

Below we discuss classification of all splittings of short exact sequences (3.6)
which do split. We use the additive notation for the binary operation on A. We
begin with few observations. From now on, we fix a section oy and, hence, a
semidirect product decomposition G = A x Q). Note that every splitting of a short
exact sequence (3.6), is determined by a section ¢ : Q — G. Furthermore, every
section o : @ — G is determined by its components (d,,7) with respect to the
semidirect product decomposition given by og (see Remark 3.76). Since 7 is fixed,
a section o is uniquely determined by its derivation d,. Conversely, every derivation
d € Der(Q, A) determines a section o, so that d = d,. Thus, the set of sections of
(3.6) is in bijective correspondence with the abelian group of derivations Der(Q, A).

Our next goal is to discuss the equivalence relation between different sections
(and derivations). We say that an automorphism a € Aut(G) is a shearing (with
respect to the semidirect product decomposition G = Ax Q) if «(A) = A, a|]A = Id
and « projects to the identity on ). Examples of shearing automorphisms are
principal shearing automorphisms, which are given by conjugations by elements
a € A. Tt is clear that shearing automorphisms act on splittings of the short exact
sequence (3.6).

EXERCISE 3.84. The group of shearing automorphisms of G is isomorphic to the
abelian group Der(Q, A): Every derivation d € Der(Q, A) determines a shearing
automorphism a = a4 of G by the formula

alaxq) = (a+d(q)*q
which gives the bijective correspondence.

In view of this exercise, the classification of splittings modulo shearing auto-
morphisms yields a very boring answer: All sections are equivalent under the group
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of shearing transformations. A finer classification of splittings is given by the fol-
lowing definition. We say that two splittings o1, 09 are A-conjugate if they differ
by a principal shearing automorphism:

02(61) = aal(q)a_17vQ S Q7

where a € A. If dy, dy are the derivations corresponding to the sections oy, 09, then

(d2(9), ) = (a,1)(d1(q),q)(—a,1) & da(q) = di(q) — [¢-a—a].
In other words, di, ds differ by the principal derivation corresponding to a € A.
Thus, we proved the following

PROPOSITION 3.85. A-conjugacy classes of splittings of the short exact sequence
(3.6) are in bijective correspondence with the quotient

Der(Q, A)/Prin(Q, A),

where Prin(Q, A) is the subgroup of principal derivations.

Note that Der(Q,A) = Z1(Q, A), Prin(Q,A) = B(Q, A) and the quotient
Der(Q, A)/Prin(Q, A) is HY(Q, A), the first cohomology group of Q with coeffi-
cients in the ZQ—-module A.

Below is another application of H'(Q, A). Let L be a group and F : L — G =
A % @ be a homomorphism. The group G, of course, acts on the homomorphisms
F' by postcomposition with inner automorphisms. Two homomorphisms are said to
be conjugate if they belong to the same orbit of this G-action.

LEMMA 3.86. 1. A homomorphism F : L — G is conjugate to a homomorphism
with the image in Q if and only if the derivation dr of F is principal.

2. Furthermore, suppose that F; : L — G are homomorphisms with components
(di,m),i = 1,2. Then Fy and Fy are A-conjugate if and only if [di] = [d2] €
HY(L,A).

PROOF. Let ¢ = qa € G,a € A,q € Q. If (qa)F({)(qa)~' € Q, then
aF(f)a=! € Q. Thus, for (1) it suffices to consider A-conjugation of homomor-
phisms F': L — G. Hence, (2) = (1). To prove (2) we note that the composition
of F' with an inner automorphism defined by a € A has the derivation equal to
dp — dg, where d, is the principal derivation determined by a. O

3.12. Central co-extensions and 2-nd cohomology

We restrict ourselves to the case of central co-extensions (a similar result holds
for general extensions with abelian kernels, see e.g. [Bro82b]). In this case, A is
trivial as a G-module and, hence, H*(G, A) = H*(K(G,1), A). This cohomology
group can be also computed as H*(Y, A), where G = 7, (Y) and Y is k+ 1-connected
cell complex.

Let G be a group and A an abelian group. A central co-extension of G by A is
a short exact sequence

12450561
where ¢(A) is contained in the center of G. Choose a set-theoretic section s : G —
G,s(1) = 1,705 = Id. Then, the group G is be identified (as a set) with the direct
product A x G. With this identification, the group operation on G has the form

(avg) : (b?h) = (a+b+f(gah)’gh)7
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where f(1,1) = 0 € A. Here the function f: G x G — A measures the failure of s
to be a homomorphism:

-1
fg,h) = s(g)s(h) (s(gh)) .
Not every function f: G x G — A corresponds to a central extension: A function
f gives rise to a central co-extension if and only if it satisfies the cocycle identity:

flg.h) + f(gh, k) = f(h,k) + f(g, hk).
In other words, the set of such functions is the abelian group of cocycles Z2(G, A),
see §3.9. We will refer to f simply as a cocycle.
Two central co-extensions are said to be equivalent if there exist an isomorphism
7 making the following diagram commutative:

1 - A ye -G > 1
id T id
1 - A > Gy > G > 1

For instance, a co-extension is trivial, meaning equivalent to the product A x G,
if and only if the central co-extension splits. We will use the notation E(G, A) to
denote the set of equivalence classes of co-extensions. In the language of cocycles,
r1 ~ ro if and only if

Ji— f2 =dc,
where ¢: G — A, and
dc(g, h) = c(g) + c(h) — c(gh)
is the coboundary, ¢ € B?(G, A). Recall that H*(G, A) = Z*(G,A)/B*(G, A) is
the 2-nd cohomology group of G with coefficients in A.

The set E(G, A) has natural structure of an abelian group, where the sum of

two co-extensions
A= G 5 G
is defined by

Gs = {(g1,92) € G1 x Ga|r1(g1) = r2(92)} — G,

r(g1,92) = r1(91) = r2(g2). The kernel of this co-extension is the subgroup A
embedded diagonally in G X Gs. In the language of cocycles f: G x G — A, the
sum of co-extensions corresponds to the sum of cocycles and the trivial element is
represented by the cocycle f = 0.

To summarize:

THEOREM 3.87 (See Chapter IV in [Bro82b|.). There exists an isomorphism
of abelian groups
H?*(K(G,1),A) =2 H*(G,A) — E(G, A).
Co-extensions and group presentations. Below we describe the isomor-
phism in Theorem 3.87 in terms of generators and relators, which will require
familiarity with some of the material in Chapter 4.

Start with a presentation (X|R) of the group G and let Y2 denote the corre-
sponding presentation complex (see Definition 4.80). Embed Y2 in a 3-connected
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cell complex Y by attaching appropriate 3-cells to Y2. Then H?(Y, A) = H?(G, A).
Each cohomology class [(] € H?(G, A) is realized by a cocycle ¢ € Z2(Y, A), which
will assigns elements of A to each 2-cell in Y. The 2-cells ¢; of Y are indexed by the
defining relators R;,i € I, of G. By abusing the notation, we set ((R;) := ((¢;), so
that ¢(R; ) = —((¢;). Given such ¢, define the group G' = G¢ by the presentation

G = <X = XUAja,z] = 1,Ya € AVz € X; Ri(C(R)) " =1,i € I>.

In particular, if w is a word in the alphabet X', which is a product of conjugates of
the relators R:;,t]— = +1, then

(3.7) we | Dotilles) | =1

in G.

Clearly, we have the epimorphism 7 : G — G which sends every a € A C X to
1 € G. We need to identify the kernel r. We have a homomorphism ¢ : A — G,
defined by a — a € A C X,a € A. Furthermore, t(A) is a central subgroup of G,
hence, Ker(r) = 1(A), since the homomorphism 7 amounts to dividing G by A.

We next show that ¢ is injective. Let Y denote the presentation complex Y
for G; the homomorphism r : G — G is induced by the map F : Y — Y which
collapses each loop corresponding to a € A to the vertex of Y and sends 2-cells
corresponding to the relators [z, a],z € X, to the base-point in Y. So far we did
not use the assumption that ¢ is a cocycle, i.e., that ((0) = 0 whenever o is the
boundary o a 3-cycle in Y. Suppose that ¢(a) =1 € G,a € A. Then the loop «
in Y corresponding to a bounds a 2-disk 6 in Y. The image of this disk under f
is a spherical 2-cycle ¢ in Y since F' is constant on «. The spherical cycle o is
null-homologous since Y is 2-connected, o = 9¢, £ € C3(Y, A). Since ( is a cocycle,
0 = ¢(0¢) = ((o). Thus, equation (3.7), implies that a = ((¢) = 0 in A. This
means that ¢ is injective.

Suppose the cocycle ¢ is a coboundary, ¢ = dn, where n € C1(Y1, A), ie., n
yields a homomorphism 7' : G — A, n/(x;) = aj. We then define a map s: G — G
by s(xx) = zrar. Then relations R; = ((R;) imply that s(R;) = 1 in G, so the
co-extension defined by ( splits and, hence, is trivial.

We, thus, have a map from H?(Y, A) to the set E(G, A).

If, ¢ € Z2(Y, A) maps to a trivial co-extension G — G of G by A, this means
that we have a section s : G — G. Then, for every generator z;, € X of the group G,
we have s(xy,) = zray, for some aj, € A. Thus, we define a 1-cochain € C1(Y'!, A)
by n(zx) = ay, where we identify xj, with a 1-cell in Y'!. Then the same arguments
as above, run in the reverse, imply that ¢ = dn and, hence [(] = 0 € H?(Y, A).

ExaMPLE 3.88. Let G be the fundamental group of a genus p > 1 closed
oriented surface S. Take the standard presentation of G, so that S is the (aspherical)
presentation complex. Let A = Z and take [(] € H*(G,Z) = H*(S,Z) be the class
Poincaré dual to the fundamental class of S. Then for the unique 2-cell ¢ in S
corresponding to the relator

R= [alabl] T [ap7bp]7
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we have ((¢) = —1 € Z. The corresponding group G has the presentation
<CL1, bl, <oy Qp, bp,t‘ [al, bﬂ ce [ap, bp}t, [ai, t], [bi,t],i = 1, N ,p> .

The conclusion, thus, is that a group GG with nontrivial 2-nd cohomology group
H?(G, A) admits nontrivial central co-extensions with the kernel A. How does one
construct groups with nontrivial H2(G, A)? Suppose that G admits an aspherical
presentation complex Y so that x(G) = x(Y) > 2. Then for A = Z, we have

X(G)=1-=b1(Y) +b2(Y) 2 2= bo(Y) > 0.

The universal coefficients theorem then shows that if A is an abelian group which
admits an epimorphism to Z, then H%(G, A) # 0 provided that x(Y) > 2 as before.
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CHAPTER 4

Finitely generated and finitely presented groups

4.1. Finitely generated groups
A group which has a finite generating set is called finitely generated.

REMARK 4.1. In French, the terminology for finitely generated groups is groupe
de type fini. On the other hand, in English, group of finite type is a much stronger
requirement than finite generation (typically, this means that the group has type
Fo).

EXERCISE 4.2. Show that every finitely generated group is countable.

EXAMPLES 4.3. (1) The group (Z,+) is finitely generated by both {1}
and {—1}. Also, any set {p, q} of coprime integers generates Z.
(2) The group (Q,+) is not finitely generated.

EXERCISE 4.4. Prove that the transposition (12) and the cycle (12...n) gen-
erate the permutation group S,.

REMARKS 4.5. (1) Every quotient G of a finitely generated group G is
finitely generated; we can take as generators of G the images of the gen-
erators of G.

(2) If N is a normal subgroup of G, and both N and G/N are finitely gen-
erated, then G is finitely generated. Indeed, take a finite generating set
{n1,..,n} for N, and a finite generating set {g1 N, ..g N} for G/N. Then

{gin; : 1<i<m}1<j<k}}

is a finite generating set for G.

REMARK 4.6. If N is a normal subgroup in a group G and G is finitely gener-
ated, it does not necessarily follow that N is finitely generated (not even if G is a
semidirect product of N and G/N).

EXAMPLE 4.7. Let H be the group of permutations of Z generated by the
transposition ¢ = (01) and the translation map s(i) = i+ 1. Let H; be the group of
permutations of Z supported on [—i,4] = {—i,—i+1,...,0,1,...,i— 1,i}, and let
H,, be the group of finitely supported permutations of Z (i.e. the group of bijections
fZ — Z such that f is the identity outside a finite subset of Z),

o0
H,=|JH.
=0

Then H, is a normal subgroup in H and H/H,, ~ Z, while H,, is not finitely
generated.
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Indeed from the relation s¥ts=% = (kk+1), k € Z, it immediately follows that
H,, is a subgroup in H. It is likewise easy to see that s*H;s~* C H;,;, whence
s*H,s~* c H, for every k € 7.

If g1,..., gk is a finite set generating H,,, then there exists an ¢ € N so that all
g;’s are in H;, hence H,, = H;. On the other hand, clearly, H; is a proper subgroup
of H,,.

EXERCISE 4.8. 1. Let F be a non-abelian free group (see Definition 4.16). Let
¢ : F — Z be any non-trivial homomorphism. Prove that the kernel of ¢ is not
finitely generated.

2. Let F be a free group of finite rank with free generators zi,...,z,; set
G := F x F. Then G has the generating set

{(xia 1)7 (L‘rj) i1 < Zv] < TL}
Define homomorphism ¢ : G — Z sending every generator of G to 1 € Z. Show that
the kernel K of ¢ is finitely generated. Hint: Use the elements (z;, x;l), (xix;17 1),
(1,1}1‘1‘;1), 1 <i,j < n, of the subgroup K.
We will see later that a finite index subgroup of a finitely generated group is

finitely generated (Lemma 4.75 or Theorem 5.29).

Below we describe a finite generating set for the group GL(n,Z). In the proof
we use elementary matrices N; j = I, + E; ; (i # j); here I,, is the identity n x n
matrix and the matrix Fj; ; has a unique non-zero entry 1 in the intersection of the
i—th row and the j—th column.

PROPOSITION 4.9. The group GL(n,Z) is generated by

0 0 0o ... O 1 0 1 0 0 0
1 0 o ... 0 0 1 0 0 0 0
0 1 o ... 0 O 0 0 1 0 0
S1 = S2 =
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1
1 1 0 0 0 -1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 O 0 0 1 0 0
S3 = S4 =
0 0 o ... 1 0 0 0 o ... 1 0
0 0 o ... O 1 0 0 o ... O 1

PROOF. Step 1. The permutation group S, acts (effectively) on Z™ by per-
muting the basis vectors; we, thus, obtain a monomorphism ¢ : S, - GL(n,Z),
so that ¢(12...n) = s1, ¢(12) = so. Consider now the corresponding action of
S, on n X n matrices. Multiplication of a matrix by s; on the left permutes rows
cyclically, multiplication to the right does the same with columns. Multiplication
by s3 on the left swaps the first two rows, multiplication to the right does the same
with columns. Therefore, by multiplying an elementary matrix A by appropriate
products of sq, sfl and sy on the left and on the right, we obtain the matrix s3. In
view of Exercise 4.4, the permutation (12...n) and the transposition (12) gener-
ate the permutation group S,,. Thus, every elementary matrix N;; is a product of
31,31_1732 and s3.
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Let d; denote the diagonal matrix with the diagonal entries (1,...,1,—-1,1,...1),
where —1 occurs in j-th place. Thus, d; = s4. The same argument as above, shows
that for every d; and s = (1j) € Sy, sd;js = dy. Thus, all diagonal matrices d;
belong to the subgroup generated by s1,s2 and s4.

Step 2. Now, let g be an arbitrary element in GL(n,Z). Let a1, ..., a, be the
entries of the first column of g. We will prove that there exists an element p in
(s1, ..., 84) C GL(n,Z), such that pg has the entries 1,0, ...,0 in its first column.
We argue by induction on k = Ci(g) = |a1|+ - -+ |a,|. Note that k > 1. If k =1,
then (ai1,...,a,) is a permutation of (£1,0,...,0); hence, it suffices to take p in
(s1, s2,54) permuting the rows so as to obtain 1,0,...,0 in the first column.

Assume that the statement is true for all integers 1 < i < k; we will prove
it for k. After to permuting rows and multiplying by di = s4 and ds, we may
assume that a; > az > 0. Then N;2dag has the following entries in the first
column: a; —ag, —as,as, . .. a,. Therefore, Cy (N1,2d2g) < Ci(g). By the induction
assumption, there exists an element p of (s1, ..., s4) such that pN; 2dag has the
entries of its first column equal to 1,0, ...,0. This proves the claim.

Step 8. We leave it to the reader to check that for every pair of matrices
A,B € GL(n — 1,R) and row vectors L = (I1,...,l,—1) and M = (mq,...,Mp_1)

(o 5) (o %)=(o"i5")

Therefore, the set of matrices

1 L ne
{(O A);AEGL(n—l,Z),LEZ 1}

is a subgroup of G L(n,Z) isomorphic to Z"~! x GL(n —1,Z).

Using this, an induction on n and Step 2, one shows that there exists an element
p in (s1,...,84) such that pg is upper triangular and with entries on the diagonal
equal to 1. It, therefore, suffices to prove that every integer upper triangular matrix
as above is in (s1,...54). This can be done for instance by repeating the argument
in Step 2 with multiplications on the right. ([

The wreath product (see Definition 3.65) is a useful construction of a finitely
generated group from two finitely generated groups:

EXERCISE 4.10. Let G and H be groups, and S and X be their respective
generating sets. Prove that G H is generated by
{(fs>1H) ‘ s € S} U {(fl,l’) | S X}v

where fs: H — G is defined by fs(1g) = s, fs(h) =1g, Vh # 1g.
In particular, if G and H are finitely generated then so is G! H .

EXERCISE 4.11. Let G be a finitely generated group and let S be an infinite
set of generators of G. Show that there exists a finite subset F' of S so that G is
generated by F'.

EXERCISE 4.12. An element g of the group G is a non-generator if for every
generating set S of G, the complement S\ {g} is still a generating set of G.
(a) Prove that the set of non-generators forms a subgroup of G. This subgroup
is called the Frattini subgroup.
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(b) Compute the Frattini subgroup of (Z, +).

(¢) Compute the Frattini subgroup of (Z",+). (Hint: You may use the fact
that Aut(Z") is GL(n,Z), and that the GL(n, Z)-orbit of e; is the set of
vectors (ki,...,k,) in Z™ such that ged(ky, ..., kn) = 1.)

DEFINITION 4.13. A group G is said to have bounded generation property (or
is boundedly generated) if there exists a finite subset {t1,...,t,m} C G such that
every g € G can be written as g = t]fltgz oo thm where ki, ka, ... ky, are integers.

m

Clearly, all finitely generated abelian groups have the bounded generation prop-
erty, and so are all the finite groups. On the other hand, the nonabelian free f
groups, which we will introduce in the next section, obviously, do not have the
bounded generation property. For other examples of boundedly generated groups
see Proposition 11.3.

4.2. Free groups

Let X be a set. Its elements are called letters or symbols. We define the set
of inverse letters (or inverse symbols) X1 = {a™! | a € X}. We will think of
X U X! as an alphabet.

A word in X U X~ is a finite (possibly empty) string of letters in X U X1
i.e. an expression of the form

€1 €2

€k
a; a;; a;

where a; € X,¢; = £1; here 2! = z for every € X. We will use the notation 1 for
the empty word (the one which has no letters).
Denote by X* the set of words in the alphabet X U X!, where the empty

word, denoted by 1, is included. For instance,
alagaflagagal e X"

The length of a word w is the number of letters in this word. The length of the
empty word is 0.

A word w € X* is reduced if it contains no pair of consecutive letters of the
L or a~'a. The reduction of a word w € X* is the deletion of all pairs of

Lor a=la.

form aa™
consecutive letters of the form aa™

For instance,

1, agal,alagafl
are reduced, while
agalaflag

is not reduced.

More generally, a word w is cyclically reduced if it is reduced and, in addition,
the first and the last letters of w are not inverses of each other.

We define an equivalence relation on X* by w ~ w’ if w can be obtained from
w’ by a finite sequence of reductions and their inverses, i.e., the relation ~ on X*
is generated by

uaiai_lv ~ U, uai_laz-v ~ Uv

where u,v € X*.

PROPOSITION 4.14. Any word w € X* is equivalent to a unique reduced word.
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PRrROOF. Euxistence. ~ We prove the statement by induction on the length of a
word. For words of length 0 and 1 the statement is clearly true. Assume that it is
true for words of length n and consider a word of length n + 1, w = ay - - - anapny1,
where a; € X UX~!. According to the induction hypothesis there exists a reduced
word u = by - - by, with b; € X U X! such that as - - an41 ~ u. Then w ~ aju. If
a1 # b1_1 then aqu is reduced. If a1 = b1_1 then aju ~ by - - - b, and the latter word
is reduced.

Uniqueness.  Let F(X) be the set of reduced words in X U X 1. For every
a € X UX ! we define amap L, : F(X) — F(X) by

foabyeoby if a# b,
La(bl bk)_{ bg"'bk if a=b1_1.

For every word w = ay - - - a,, define L,, = Lo, o--- 0 L,, . For the empty word
1 define L; = id. It is easy to check that L, o L,~1 = id for every a € X U X1
and to deduce from it that v ~ w implies L, = Ly,.

We prove by induction on the length that if w is reduced then w = L,,(1). The
statement clearly holds for w of length 0 and 1. Assume that it is true for reduced
words of length n and let w be a reduced word of length n+1. Then w = au, where
a € XUX ! and u is a reduced word that does not begin with a~!, i.e. such that
Lo(u) = au. Then L, (1) = Ly 0 Ly (1) = Ly(u) = au = w.

In order to prove uniqueness it suffices to prove that if v ~ w and v,w are
reduced then v = w. Since v ~ w it follows that L, = L,,, hence L, (1) = L, (1),
that is v = w. O

EXERCISE 4.15. Give a geometric proof of this proposition using identification
of w € X* with the set of edge-paths p,, in a regular tree 7' of valence 2|X],
which start at a fixed vertex e. The reduced path p* in T' corresponding to the
reduction w* of w is the unique geodesic in T' connecting e to the terminal point of
p. Uniqueness of w* then translates to the fact that a tree contains no circuits.

Let F(X) be the set of reduced words in X U X ~!. Proposition 4.14 implies
that X*/ ~ can be identified with F(X).

DEFINITION 4.16. The free group over X is the set F(X) endowed with the
product defined by: w *w’ is the unique reduced word equivalent to the word ww’.
The unit is the empty word.

The cardinality of X is called the rank of the free group F(X).

The set F(X) with the product defined in Definition 4.16 is indeed a group.
The inverse of a reduced word

by

-1

—€ —€k—1 —€
w =a, ka . L

. a.
Tk—1 11

It is clear that ww ™! project to the empty word 1 in F.
REMARK 4.17. A free group of rank at least two is not abelian. Thus free

non-abelian means free of rank at least two.

The free semigroup F*(X) with the generating set X is defined in the fashion
similar to F(X), except that we only allow the words in the alphabet X (and not
in X 1), in particular the reduction is not needed.
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PROPOSITION 4.18 (Universal property of free groups). A map ¢ : X — G
from the set X to a group G can be extended to a homomorphism ® : F(X) — G
and this extension is unique.

PROOF. Eristence. The map ¢ can be extended to a map on X UX ~! (which
we denote also ) by p(a™!) = p(a)~!.
For every reduced word w = a; - - - a,, in F(X) define

®(ar---an) = p(ar) - plan).

Set ®(e) := 1, the identity element of G. We leave it to the reader to check that ®
is a homomorphism.

Uniqueness. Let ¥ : F(X) — G be a homomorphism such that ¥(z) = ¢(z

for every x € X. Then for every reduced word w = ay---a, in F(X), ¥(w)

~

ol

V(ar) - W(an) = @(ar) - - - plan) = ®(w).
COROLLARY 4.19. FEvery group is the quotient of a free group.
PRrROOF. Apply Proposition 4.18 to the group G and the set X = G. O

LEMMA 4.20. A short exact sequence 1 — N — G = F(X) — 1 always splits.
In particular, G contains a subgroup isomorphic to F(X).

PROOF. Indeed, for each z € X consider choose an element ¢,, € G projecting to
x; the map x — t, extends to a group homomorphism s : F(X) — G. Composition
r o s is the identity homomorphism F(X) — F(X) (since it is the identity on
the generating set X). Therefore, the homomorphism s is a splitting of the exact
sequence. Since 1 o s = Id, s a monomorphism. ([l

COROLLARY 4.21. Ewvery short exact sequence 1 - N — G — Z — 1 splits.

4.3. Presentations of groups

Let G be a group and S a generating set of G. According to Proposition 4.18,
the inclusion map i : S — G extends uniquely to an epimorphism 7g : F(S) = G.
The elements of Kermg are called relators (or relations) of the group G with the
generating set S.

N.B. In the above by an abuse of language we used the symbol s to designate
two different objects: s is a letter in F'(S), as well as an element in the group G.

If R={r;|ie I} C F(S) is such that Ker wg is normally generated by R (i.e.
((R)) = Kermg) then we say that the ordered pair (S, R), usually denoted (S|R),
is a presentation of G. The elements r € R are called defining relators (or defining
relations) of the presentation (S|R).

By abuse of language we also say that the generators s € S and the relations
r =1, r € R, constitute a presentation of the group G. Sometimes we will write
presentations in the form

(si,iellr;=1,5¢€J)
where
S=A{wzitier, R={rj}jes.

If both S and R are finite then the pair S, R is called a finite presentation of G.

A group G is called finitely presented if it admits a finite presentation. Sometimes
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it is difficult, and even algorithmically impossible, to find a finite presentation of a
finitely presented group, see [BW11].

Conversely, given an alphabet S and a set R of (reduced) words in the alphabet
S we can form the quotient

G:=F(5)/((R)-
Then (S|R) is a presentation of G. By abusing notation, we will often write
G = (S|R)

if G is a group with the presentation (S|R). If w is a word in the generating set S,
we will use [w] to denote its projection to the group G. An alternative notation for
the equality

is
V=g w.

Note that the significance of a presentation of a group is the following:

e every element in G can be written as a finite product z; - - - z,, with x; €
SuS~t ={st':s5¢€ 8}, ie., as a word in the alphabet S U S™!;

e a word w = z1 -- -2, in the alphabet S U S™! is equal to the identity in
G, w =g 1, if and only if in F(S) the word w is the product of finitely
many conjugates of the words r; € R, i.e.,

— Uq
w11

for some m € N, u; € F(S) and r; € R.
Below are few examples of group presentations:

EXAMPLES 4.22. (1) (a1,...,an | [ai,a;],1 <14,5 <n) is a finite presen-
tation of Z™;

(2) <:17, y |z y?, yxy:v) is a presentation of the finite dihedral group Ds,, ;

(3) (z,y | 2% 43, [x,y]) is a presentation of the cyclic group Zg .

Let (X|R) be a presentation of a group G. Let H be a group and ¢ : X — H
be a map which “preserves the relators”, i.e., ¥(r) = 1 for every r € R. Then:

LEMMA 4.23. The map ¢ extends to a group homomorphism v : G — H.

ProOF. By the universal property of free groups, the map 1 extends to a
homomorphism ¢ : F(X) — H. We need to show that ((R)) is contained in
Ker(¢). However, ((R)) consists of products of elements of the form grg~!, where
g € F,r € R. Since )(grg~") = 1, the claim follows. O

EXERCISE 4.24. The group P Zs has presentation

reX
<x € X|z% [x,9],Vr,y € X>.
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PROPOSITION 4.25 (Finite presentability is independent of the generating set).
Assume that a group G has finite presentation (S | R), and let (X | T) be an arbi-
trary presentation of G, so that X is finite. Then there exists a finite subset Ty C T
such that (X | Ty) is a presentation of G.

PRrROOF. Every element s € S can be written as a word a4(X) in X. The map
isx : S = F(X), isx(s) = as(X) extends to a unique homomorphism p : F(S) —
F(X). Moreover, since mx o igx is an inclusion map of S to F(X), and both mg
and 7y op are homomorphisms from F(S) to G extending the map S — G, by the
uniqueness of the extension we have that mg = wx o p. This implies that Kerwx
contains p(r) for every r € R.

Likewise, every € X can be written as a word b,(S) in S, and this defines
a map ixs : X — F(5),ixs(x) = by(S), which extends to a homomorphism
q: F(X)— F(S). A similar argument shows that 7g o q = 7x.

For every © € X, mx(p(q(z))) = ms(q(x)) = mx (x). This implies that for every
r € X,z p(q(x)) is in Kery.

Let N be the normal subgroup of F(X) normally generated by

{p(r) | r € RyU{z"'p(q(z)) |z € X}.
We have that N < Ker wx. Therefore, there is a natural projection
proj: F(X)/N — F(X)/Kernx .

Let p: F(S) — F(X)/N be the homomorphism induced by p. Since p(r) =1
for all » € R, it follows that p(Kerms) = 1, hence p induces a homomorphism
p: F(S)/Kermg — F(X)/N.

The homomorphism ¢ is onto. Indeed, F(X)/N is generated by elements of
the form N = p(¢q(z))N, and the latter is the image under ¢ of g(z) Ker 7g.

Consider the homomorphism projo ¢ : F(S)/Kerng — F(X)/Kernx. Both
the domain and the target groups are isomorphic to G. Each element = of the
generating set X is sent by the isomorphism G — F(S)/Kermg to g(z)Kerng.
The same element x is sent by the isomorphism G — F(X)/Kernmx to zKermx.
Note that

proj o ¢ (g(z) Kermg) = proj(zN) = x Ker rx.

This means that modulo the two isomorphisms mentioned above, the map projo ¢
is idg. This implies that ¢ is injective, hence, a bijection. Therefore, proj is also
a bijection. This happens if and only if N = Kernwx. In particular, Kermyx is
normally generated by the finite set of relators

R={p(r) |r € R}U{z""p(q(x)) | v € X}.
Since R = ((T')), every relator p € R can be written as a product
I
i€l

with v; € F(X),t; € T and I, finite. It follows that Ker mx is normally generated
by the finite subset

Ty = | J{tili eI}
pER
of T. O
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Proposition 4.25 can be reformulated as follows: if G is finitely presented, X is
finite and
1> N—-FX)—-G—1

is a short exact sequence, then IV is normally generated by finitely many elements
n1,...,Nk. This can be generalized to an arbitrary short exact sequence:

LEMMA 4.26. Consider a short exact sequence
(4.1) 1-N—>KS5G—1, withK finitely generated.

If G 1is finitely presented, then N is normally generated by finitely many elements
Ni,...,Nk € N.

PROOF. Let S be a finite generating set of K; then S = 7(S) is a finite gener-
ating set of G. Since G is finitely presented, by Proposition 4.25 there exist finitely
many words 71,...,7 in S such that

<§ | r1(S), .. .,rk(§)>

is a presentation of G.

Consider n; = r;(5), an element of N by the assumption.

Let n be an arbitrary element in N and w(S) a word in S such that n = w(S) in
K. Then w(S) = 7(n) = 1, whence in F(S) the word w(S) is a product of finitely
many conjugates of r1,...,r,. When projecting such a relation via F(S) — K we

obtain that n is a product of finitely many conjugates of nq, ..., ng. O

PROPOSITION 4.27. Suppose that N a normal subgroup of a group G. If both
N and G/N are finitely presented then G is also finitely presented.

PrROOF. Let X be a finite generating set of NV and let Y be a finite subset of
G such that Y = {yN |y € Y} is a generating set of G/N. Let (X | r1,...,7%) be
a finite presentation of N and let <}7 | p1,--- ,pm> be a finite presentation of G/N.
The group G is generated by S = X UY and this set of generators satisfies a list
of relations of the following form

(4.2) ri(X)=1,1<i<k, p;(Y)=u;(X), 1 <j<m,

(4.3) 2 = vy (X), 7Y = wey(X)
for some words u;, Uy, Wey in S.

We claim that this is a complete set of defining relators of G.

All the relations above can be rewritten as ¢(X,Y) = 1 for a finite set T of
words t in S. Let K be the normal subgroup of F(S) normally generated by T'.

The epimorphism 7g : F'(S) — G defines an epimorphism ¢ : F(S)/K — G.
Let wK be an element in Kerp, where w is a word in S. Due to the set of
relations (4.3), there exist a word w(X) in X and a word ws(Y") in Y, such that

Applying the projection # : G — G/N, we see that 7(p(wK)) = 1, ie.,
m(p(w2(Y)K)) = 1. This implies that wy(Y) is a product of finitely many conju-
gates of p;(Y'), hence wy(Y)K is a product of finitely many conjugates of u;(X)K,
by the second set of relations in (4.2). This and the relations (4.3) imply that
w1 (X)w2(Y)K = v(X)K for some word v(X) in X. Then the image p(wK) =
p(w(X)K) is in N; therefore, v(X) is a product of finitely many conjugates of
relators 7;(X). This implies that v(X)K = K.
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We have thus obtained that Ker ¢ is trivial, hence ¢ is an isomorphism, equiv-
alently that K = Kermg. This implies that Ker g is normally generated by the
finite set of relators listed in (4.2) and (4.3). O

We continue with a list of finite presentations of some important groups:

EXAMPLES 4.28. (1) Surface groups:
G = <a17 b17 L ,an,anal, bl] e [a'ru bn]> )

is the fundamental group of the closed connected oriented surface of genus
n, see e.g. [Mas91].

(2) Right—angled Artin groups (RAAGs). Let G be a finite graph with the
vertex set V = {x1,...,2,} and the edge set E consisting of the edges
{[xs, z;]}i,;. Define the right-angled Artin group by

Ag := (V|[@i, 2], whenever [z;, ;] € E).

Here we commit a useful abuse of notation: In the first instance [z;, z;]
denotes the commutator and in the second instance it denotes the edge of
G connecting z; to x;.

EXERCISE 4.29. a. If G contains no edges then Ag is a free group on
n generators.
b. If G is the complete graph on n vertices then

Ag =7,
(3) Coxeter groups. Let G be a finite simple graph. Let V and E denote be

the vertex and the edge set of G respectively. Put a label m(e) € N\ {1}
on each edge e = [z;,z;] of G. Call the pair

I':=(G,m: E—N\{1})
a Cozeter graph. Then I' defines the Coxeter group Cr:
Cr = <:cl S V\xf, (:clmj)m(e), whenever there exists an edge e = [:ci,:cj]> .
See [Dav08] for the detailed discussion of Coxeter groups.

(4) Artin groups. Let T" be a Coxeter graph. Define

Ar = (z; € V| wzz;--- = wjx;--- , whenever e = [x;,z;] € E ).
——— ——
m(e) terms  m(e) terms

Then Ar is a right-angled Artin group if and only if m(e) = 2 for every
e € E. In general, Cr is the quotient of Ar by the subgroup normally
generated by the set

{222, €V}
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(5) Shephard groups: Let T' be a Coxeter graph. Label vertices of T' with
natural numbers n,,z € V(I'). Now, take a group, a Shepherd group, Sr
to be generated by vertices x € V(I'), subject to Artin relators and, in
addition, relators

g, e V().
Note that, in the case n, = 2 for all z € V(T'), the group which we obtain

is the Coxeter group Cr. Shephard groups (and von Dyck groups below)
are complex analogues of Coxeter groups.

(6) Generalized von Dyck groups: Let T be a labeled graph as in the previous
example. Define a group Dr to be generated by vertices z € V(T'), subject
to the relators

2™ xe V(D)
(zy)™), e = [z,y] € B(T).

If T' consists of a single edge, then Dr is called a von Dyck group. Every
von Dyck group Dr is an index 2 subgroup in the Coxeter group Ca,
where A is the triangle with edge-labels p, ¢, 7, which are the vertex-edge
labels of T'.

(7) Integer Heisenberg group:

H2n+1(Z) = <$17- s Ty Y1y ey Yny 2 |
[, 2] = L, [y;, 2] = L [ws, 2] = 1, [yisyy) = L, i, 5] = 2%, 1 <, j < ).

(8) Baumslag—Solitar groups:
BS(p,q) = <a,b|ab7"a_1 = bq>.

EXERCISE 4.30. Show that Ha,1(Z) is isomorphic to the group appearing in
Example 10.29, (3).

OPEN PROBLEM 4.31. It is known that all (finitely generated) Coxeter groups
are linear, see e.g. [Bou02]. Is the same true for all Artin groups, Shephard groups,
generalized von Dyck groups? Note that even linearity of Artin Braid groups was
unknown prior to [Big01]. Is it at least true that all these groups are residually
finite?

An important feature of finitely presented groups is provided by the following
theorem, see e.g. [Hat02]:

THEOREM 4.32. FEwvery finitely generated group is the fundamental group of a
smooth compact manifold of dimension 4.

Presentations G = (X|R) provide a ‘compact’ form for defining the group G.
They were introduced by Max Dehn in the early 20-th century. The main problem
of the combinatorial group theory is to derive algebraic information about G from
its presentation.

Algorithmic problems in the combinatorial group theory.
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Word Problem. Let G = (X|R) be a finitely-presented group. Construct a
Turing machine (or prove its non-existence) that, given a word w in the generating
set X as its input, would determine if w represents the trivial element of G, i.e., if

w € {(R)).

Conjugacy Problem. Let G = (X|R) be a finitely-presented group. Con-
struct a Turing machine (or prove its non-existence) that, given a pair of word v, w
in the generating set X, would determine if v and w represent conjugate elements
of G, i.e., if there exists g € G so that

To simplify the language, we will state such problems below as: Given a finite
presentation of G, determine if two elements of G are conjugate.

Simultaneous Conjugacy Problem. Given n-tuples pair of words

(vlv"wvn)a (wl,...,’wn)

in the generating set X and a (finite) presentation G = (X|R), determine if there
exists g € G so that

[wi] = ¢ Yvilg,i =1,...,7n.

Triviality Problem. Given a (finite) presentation G = (X|R) as an input,
determine if G is trivial, i.e., equals {1}.

Isomorphism Problem. Given two (finite) presentations G; = (X;|R;),i =
1,2 as an input, determine if G; is isomorphic to Gs.

Embedding Problem. Given two (finite) presentations G; = (X;|R;),i =
1,2 as an input, determine if GGy is isomorphic to a subgroup of Gs.

Membership Problem. Let G be a finitely-presented group, hy,...,hx € G
and H, the subgroup of G generated by the elements h;. Given an element g € G,
determine if g belongs to H.

Note that a group with solvable conjugacy or membership problem, also has
solvable word problem. It was discovered in the 1950-s in the work of Novikov,
Boone and Rabin [Nov58, Boo57, Rab58] that all of the above problems are al-
gorithmically unsolvable. For instance, in the case of the word problem, given a finite
presentation G = (X|R), there is no algorithm whose input would be a (reduced)
word w and the output YES is w =¢ 1 and NO if not. Fridman [Fri60] proved
that certain groups have solvable word problem and unsolvable conjugacy problem.
We will later see examples of groups with solvable word and conjugacy problems
but unsolvable membership problem (Corollary 9.143). Furthermore, there are ex-
amples [BHO5]| of finitely-presented groups with solvable conjugacy problem but
unsolvable simultaneous conjugacy problem for every n > 2.

Nevertheless, the main message of the geometric group theory is that under
various geometric assumptions on groups (and their subgroups), all of the above
algorithmic problems are solvable. Incidentally, the idea that geometry can help
solving algorithmic problems also goes back to Max Dehn. Here are two simple
examples of solvability of word problem:

PROPOSITION 4.33. Free group F' of finite rank has solvable word problem.
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PROOF. Given a word w in free generators x; (and their inverses) of F we
cancel recursively all possible pairs z;z; t x; 12, in w. Eventually, this results in a
reduced word w’. If w’ is nonempty, then w represents a nontrivial element of F,
if w’ is empty, then w =1 in F. O

PROPOSITION 4.34. FEvery finitely-presented residually-finite group has solvable
word problem.

PROOF. First, note that if ® is a finite group, then it has solvable word problem
(using the multiplication table in ® we can “compute” every product of generators
as an element of ® and decide if this element is trivial or not). Given a residually
finite group G with finite presentation (X|R) we will run two Turing machines
Ty, T, simultaneously:

The machine T will look for homomorphism ¢ : G — S, where S, is the
symmetric group on n letters (n € N): The machine will try to send generators
T1,...,Tm of G to elements of S, and then check if the images of the relators in
G under this map are trivial or not. For every such homomorphism, 77 will check
if p(g) =1 or not. If T finds ¢ so that ¢(g) # 1, then g € G is nontrivial and the
process stops.

The machine T5 will list all the elements of the kernel N of the quotient homo-
morphism F,,, — G: It will multiply conjugates of the relators r; € R by products
of the generators z; € X (and their inverses) and transforms the product to a re-
duced word. Every element of N is such a product, of course. We first write g € G
as a reduced word w in generators x; and their inverses. If 75 finds that w equals
one of the elements of IV, then it stops and concludes that g =1 in G.

The point of residual finiteness is that, eventually, one of the machines stops
and we conclude that g is trivial or not. O

Laws in groups.

DEFINITION 4.35. An identity (or law) is a non-trivial reduced word w =
w(xy,...,Ty,) in n letters x1,...,x, and their inverses. A group G is said to sat-
isfy the identity (law) w(xq,...,x,) = 1 if the equality is satisfied in G whenever
x1,...,T, are replaced by arbitrary elements in G.

EXAMPLES 4.36 (groups satisfying a law). (1) Abelian groups. Here the
law is

1 1

w(x1,T2) = 12227 Ty .
(2) Solvable groups, see (11.2).
(3) Free Burnside groups. The free Burnside group

B(n,m) = (x1,...,@, | w" for every word w in o ,J;f1> .

It is known that these groups are infinite for sufficiently large m (see
[Ady79], [O1’91a], [Iva94], [Lys96], [DG]| and references therein).

Note that free nonabelian groups (and, hence, groups containing them) do not
satisfy any law.
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4.4. Ping-pong lemma. Examples of free groups

LEMMA 4.37 (Ping—pong, or Table—tennis, lemma). Let X be a set, and let
g: X =X and h: X — X be two bijections. If A, B are two non-empty subsets of
X, such that A ¢ B and

g"(A) C B for everyn € Z\ {0},
h™(B) C A for every m € Z \ {0},

then g, h generate a free subgroup of rank 2 in the group Bij(X) with the binary
operation given by composition o.

PROOF. Step 1. Let w be a non-empty reduced word in {g, g~ ', h,h~'}. We
want to prove that w is not equal to the identity in Bij(X). We begin by noting
that it is enough to prove this when

(4.4) w=g"th"g"h"™ . g™, withn; € Z\{0}Vje {1,...,k}.
Indeed:

o If w = h™ig"2hns ... g"kh"k+1 then gwg~! is as in (4.4), and gwg~! #
id = w # id.

o If w = g"th™2gmshm . g™ h™+1 then for any m # —nq, g"wg™ ™ is as
in (4.4).

o If w = h"g™h" .. . g" then for any m # ng, ¢"wg™™ # id is as in
(4.4).

Step 2. If wis as in (4.4) then
w(A) C g"hMgthm™ L g™ 2R (B) C g™ R g™ L g™ (A) C ... C

g"(A) C B.
If w = id, then it would follow that A C B, a contradiction. O

ExAaMPLE 4.38. For any integer k > 2 the matrices

1k 10
9:(0 1>andh:<k 1)

generate a free subgroup of SL(2,Z).

1st proof. The group SL(2,Z) acts on the upper half plane H? = {z € C | S(z) > 0}
by linear fractional transformations z — Zzzidb . The matrix g acts as a horizontal
translation z — z + k, while

(D)

Therefore h acts as represented in Figure 4.1, where h sends the interior of the disk
bounded by C to the exterior of the disk bounded by C’. We apply Lemma 4.37 to
g, h and the subsets A and B represented below, i.e. A is the strip

k k
{zcH? : —§<Rez<§}
and B is the complement of its closure, that is
k k
B={:cH : Rez<f§ orRez>§}.
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Hence g"(A) C B and h"(B) C A for all n # 0. Therefore, the claim follows from
lemma 4.37.

h

EvN

-k/2 -2/1{UU2/1< k/2

FIGURE 4.1. Example of ping-pong.

2nd proof. The group SL(2,Z) also acts linearly on R?, and we can apply Lemma
4.37 to g, h and the following subsets of R?

A:{(";) : |x|<|y} andB:{(‘;) : |a:|>|y|}.

REMARK 4.39. The statement in the Example above no longer holds for & = 1.
Indeed, in this case we have

= () (DG4,

Thus, (9-*hg=1)? = I, and, hence, the group generated by g, h is not free.

(]

Lemma 4.37 extends to the case of several bijections as follows.
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LEMMA 4.40 (The generalized Ping-pong lemma). Let X be a set, and let
gi + X = X, i€ {1,2,...,k}, be bijections. Suppose that Ay,..., A are non-
empty subsets of X, such that Uf:z A; ¢ Ay and that for every i € {1,2,...,k}

ar UAj C A, for everyn € Z\ {0}.
J#i
Then g1, ..., gr generate a free subgroup of rank k in the group of bijections Bij(X).

PRrROOF. Consider a non-trivial reduced word w in {gfﬂ, . ,gzﬂ}. As in the
proof of Lemma 4.37, without loss of generality we may assume that the word w
begins with g¢ and ends with g%, where a,b € Z\ {0}. We apply w to ULQ A,
and obtain that the image is contained in A; . If w = id in Bij(X), it would that
U?:Q A; C Ay, a contradiction. O

4.5. Ping-pong on a projective space

We will frequently use Ping-Pong lemma in the case when X is a projective
space. Since this application of the ping-pong argument is the key for the proof of
the Tits’ Alternative, we explain it here in detail.

Let V be a finite dimensional space over a normed field K, which is either R, C
or has discrete norm and uniformizer 7, as in §1.7. We endow the projective space
P(V) with the metric d as in §1.8.

LEMMA 4.41. Every g € GL(n,K) induces a bi-Lipschitz transformation of
2
P(K"™) with Lipschitz constant < \‘Zi‘lb
g and

where ay, . ..,a, are the singular values of

la1] = ... = |an].

PROOF. According to the Cartan decomposition ¢ = kdk’ and since all ele-
ments in the subgroup K act by isometries on the projective space, it suffices to

prove the statement when ¢ is a diagonal matrix A with diagonal entries a,...,a,
which are arranged in the order as above. We will do the computation in the
case K = R and leave the other cases to the reader. Given nonzero vectors
x=(x1,-.,2n),y = (Y1, --,Yn), Wwe obtain:
gz A gy| = | Zaiajﬂcﬂjei Aej] < fag]?| leazﬂ = lax |z Ay,
i<j i<j

lgz| = 1Y afa?|'? > |anllz], gyl > lanlly
%

and, hence,

d(glz], gly]) < = d([=], [y))-

lan|? |2| - [yl lan|?
O

Let g be an element in GL(n,K) such that with respect to some ordered basis
{u1,...,u,}, the matrix of g is diagonal with diagonal entries A1, ..., A, satisfying

|>\1| > |)\2‘ > ‘)\3| = ... 2 ‘)\n—1| > |)\n‘ >0.

Let us denote by A(g) and by H(g) the projection to P(K™) of the span of
{u1}, respectively of the span of {us,...,u,}. Note that then A(g~') and H(g~ 1)
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are the respective projections to P(K") of the span of {u,}, respectively, of the
span of {uy,...,u,_1}. Obviously, A(g) € H(g~') and A(¢g~ ') € H(g).

LEMMA 4.42. Assume that g and h are two elements in GL(n,K) as above,
which are diagonal with respect to bases {u1,...,un}, {v1,...,v,} respectively. As-
sume also that the points A(g*1) are not in H(h) U H(h™'), and A(h*') are not
in H(g) U H(g™"). Then there exists a positive integer N such that gV and h™
generate a free non-abelian subgroup of GL(n,K).

PROOF. We first claim that for every € > 0 there exists N = N(e) such that for
every m > N, g©™ maps the complement of the e-neighborhood of H(g*!) inside
the ball of radius e and center A(g*!).

According to Lemma 4.41, it suffices to prove the statement when {uq, ..., u,}
is the standard basis {ey, ..., e, } of V (since we can conjugate g to a matrix diagonal
with respect to the standard basis). In particular, A(g*?!) is either [e1] or [e,]. In
the former case we take f(x) = x - e, in the latter case, take f(z) = x - e,, so that
Ker(f) = H = H(g*"). Then, for a unit vector v = (z1,...,2,) € V, according to
Exercise 1.80, dist([v], [H]) = | f(v)|. To simplify the notation, we will assume that
f(x) = x - e1, since the other case is obtained by relabeling. Then,

[v] ¢ Ne(H(g™)) = || > e

We have
g0 Aer] = [ Y APwie Aer] < Vol M [v] = vl
i1
while
lg™ vl = [Ac]™ |21l

which implies that

lgmol T ] A T e

My ANe n | A" n 1A\
g o) = e < YT < (1)

The latter quantity converges to zero as m — oo, since |A1| > |A2]. Thus, for all
large m, d(g™[v], [e1]) < . The same claim holds for h*!.

Now consider ¢ > 0 such that for every a € {g,¢g '} and be € {h,h™'} the
points A(a) and A(B*!) are at distance at least 2¢ from H(a). Let N be large
enough so that g™ maps the complement of the e-neighborhood of H(g*!) inside
the ball of radius ¢ and center A(g*'), and h*" maps the complement of the
e-neighborhood of H(h*!) inside the ball of radius ¢ and center A(h*1).

Let A := B(A(g),e) U B(A(g7'),e) and B := B(A(h),e) U B(A(h™1Y),e).
Clearly, g*V(A) C B and h*N(B) C A for every k € Z. Hence by Lemma 4.37, gV
and kY generate a free group. (I

4.6. The rank of a free group determines the group. Subgroups

PROPOSITION 4.43. Two free groups F(X) and F(Y) are isomorphic if and
only if X and Y have the same cardinality.

PROOF. A bijection ¢ : X — Y extends to an isomorphism ¢ : F(X) — F(Y)
by Proposition 4.18. Therefore, two free groups F(X) and F(Y) are isomorphic if
X and Y have the same cardinality.

Conversely, let ® : F(X) — F(Y) be an isomorphism. Take N(X) < F(X), the
subgroup generated by the subset {g?; g € F(X)}; clearly, N is normal in F(X).
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Then, ®(N (X)) = N(Y) is the normal subgroup generated by {h?; h € F(Y)}. It
follows that ® induces an isomorphism ¥ : F(X)/N(X) — F(Y)/N(Y).

LEMMA 4.44. The quotient F := F/N is isomorphic to A = Z?X, where
F=F(X).

PROOF. Recall that A has the presentation
(z € X|2?, [z, y),Va,y € X),

see Exercise 4.24. We now prove the assertion of the lemma. Consider the map
n : F — A sending the generators of F' to the obvious generators of A. Thus,
m(g) = m(g~!) for all g € F. We conclude that for all g,h € X,

1 =n((hg)®) = n([g, h]),

and, therefore, F is abelian.

Since A satisfies the law a? = 1 for all a € A, it is clear that 7 = ¢ o 7, where
7 : F — [ is the quotient map. We next construct the inverse 1 to ¢. We define 1
on the generators x € X of A: ¢(x) = & = w(x). We need to show that 1) preserves
the relators of A (as in Lemma 4.23): Since F is abelian, [¢(z),v(y)] = 1 for all
x,y € X. Moreover, ¥(x)? = 1 since F also satisfies the law g = 1. It is clear that
¢, are inverses to each other. (I

Thus, F(X)/N(X) is isomorphic to Z§~, while F(Y)/N(Y) is isomorphic to
Z?Y. It follows that Z?X ~ Z?Y as Zo—vector spaces. Therefore, X and Y have
the same cardinality, by uniqueness of the dimension of vector spaces. O

REMARK 4.45. Proposition 4.43 implies that for every cardinal number n there
exists, up to isomorphism, exactly one free group of rank n. We denote it by Fj,.

THEOREM 4.46 (Nielsen—Schreier). Any subgroup of a free group is a free group.

This theorem will be proven in Corollary 4.70 using topological methods; see
also [LS77, Proposition 2.11].

PROPOSITION 4.47. The free group of rank two contains an isomorphic copy of
Fy. for every finite k and k = Ny.

PrOOF. Let x,y be the two generators of Fy. Let S be the subset consisting
of all elements of Fy of the form zj := y*zy~*, for all k € N. We claim that the
subgroup (S) generated by S is isomorphic to the free group of rank Y.

Indeed, consider the set A of all reduced words with prefix y*z. With the
notation of Section 4.2, the transformation L,, : F» — F5 has the property that
L, (A;) C Ay for every j # k. Obviously, the sets Ay, k& € N, are pairwise
disjoint. This and Lemma 4.40 imply that {L,, ; k € N} generate a free subgroup
in Bij(F3), hence so do {zy ; k € N} in F5. O

4.7. Free constructions: Amalgams of groups and graphs of groups

4.7.1. Amalgams. Amalgams (amalgamated free products and HNN exten-
sions) allow one to build more complicated groups starting with a given pair of
groups or a group and a pair of its subgroups which are isomorphic to each other.
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Amalgamated free products. As a warm-up we define the free product of
groups G = (X1|R1), G2 = (X3|R2) by the presentation:

Gl*G2=<G1,G2| >
which is a shorthand for the presentation:
(X1 U X3|R1 URy).

For instance, the free group of rank 2 is isomorphic to Z x Z.

More generally, suppose that we are given subgroups H; < G; (i = 1,2) and an
isomorphism

(725 : Hl — H2
Define the amalgamated free product
Gy *H 2 H, Gy = <Gl,G2|¢(h)h_1,h S H1> .
In other words, in addition to the relators in G, Gy we identify ¢(h) with h for
each h € Hy. A common shorthand for the amalgamated free product is
G1*xp G

where H = Hy & H, (the embeddings of H into G; and G4 are suppressed in this

notation).

HNN extensions. This construction is named after G. Higman, B. Neumann
and H. Neumann who first introduced it in [HNN49]. It is a variation on the
amalgamated free product where G; = G2. Namely, suppose that we are given a
group G, its subgroups H;, H> and an isomorphism ¢ : H; — Hs. Then the HNN
extension of G via ¢ is defined as

Gxmy~p, = (G, tltht ™" = ¢(h),Vh € Hy).
A common shorthand for the HNN extension is
G*H
where H = H; = H, (the two embeddings of H into G are suppressed in this
notation).
EXERCISE 4.48. Suppose that H; and Hy are both trivial subgroups. Then
G"kngH2 =G,

4.7.2. Graphs of groups. In this section, graphs are no longer assumed to
be simplicial, but are assumed to connected. The notion of graphs of groups is
a very useful generalization of both the amalgamated free product and the HNN
extension.

Suppose that I' is a graph. Assign to each vertex v of I' a vertex group G,;
assign to each edge e of I' an edge group G.. We orient each edge e so it has the

initial and the terminal (possibly equal) vertices e_ and ey. Suppose that for each
edge e we are given monomorphisms

Gep 1Ge = Geyy e 1 Ge — Ge_.
REMARK 4.49. More generally, one can allow non-injective homomorphisms
Ge = Ge, ,Go — G,

but we will not consider them here.

€4
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The graph I' together with the collection of vertex and edge groups and the
monomorphisms ¢., is called a graph of groups G.

DEFINITION 4.50. The fundamental group w(G) = m1(G) of the above graph of
groups is a group G satisfying the following:

1. There is a collection of compatible homomorphisms G, — G,G, — G,v €
V(I'),e € E(I'), so that whenever v = e, we have the commutative diagram

N

2. The group G is universal with respect to the above property, i.e., given any
group H and a collection of compatible homomorphisms G, - H,G. — H, there
exists a unique homomorphism G — H so that we have commutative diagrams

AN

Note that the above definition easily implies that 7(G) is unique (up to an iso-
morphism). For the existence of 7(G) see [Ser80] and discussion below. Whenever
G = 7(G), we will say that G determines a graph of groups decomposition of G.
The decomposition of G is called trivial if there is a vertex v so that the natural
homomorphism G, — G is onto.

for all v € V(T).

EXAMPLE 4.51. 1. Suppose that the graph I' is a single edge e = [1,2],
d)e_ (Ge) = H1 < Gl, ¢6+(Ge) = Hg g GQ. Then

W(g) ~ Gy *H, = Hy Gs.

2. Suppose that the graph T is a single loop e = [1,1], ¢._(G.) = H1 < Gy,
¢e+ (Ge) = Hy < G4. Then

m(G) = G1*m,~H, -

Once this example is understood, one can show that for every graph of groups
G, m(G) exists by describing this group in terms of generators and relators in
the manner similar to the definition of the amalgamated free product and HNN
extension. In the next section we will see how to construct 71 (G) using topology.

4.7.3. Converting graphs of groups to amalgams. Suppose that G is a
graph of groups and G = m1(G). Our goal is to convert G in an amalgam decom-
position of G. There are two cases to consider:

1. Suppose that the graph I" underlying G contains a oriented edge e = [v1, v2]
so that e separates I' in the sense that the graph IV obtained form I' by removing
e (and keeping vi,vs) is a disjoint union of connected subgraphs I'; U 'y, where
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v; € V(T;). Let G; denote the subgraph in the graph of groups G, corresponding to
T';,2=1,2. Then set

G; :=7m(G;),i=1,2, G3:=0G,.

We have composition of embeddings G, = G,, - G; — G. Then the universal
property of 7 (G;) and 71 (G) implies that G & Gy *¢, G2: One simply verifies that
G satisfies the universal property for the amalgam G *x¢, Ga.

2. Suppose that I" contains an oriented edge e = [v1, v3] so e does not separate
I'. Let I'; :=T", where I is obtained from I'" by removing the edge e as in Case 1.
Set G := m1(G1) as before. Then embeddings

Ge — Gy, i =1,2
induce embeddings G. — G; with the images Hy, Hy respectively. Similarly to the
Case 1, we obtain
G = Gixg, = G1*H,~H,
where the isomorphism H; — Hj is given by the composition
Hl — Ge — HQ.

Clearly, G is trivial if and only if the corresponding amalgam G xg, G2 or
Gixq, is trivial.

4.7.4. Topological interpretation of graphs of groups. Let G be a graph
of groups. Suppose that for all vertices and edges v € V(I') and e € E(I') we
are given connected cell complexes M,,, M, with the fundamental groups G, G.
respectively. For each edge e = [v, w] assume that we are given a continuous map
fey + Me — M., which induces the monomorphism ¢., . This collection of spaces
and maps is called a graph of spaces

Gus o= {My, M., fo, : M. — M., :v € V(D),e € B}

In order to construct Gy, starting from G, recall that each group G admits a
cell complex K (G, 1) whose fundamental group is G and whose universal cover is
contractible, see e.g. [Hat02|. Given a group homomorphism ¢ : H — G, there
exists a continuous map, unique up to homotopy,

f:K(H,1) = K(G,1)

which induces the homomorphism ¢. Then one can take M, := K(G,,1), M, :=
K(Ge,1), etc.

To simplify the picture (although this is not the general case), the reader can
think of each M, as a manifold with several boundary components which are home-
omorphic to M,,, Me,, ..., where e; are the edges having v as their initial or final
vertez. Then assume that the maps f., are homeomorphisms onto the respective
boundary components.

For each edge e form the product M, x [0, 1] and then form the double mapping
cylinders for the maps f._, i.e. identify points of M, x {0} and M, x {1} with their
images under f._ and f., respectively.

Let M denote the resulting cell complex. It then follows from the Seifert—Van
Kampen theorem [Mas91] that

THEOREM 4.52. The group w1 (M) is isomorphic to w(G).
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This theorem allows one to think of the graphs of groups and their fundamental
groups topologically rather than algebraically. Given the above interpretation, one
can easily see that for each vertex v € V(I') the canonical homomorphism G, —
m(G) is injective.

EXAMPLE 4.53. The group F(X) is isomorphic to m1 (V,exSh).

4.7.5. Graphs of groups and group actions on trees. An action of a
group GG on a tree T is an action G ~ T so that each element of G acts as an
automorphism of T, i.e., such action is a homomorphism G — Aut(T). A tree T
with the prescribed action G ~ T' is called a G—tree. An action G ~ T is said to be
without inversions if whenever g € G preserves an edge e of T, it fixes e pointwise.
The action is called trivial if there is a vertex v € T' fixed by the entire group G.

REMARK 4.54. Later on, we will encounter more complicated (non-simplicial)
trees and actions.

Our next goal is to explain the relation between the graph of groups decompo-
sitions of G and actions of GG on simplicial trees without inversions.

Suppose that G = 7(G) is a graph of groups decomposition of G. We associate
with G a graph of spaces M = Mg as above. Let X denote the universal cover
of the corresponding cell complex M. Then X is the disjoint union of the copies
of the universal covers M, M, x (0,1) of the complexes M, and M, x (0,1). We
will refer to this partitioning of X as the tiling of X. In other words, X has the
structure of a graph of spaces, where each vertex/edge space is homeomorphic to
M,,v € V(T'), M, x [0,1],e € E('). Let T denote the graph _corresponding to X
Each copy of M, determines a vertex in 7' and each copy of M, x [0, 1] determines
an edge in 7.

EXAMPLE 4.55. Suppose that I' is a single segment [1,2], M; and M, are
surfaces of genus 1 with a single boundary component each. Let M, be the circle.
We assume that the maps f., are homeomorphisms of this circle to the boundary
circles of My, Ms. Then, M is a surface of genus 2. The graph T is sketched in
Figure 4.2.

The Mayer—Vietoris theorem, applied to the above tiling of X, implies that
0= H(X,Z) = Hi(T,Z). Therefore, T = T(G) is a tree. The group G = 71 (M)
acts on X by deck-transformations, preserving the tiling. Therefore we get the
induced action G ~ T. If g € G preserves some M, x (0,1), then it comes from the
fundamental group of M,. Therefore such g also preserves the orientation on the
segment [0,1]. Hence the action G ~ T is without inversions. Observe that the
stabilizer of each M, in G is conjugate in G to m(M,) = G,,. Moreover, T/G =T.

EXAMPLE 4.56. Let G = BS(p, q) be the Baumslag-Solitar group described in
Example 4.28, (8). The group G clearly has the structure of a graph of groups since
it is isomorphic to the HNN extension of Z,

VAS: YA

where the subgroups Hy, Hy C Z have the indices p and ¢ respectively. In order to
construct the cell complex K (G, 1) take the circle S' = M,, the cylinder S* x [0, 1]
and attach the ends to this cylinder to M, by the maps of the degree p and ¢
respectively. Now, consider the associated G—tree T. Its vertices have valence
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FIGURE 4.2. Universal cover of the genus 2 surface.

p+ q: Each vertex v has ¢ incoming and p outgoing edges so that for each outgoing
edge e we have v = e_ and for each incoming edge we have v = e;. The vertex
stabilizer G, & Z permutes (transitively) incoming and outgoing edges among each
other. The stabilizer of each outgoing edge is the subgroup H; and the stabilizer
of each incoming edge is the subgroup Hs. Thus the action of Z on the incoming
vertices is via the group Z/q and on the outgoing vertices via the group Z/p.

outgoing
incoming

FIGURE 4.3. Tree for the group BS(2,3).

LEMMA 4.57. G ~ T is trivial if and only if the graph of groups decomposition
of G is trivial.

PROOF. Suppose that G fixes a vertex v € T. Then m (M,) = G, = G, where
v € I' is the projection of v. Hence the decomposition of G is trivial. Conversely,
suppose that G, maps onto G. Let & € T be the vertex which projects to v. Then
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71(M,) is the entire 7 (M) and hence G preserves M. Therefore, the group G
fixes . g

Conversely, each action of G on a simplicial tree 7" yields a realization of G
as the fundamental group of a graph of groups G, so that 7' = T(G). Here is the
construction of G. Furthermore, a nontrivial action leads to a montrivial graph of
groups.

If the action G ~ T has inversion, we replace T with its barycentric subdivision
T'. Then the action G ~ T’ is without inversions. If G ~ T were nontrivial, so
is G ~ T'. Thus, from now on, we assume that G acts on T without inversions.
Then the quotient 7'/G is a graph I': V(I') = V(T')/G and E(I') = E(T)/G. For
every vertex ¥ and edge € of T let Gz and Gz be their respective stabilizes in G.
Clearly, whenever é = [0, W], we get the embedding

Gé — G{,.

If g € G maps oriented edge é = [0,w] to an oriented edge ' = [/, @'], we obtain
isomorphisms

G{, — Gﬁ/, Gﬁ) — Gﬁ)/, Gé — Gé/
induced by conjugation via g and the following diagram is commutative:

Ge Gs

Ge Gy

We then set G, := Gy, G := G5, where v and e are the projections of v and edge
€ to T'. For every edge e of T' oriented as e = [v,w], we define the monomorphism
G. — G, as follows. By applying an appropriate element g € G as above, we can
assume that € = [0,%w]. Then We define the embedding G, — G, to make the
diagram

commutative. The result is a graph of groups G. We leave it to the reader to verify
that the functor (G ~ T') — G described above is just the reverse of the functor
G — (G~ T) for G with G = m1(G). In particular, G is trivial if and only if the
action G ~ T is trivial.

DEFINITION 4.58. G — (G ~ T) — G is the Bass—Serre correspondence be-
tween realizations of groups as fundamental groups of graphs of groups and group
actions on trees without inversions.

We refer the reader to [SW79] and [Ser80| for further details.
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4.8. Cayley graphs

Finitely generated groups may be turned into geometric object as follows. Given
a group G and its generating set S, one defines the Cayley graph of G with respect
to S. This is a symmetric directed graph Cayleyy;, (G, S) such that

e its set of vertices is G}
e its set of oriented edges is (g, gs), with s € S.

Usually, the underlying non-oriented graph Cayley(G,S) of Cayleyy;, (G, S),
i.e. the graph such that:

e its set of vertices is G}
e its set of edges consists of all pairs of elements in G, {g,h}, such that
h = gs, with s € S,
is also called Cayley graph of G with respect to S.
By abusing notation, we will also use the notation [g,h] = gh for the edge
{g,h}.
Since S is a generating set of G, it follows that the graph Cayley(G,J5) is
connected.
One can attach a color (label) from S to each oriented edge in Cayley;, (G, S):
the edge (g, gs) is labeled by s.
We endow Cayley(G, S) with the standard length metric (where every edge has
unit length). The restriction of this metric to G is called the word metric associated
to S and it is denoted by distg or dg.

NoTATION 4.59. For an element ¢ € G and a generating set S we denote
dists(1, g) by |g|s, the word norm of g. With this notation, dists(g, h) = |¢g~ h|s =
[h™gls.

CONVENTION 4.60. In this book, unless stated otherwise, all Cayley graphs are
for finite generating sets S.

Much of the discussion in this section though remains valid for arbitrary gen-
erating sets, including infinite ones.

REMARK 4.61. 1. Every group acts on itself by left multiplication:
GxG—G,(g,h)— gh.
This action extends to any Cayley graph: if [z, xs] is an edge of Cayley(G, S) with
the vertices z, xs, we extend g to the isometry
g: |z, zs] = [gx, gxs]

between the unit intervals. Both actions G ~ G and G ~ Cayley(G, S) are isomet-
ric. It is also clear that both actions are free, properly discontinuous and cocompact
(provided that S is finite): The quotient Cayley(G,S)/G is homeomorphic to the
bouquet of n circles, where n is the cardinality of S.

2. The action of the group on itself by right multiplication defines maps

R,:G— G, Ry(h)=hg

that are in general not isometries with respect to a word metric, but are at finite
distance from the identity map:

dist(id(h), Rg(h)) = |g]s -
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EXERCISE 4.62. Prove that the word metric on a group G associated to a
generating set S may also be defined

(1) either as the unique maximal left-invariant metric on G such that
dist(1,s) = dist(1,s ') =1,Vs € S;

(2) or by the following formula: dist(g,h) is the length of the shortest word
w in the alphabet S U S~! such that w = g~ *h in G.

Below are two simple examples of Cayley graphs.
EXAMPLE 4.63. Consider Z? with set of generators
S={a=(1,0),b=(0,1),a " = (-1,0),b~" = (0,-1)}.

The Cayley graph Cayley(G,S) is the square grid in the Euclidean plane: The
vertices are points with integer coordinates, two vertices are connected by an edge
if and only if either their first or their second coordinates differ by £1. See Figure
44

FIGURE 4.4. Cayley graph of Z2.

The Cayley graph of Z? with respect to the set of generators {£(1,0),4(1,1)}
has the same set of vertices as the above, but the vertical lines must be replaced
by diagonal lines.

EXAMPLE 4.64. Let G be the free group on two generators a,b. Take S =
{a,b,a=t,b=1}. The Cayley graph Cayley(G, S) is the 4-valent tree (there are four
edges incident to each vertex).

See Figure 4.5.
THEOREM 4.65. Fundamental group of every connected graph I is free.
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FIGURE 4.5. Free group.

PROOF. By axiom of choice, I' contains a maximal subtree A C I". Let I
denote the subdivision of T" where very edge e in £ = E(T") \ E(A) is subdivided in
3 sub-edges. For every such edge ¢ let ¢’ denote the middle 3rd. Now, add to A all
the edges in E(I") which are not of the form e’ (e € £), and the vertices of such
edges, of course, and let 7" denote the resulting tree. Thus, we obtain a covering of
IV by the simplicial tree 7" and the subgraph I's consisting of the pairwise disjoint
edges ¢/ (e € &), and the incident vertices. To this covering we can now apply
Seifert—Van Kampen Theorem and conclude that G = 7 (T) is free, with the free
generators indexed by the set £. O

COROLLARY 4.66. A connected graph is simply connected if and only if the
graph is a tree.

COROLLARY 4.67. 1. Ewvery free group F(X) is the fundamental group of the
bouquet B of | X| circles. 2. The universal cover of B is a tree T, which is isomor-
phic to the Cayley graph of F(X) with respect to the generating set X .

PrOOF. 1. By Theorem 4.65, G = m1(B) is free; furthermore, the proof also
shows that the generating set of G is identified with the set of edges of B. We
now orient every edge of B using this identification. 2. The universal cover T  of
B is a simply-connected graph, hence, a tree. We lift the orientation of edges of
B to orientation of edges of T. The group F(X) = m1(B) acts on T by covering
transformations, hence, the action on the vertex V(7T') set of T is simply-transitive.
Therefore, we obtain and identification of V(T') with G. Let v be a vertex of T. By
construction and the standard identification of 7y (B) with covering transformations
of T, every oriented edge e of B lifts to an oriented edge € of T of the form [v, w].
Conversely, every oriented edge [v, w] of T projects to an oriented edge of B. Thus,
we labeled all the oriented edges of T" with generators of F(X). Again, by the
covering theory, if an oriented edge [u, w] of T is labeled with a generator z € F(X),
then z sends u to w. Thus, T is isomorphic to the Cayley graph of F(X). d

COROLLARY 4.68. A group G is free if and only if it can act freely by automor-
phisms on a simplicial tree T



PROOF. By the covering theory, G = 71 (') where I' = T/G. Now, Theorem
4.65, G = m1(T) is free. See [Ser80]| for another proof and more general discussion
of group actions on trees. O

REMARK 4.69. The concept of a simplicial tree generalizes to the one of a real
tree. There are non-free groups acting isometrically and freely on real trees, e.g.,
surface groups and free abelian groups. Rips proved that every finitely generated
group acting freely and isometrically on a real tree is a free product of surface
groups and free abelian groups, see e.g. [Kap01] for a proof.

COROLLARY 4.70 (Nielsen—Schreier). FEvery subgroup H of a free group F is
itself free.

PROOF. Realize the free group F' as the fundamental group of a bouquet Bof
circles; the universal cover T' of B is a simplicial tree. The subgroup H < F also
acts on T freely. Thus, H is free. |

EXERCISE 4.71. Let G and H be finitely generated groups, with S and X
respective finite generating sets.

Consider the wreath product G H as defined in Definition 3.65, endowed with
the finite generating set canonically associated to S and X described in Exercise
4.10. For every function f : H — G denote by supp f the set of elements h € H
such that f(h) # 1¢.

Let f and g be arbitrary functions from H to G with finite support, and h, k
arbitrary elements in H. Prove that the word distance in G? H from (f, h) to (g, k)
with respect to the generating set mentioned above is

(4.5)  dist ((f,h), (g,k)) = D dists(f(x), g(x)) + Length(supp g~ f s h,k).
reH

where Length(supp g~ !f;h, k) is the length of the shortest path in Cayley(H, X)

starting in h, ending in k& and whose image contains the set suppg~'f.

Thus we succeeded in assigning to every finitely generated group G a met-
ric space Cayley(G,S). The problem, however, is that this assignment G —
Cayley(G, S) is far from canonical: different generating sets could yield completely
different Cayley graphs. For instance, the trivial group has the presentations:

( | ), (ala), {a,blab,ab®),...,

which give rise to the non-isometric Cayley graphs:

. el D

FIGURE 4.6. Cayley graphs of the trivial group.

The same applies to the infinite cyclic group:
In the above examples we did not follow the convention that S = S~!.

Note, however, that all Cayley graphs of the trivial group have finite diameter;
the same, of course, applies to all finite groups. The Cayley graphs of Z as above,
although they are clearly non-isometric, are within finite distance from each other
(when placed in the same Euclidean plane). Therefore, when seen from a (very)
large distance (or by a person with a very poor vision), every Cayley graph of a
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FIGURE 4.7. Cayley graphs of Z = (z|) and Z = (z,y|zy™').

finite group looks like a “fuzzy dot”; every Cayley graph of Z looks like a “fuzzy
line,” etc. Therefore, although non-isometric, they “look alike”.

EXERCISE 4.72. (1) Prove that if S and S are two finite generating sets of
G then the word metrics distg and distg on G are bi-Lipschitz equivalent,
i.e. there exists L > 0 such that

1
(4.6) fdists(g,g’) < distg(g,¢') < Ldists(g,4'),Vg,q' € G.

(2) Prove that an isomorphism between two finitely generated groups is a
bi-Lipschitz map when the two groups are endowed with word metrics.

CONVENTION 4.73. From now on, unless otherwise stated, by a metric on a
finitely generated group we mean a word metric coming from a finite generating
set.

EXERCISE 4.74. Show that the Cayley graph of a finitely generated infinite
group contains an isometric copy of R, i.e. a bi-infinite geodesic. Hint: Apply
Arzela-Ascoli theorem to a sequence of geodesic segments in the Cayley graph.

On the other hand, it is clear that no matter how poor your vision is, the Cayley
graphs of, say, {1}, Z and Z? all look different: They appear to have different
“dimension” (0, 1 and 2 respectively).

Telling apart the Cayley graph Cayley, of Z? from the Cayley graph Cayley,
of the Coxeter group

A= A(4,4,4) := (a,b,c|a®,b%, 3, (ab)*, (bc)?, (ca)®)

seems more difficult: They both “appear” 2-dimensional. However, by looking at
the larger pieces of Cayley; and Cayley,, the difference becomes more apparent:
Within a given ball of radius R in Cayley,, there seems to be less vertices than in
Cayley,. The former grows quadratically, the latter grows exponentially fast as R
goes to infinity.

The goal of the rest of the book is to make sense of this “fuzzy math”.

In Section 5.1 we replace the notion of an isometry with the notion of a quasi-
isometry, in order to capture what different Cayley graphs of the same group have
in common.



LEMMA 4.75. A finite index subgroup of a finitely generated group is finitely
generated.

PRrROOF. It follows from Theorem 5.29. We give here another proof, as the set
of generators of the subgroup found here will be used in future applications.

Let G be a group and S a finite generating set of G, and let H be a finite index
subgroup in G. Then G = H U |_]f:1 Hyg; for some elements g; € G. Consider

R = Q%Xk |9ils -
Then G = HB(1, R). We now prove that X = HN B(1,2R+1) is a generating set
of H.

Let h be an arbitrary element in H and let g9 = 1,91,...,9, = h be the
consecutive vertices on a geodesic in Cayley(G,S) joining 1 and h. In particular,
this implies that distg(1,h) = n.

For every 1 < i < n — 1 there exist h; € H such that distg(g;, h;) < R. Set
ho = 1 and h,, = h. Then distg(h;, hix1) < 2R + 1, hence h;11 = h;z; for some
x; € X, for every 0 < i < n— 1. It follows that h = h,, = x122 - x,, whence X
generates H and |h|x < |h|s = n. O

4.9. Volumes of maps of cell complexes and Van Kampen diagrams

The goal of this section is to describe several notions of volumes of maps and to
relate them to each other and to the word reductions in finitely-presented groups.
It turns out that most of these notions are equivalent, but, in few cases, there subtle
differences.

Recall that in section 2.1.4 we defined volumes of maps between Riemannian
manifolds. More generally, the same definition of volume of a map applies in the
context of Lipschitz maps of Euclidean simplicial complexes, i.e., simplicial com-
plexes where each k-simplex is equipped with the metric of the Euclidean simplex
where every edge has unit length. In order to compute n-volume of a map f, first
compute volumes of restrictions f|A;, for all n-dimensional simplices and then add
up the results.

4.9.1. Simplicial and combinatorial volumes of maps. Suppose that
X,Y are simplicial complexes equipped with standard metrics and f : X = Y
is a simplicial map, i.e., a map which sends every simplex to simplex so that the
restriction is linear. Then the n-dimensional simplicial volume sVol,, (f) of f is just
the number of n-dimensional simplices in the domain X. Note that this, somewhat
strange, concept, is independent of the map f but is, nevertheless, useful. The more
natural concept is the one of the combinatorial volume of the map f, namely,

Volu(f) = 3 LVol(f(4)
A n

where the sum is taken over all n-simplices in X and ¢, is the volume of the

Fuclidean simplex with unit edges. In other words, cVol, counts the number of

n-simplices in X which are not mapped by f to simplices of lower dimension.
Both definitions extend in the context of cellular maps of cell-complexes.
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DEFINITION 4.76. Let X,Y be n-dimensional almost regular cell complexes. A
cellular map f: X — Y is said to be regular if for every n-cell o in X either:

(a) f collapses o, i.e., f(o) C Y1) or

(b) f maps the interior of ¢ homeomorphically to the interior of an n-cell in Y.

For instance, simplicial map of simplicial complexes is regular.

We define the combinatorial n-volume ¢Vol, (f) of f to be the total number of
n~cells in X which are not collapsed by f. The combinatorial