Krull dimensions of rings of holomorphic functions

Michael Kapovich

ABSTRACT. We prove that the Krull dimension of the ring of holomorphic
functions of a connected complex manifold is infinite iff it is > 0.

Let R be a commutative ring. Recall that the Krull dimension dim(R) of R is
the supremum of lengths of chains of distinct proper prime ideals in R. Our main
result is:

THEOREM 1. Let M be a connected complex manifold and H (M) be the ring
of holomorphic functions on M. Then the Krull dimension of H (M) either equals
0 (iff H(M) = C) or is infinite, iff M admits a nonconstant holomorphic function
M — C.

Proof. Our proof mostly follows the lines of the proof by Sasane [S], where Theorem
1 was proven in the case when M is a domain in C (we note that Henricksen [H] was
the first to prove that the ring of entire functions on C has infinite Krull dimension).
We will use the Axiom of Choice in two ways: (a) to establish existence of certain
maximal ideals and (b) to get the notion of the ultralimit of sequences of nonnegative
real numbers. The latter depends on a choice of a nonprincipal ultrafilter w on N,
which we fix once and for all. A nonprincipal ultrafilter on N can be regarded as
a finitely-additive probability measure on N which vanishes on each finite subset
and takes the value 0 or 1 on each subset of N. Subsets of full measure are called
w-large. The ultralimit of a sequence of (nonnegative) real numbers will be denoted

w-lim xg,

k— o0
it belong to Ry U {oco}. For a sequence (py) in a Hausdorff topological space X,
one defines the ultralimit

w-lim py,
k—o0

as a point a € X such that for each neighborhood U of a, the set {k : pp € U} is
w-large.

We will need several elementary properties of ultralimits:

1991 Mathematics Subject Classification. Primary 32A10, 16P70.

Key words and phrases. Krull dimension; ring of holomorphic functions.

The author was supported in part by the NSF Grant DMS-12-05312 and by the Korea
Institute for Advanced Study (KIAS).

1



2 MICHAEL KAPOVICH

1. For every sequence xj € Ry, the ultralmit
w-lim xy, € [0, o0]
k—o0
exists.
2. If a sequence (xy) has the ordinary limit, we also have
w-limx, = lim .
k—o0 k k—o0 k
w-lim min(xg, yx) = min(w-lim zj, w-lim yy,).
k—o0 k— o0 k—o0
The latter property will be only used in the case when

w-lim g = w-limy, = oo
k—o00 k—o00

and we provide a quick proof in this situation: For each ¢ € R the sets
A={keN:xy>c}, B={keN:y,>c}
are w-large. Therefore, their intersection C' = A N B is also w-large. However,
C = {k : min(zg,yr) > c}.
Therefore,

w-lim min(xy, yx) = oo.
k— o0

We refer the reader to [DK] and [Go] for a detailed treatment of ultrafilters and

ultralimits.

REMARK 2. An analytically inclined reader may prefer to use Banach limits of
sequences of real numbers instead of ultralimits. The existence of a Banach limit
depends upon the Hahn-Banach theorem which is a weak form of the Axiom of

Choice.

Recall that a valuation on a unital ring R is a map v : R — R4 U {oo} such

that:
1. v(a +b) > min(a,b),
2. v(ab) = v(a) + v(b)
3. v(a) =00 < a=0
4. v(1) =

Below, given two sequences xy, yx € Ry U {oo}, we say that
Y > TR, k — 00

iff
.Yk
w-lim = = oo
k—oo T

with the convention that & = 1.

Our main technical result is:

PROPOSITION 3. Suppose that R is a ring and vy is a sequence of valuations

on R for which there exists a sequence of elements a,, € R such that
(1) Vk(an) > Vk(an71)7 k — o0,

for every n. Then dim(R) = cc.
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Proof. This proposition is implicit in Theorem 2.2 of [S], and our arguments will
mostly follow his proof. For the following lemma, see Theorem 10.2.6 in [Coh] (see
also Proposition 4.8 of [Cla] or Theorem 1 in [K]).

LEMMA 4. Let I be an ideal in a commutative ring A and M C A\T be a subset
closed under multiplication. Then there exists an ideal J C A containing I and
disjoint from M, so that J is maximal with respect to this property. Furthermore,
J is a prime ideal in A.

Define the ideal I < R by
I :={a € R|3k¢ = ko(a) such that vx(a) > 1,Vk > ko}.
Define the ideals I, < R by
I, :={a € Ilvk(a) > vi(an—1)}
Then a,, € I,, and, hence, I,, # 0 for every n. Define the subsets

vi(a)

M, ={ac€ I|czilor£1 or(an1) < o0};
they are closed under the multiplication. Then (1) implies that I,,41 C I,,, M,, C
M, 44 for all n.
Clearly, I, N M,, = 0, but a,, € I, N M, 1. For each n we let J,, denote the
set of ideals P C R such that I,, C P,P N M, = . By Lemma 4, every maximal
element P € 7, is a prime ideal.

LEMMA 5. J, contains unique maximal element, which we will denote P, in
what follows.

Proof. Suppose that P’, P"” are two maximal elements of 7,. We define the ideal
P = P'+ P". Clearly, P contains I,,. We claim that P is disjoint from M,,. Indeed,
given p’ € P/, p” € P", since p' ¢ M,,,p" ¢ M,,, we have

()
w-lim ———— = o0,
k— o0 Vk(an—l)
/!

w-lim v (1) = 00

k— o0 yk(an,l)
Since

vi(p' +p") > min(vk(p'), vie(p")),

we obtain

aW o) i), )
T k—oo '

w-lim
Vg (an— 1 )

k—oo Vg (an_l

REMARK 6. This is the place in the proof where we really need ultralimits
rather than lim sup.

Thus, P € 7, and, in view of maximality of P’, P"”, we obtain
P=pP=P' 0O

For each n we define the ideal Q,, := I, + Pp41.

LEMMA 7. Q, N M, = 0.
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Proof. The proof is similar to the one of the previous lemma. Let ¢ = ¢ + p,
c€l,,p€ P,y;. Since p ¢ M, 11, p ¢ M, as well. Therefore,

Since c € I,,,

i 1%
w-lim =
k—o0 Vk(an,l)
Therefore,
wolim 2P
k—o0 Vk(an_l)
as well. Thus, q ¢ M,,. O

COROLLARY 8. @, € J,. In particular, Q, C P,.

Proof. 1t suffices to note that I,, C @, according to the definition of @,. (]

LEMMA 9. P,4; C P, and this inclusion is proper.

Proof. By the definition of @,, and Corollary 8, we have the inclusions
Pn+1 C Qn C Pn

We now claim that P,11 # Qn = I, + Pp+1. Recall that a, € I, C @, and
ap € My 41, while M, 11 NP, =0. Thus, a, € Qp \ Pry1. O

We conclude that the ring R contains an infinite chain of distinct prime ideals
P,, and, therefore, has infinite Krull dimension. Proposition 3 follows. ]

We will need the following classical result, see [Con, Ch. VII, Theorem 5.15]:

THEOREM 10. Let D C C be a domain, ¢; € D be a sequence which does not
accumulate anywhere in D and m; be a sequence of positive integers. Then there
exists a holomorphic function g in D which has zeroes only at the points c; and
such that m; is the order of zero of g at ¢;, j € N.

We can now prove Theorem 1. If M has only constant holomorphic functions
then H(M) = C and, hence, dim H(M) = 0. Thus, assume that M admits a
nonconstant holomorphic function h : M — C. We let D denote the image of h.
Pick a sequence ¢y € D which converges to a point in ¢ \ D and which consists
of regular values of h. (Here C is the Riemann sphere.) For each ¢ the preimage
C) = h™1(c) is a complex submanifold in M; in each Cj pick a point by. Define
valuations

v : HM) — Zy4 U {0}
by vi(f) := ords, (f), the total order of f at by, cf. [Gu, Chapter C, Definition 1].

For each n € N define the sequence m,, = n* and let g, be a holomorphic
function on D (as in Theorem 10) which has zero of the order m,j at ¢k, k € N.
Define a,, := g, o h € H(M). Then for each k,

n L*
lim 7%(& +1) = lim 7(71—’— ) =00
k—o0 yk(an) k—o0 nk

Therefore, by Proposition 3, dim(H (M)) = oco. O
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REMARK 11. 1. We refer the reader to Section 5.3 of [Cla] for further discussion
of algebraic properties of rings of holomorphic functions.

2. For every Stein manifold M (of positive dimension), the ring H(M) has
infinite Krull dimension. In particular, this applies to any noncompact connected
Riemann surfaces (since every such surface is Stein, [BS]).

3. Noncompact connected complex manifolds M of dimension > 1 can have
H(M) = C; for instance, take M to be the complement to a finite subset in a
compact connected complex manifold (of dimension > 1).
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