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Abstract. We prove that the Krull dimension of the ring of holomorphic
functions of a connected complex manifold is infinite iff it is > 0.

Let R be a commutative ring. Recall that the Krull dimension dim(R) of R is
the supremum of lengths of chains of distinct proper prime ideals in R. Our main
result is:

Theorem 1. Let M be a connected complex manifold and H(M) be the ring
of holomorphic functions on M . Then the Krull dimension of H(M) either equals
0 (iff H(M) = C) or is infinite, iff M admits a nonconstant holomorphic function
M → C.

Proof. Our proof mostly follows the lines of the proof by Sasane [S], where Theorem
1 was proven in the case when M is a domain in C (we note that Henricksen [H] was
the first to prove that the ring of entire functions on C has infinite Krull dimension).
We will use the Axiom of Choice in two ways: (a) to establish existence of certain
maximal ideals and (b) to get the notion of the ultralimit of sequences of nonnegative
real numbers. The latter depends on a choice of a nonprincipal ultrafilter ω on N,
which we fix once and for all. A nonprincipal ultrafilter on N can be regarded as
a finitely-additive probability measure on N which vanishes on each finite subset
and takes the value 0 or 1 on each subset of N. Subsets of full measure are called
ω-large. The ultralimit of a sequence of (nonnegative) real numbers will be denoted

ω-lim
k→∞

xk,

it belong to R+ ∪ {∞}. For a sequence (pk) in a Hausdorff topological space X,
one defines the ultralimit

ω-lim
k→∞

pk

as a point a ∈ X such that for each neighborhood U of a, the set {k : pk ∈ U} is
ω-large.

We will need several elementary properties of ultralimits:
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1. For every sequence xk ∈ R+, the ultralmit

ω-lim
k→∞

xk ∈ [0,∞]

exists.
2. If a sequence (xk) has the ordinary limit, we also have

ω-lim
k→∞

xk = lim
k→∞

xk.

3.

ω-lim
k→∞

min(xk, yk) = min(ω-lim
k→∞

xk, ω-lim
k→∞

yk).

The latter property will be only used in the case when

ω-lim
k→∞

xk = ω-lim
k→∞

yk =∞

and we provide a quick proof in this situation: For each c ∈ R the sets

A = {k ∈ N : xk ≥ c}, B = {k ∈ N : yk ≥ c}

are ω-large. Therefore, their intersection C = A ∩B is also ω-large. However,

C = {k : min(xk, yk) ≥ c}.

Therefore,

ω-lim
k→∞

min(xk, yk) =∞.

We refer the reader to [DK] and [Go] for a detailed treatment of ultrafilters and
ultralimits.

Remark 2. An analytically inclined reader may prefer to use Banach limits of
sequences of real numbers instead of ultralimits. The existence of a Banach limit
depends upon the Hahn-Banach theorem which is a weak form of the Axiom of
Choice.

Recall that a valuation on a unital ring R is a map ν : R → R+ ∪ {∞} such
that:

1. ν(a+ b) ≥ min(a, b),
2. ν(ab) = ν(a) + ν(b).
3. ν(a) =∞ ⇐⇒ a = 0.
4. ν(1) = 0.
Below, given two sequences xk, yk ∈ R+ ∪ {∞}, we say that

yk � xk, k →∞

iff

ω-lim
k→∞

yk
xk

=∞

with the convention that ∞∞ = 1.

Our main technical result is:

Proposition 3. Suppose that R is a ring and νk is a sequence of valuations
on R for which there exists a sequence of elements an ∈ R such that

(1) νk(an)� νk(an−1), k →∞,

for every n. Then dim(R) =∞.
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Proof. This proposition is implicit in Theorem 2.2 of [S], and our arguments will
mostly follow his proof. For the following lemma, see Theorem 10.2.6 in [Coh] (see
also Proposition 4.8 of [Cla] or Theorem 1 in [K]).

Lemma 4. Let I be an ideal in a commutative ring A and M ⊂ A\I be a subset
closed under multiplication. Then there exists an ideal J ⊂ A containing I and
disjoint from M , so that J is maximal with respect to this property. Furthermore,
J is a prime ideal in A.

Define the ideal I < R by

I := {a ∈ R|∃k0 = k0(a) such that νk(a) ≥ 1,∀k > k0}.

Define the ideals In < R by

In := {a ∈ I|νk(a)� νk(an−1)}.

Then an ∈ In and, hence, In 6= 0 for every n. Define the subsets

Mn := {a ∈ I|ω-lim
k→∞

νk(a)

νk(an−1)
<∞};

they are closed under the multiplication. Then (1) implies that In+1 ⊂ In,Mn ⊂
Mn+1 for all n.

Clearly, In ∩Mn = ∅, but an ∈ In ∩Mn+1. For each n we let Jn denote the
set of ideals P ⊂ R such that In ⊂ P, P ∩Mn = ∅. By Lemma 4, every maximal
element P ∈ Jn is a prime ideal.

Lemma 5. Jn contains unique maximal element, which we will denote Pn in
what follows.

Proof. Suppose that P ′, P ′′ are two maximal elements of Jn. We define the ideal
P = P ′+P ′′. Clearly, P contains In. We claim that P is disjoint from Mn. Indeed,
given p′ ∈ P ′, p′′ ∈ P ′′, since p′ /∈Mn, p

′′ /∈Mn, we have

ω-lim
k→∞

νk(p′)

νk(an−1)
=∞,

ω-lim
k→∞

νk(p′′)

νk(an−1)
=∞.

Since

νk(p′ + p′′) ≥ min(νk(p′), νk(p′′)),

we obtain

ω-lim
k→∞

νk(p′ + p′′)

νk(an−1)
≥ ω-lim

k→∞

min(νk(p′), νk(p′′))

νk(an−1)
=∞.

Remark 6. This is the place in the proof where we really need ultralimits
rather than lim sup.

Thus, P ∈ Jn and, in view of maximality of P ′, P ′′, we obtain

P ′ = P = P ′′. �

For each n we define the ideal Qn := In + Pn+1.

Lemma 7. Qn ∩Mn = ∅.
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Proof. The proof is similar to the one of the previous lemma. Let q = c + p,
c ∈ In, p ∈ Pn+1. Since p /∈Mn+1, p /∈Mn as well. Therefore,

ω-lim
k→∞

νk(p)

νk(an−1)
=∞.

Since c ∈ In,

ω-lim
k→∞

νk(c)

νk(an−1)
=∞.

Therefore,

ω-lim
k→∞

νk(c+ p)

νk(an−1)
=∞

as well. Thus, q /∈Mn. �

Corollary 8. Qn ∈ Jn. In particular, Qn ⊂ Pn.

Proof. It suffices to note that In ⊂ Qn according to the definition of Qn. �

Lemma 9. Pn+1 ⊂ Pn and this inclusion is proper.

Proof. By the definition of Qn and Corollary 8, we have the inclusions

Pn+1 ⊂ Qn ⊂ Pn.

We now claim that Pn+1 6= Qn = In + Pn+1. Recall that an ∈ In ⊂ Qn and
an ∈Mn+1, while Mn+1 ∩ Pn+1 = ∅. Thus, an ∈ Qn \ Pn+1. �

We conclude that the ring R contains an infinite chain of distinct prime ideals
Pn and, therefore, has infinite Krull dimension. Proposition 3 follows. �

We will need the following classical result, see [Con, Ch. VII, Theorem 5.15]:

Theorem 10. Let D ⊂ C be a domain, cj ∈ D be a sequence which does not
accumulate anywhere in D and mj be a sequence of positive integers. Then there
exists a holomorphic function g in D which has zeroes only at the points cj and
such that mj is the order of zero of g at cj , j ∈ N.

We can now prove Theorem 1. If M has only constant holomorphic functions
then H(M) = C and, hence, dimH(M) = 0. Thus, assume that M admits a
nonconstant holomorphic function h : M → C. We let D denote the image of h.
Pick a sequence ck ∈ D which converges to a point in Ĉ \ D and which consists

of regular values of h. (Here Ĉ is the Riemann sphere.) For each ck the preimage
Ck := h−1(ck) is a complex submanifold in M ; in each Ck pick a point bk. Define
valuations

νk : H(M)→ Z+ ∪ {∞}
by νk(f) := ordbk(f), the total order of f at bk, cf. [Gu, Chapter C, Definition 1].

For each n ∈ N define the sequence mnk = nk and let gn be a holomorphic
function on D (as in Theorem 10) which has zero of the order mnk at ck, k ∈ N.
Define an := gn ◦ h ∈ H(M). Then for each k,

lim
k→∞

νk(an+1)

νk(an)
= lim

k→∞

(n+ 1)k

nk
=∞.

Therefore, by Proposition 3, dim(H(M)) =∞. �
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Remark 11. 1. We refer the reader to Section 5.3 of [Cla] for further discussion
of algebraic properties of rings of holomorphic functions.

2. For every Stein manifold M (of positive dimension), the ring H(M) has
infinite Krull dimension. In particular, this applies to any noncompact connected
Riemann surfaces (since every such surface is Stein, [BS]).

3. Noncompact connected complex manifolds M of dimension > 1 can have
H(M) = C; for instance, take M to be the complement to a finite subset in a
compact connected complex manifold (of dimension > 1).
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