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1. Introduction

The goal of this survey is to give an overview (mainly from the topological per-
spective) of the theory of Kleinian groups in higher dimensions. The survey grew
out of a series of lectures I gave in the University of Maryland in the Fall of 1991.
An early (much shorter) version of this paper appeared as the preprint [110]. In
this survey I collect well-known facts as well as less-known and new results. Hope-
fully, this will make the survey interesting to both non-experts and experts. We
also refer the reader to Tukia’s short survey [219] of higher-dimensional Kleinian
groups.

There is a vast variety of Kleinian groups in higher dimensions: It appears
that there is no hope for a comprehensive structure theory similar to the theory
of discrete groups of isometries of H3. I do not know a good guiding principle
for the taxonomy of higher-dimensional Kleinian groups. In this paper the higher-
dimensional Kleinian groups are organized according to the topological complexity
of their limit sets. In this setting one of the key questions that I will address is the
interaction between the geometry and topology of the limit set and the algebraic
and topological properties of the Kleinian group.

During this work the I was partially supported by various NSF grants, especially DMS-8902619
at the University of Maryland and DMS-04-05180 at UC Davis. Most of this work was done when
I was visiting the Max Plank Institute for Mathematics in Bonn.
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This paper is organized as follows. In Section 2 we consider the most basic
concepts of the theory of Kleinian groups, e.g., domain of discontinuity, limit set,
geometric finiteness, etc. In Section 3 we discuss various ways to construct Kleinian
groups and list the tools of the theory of Kleinian groups in higher dimensions. In
Section 4 we review the homological algebra used in the paper. In Section 5 we
state topological rigidity results of Farrell and Jones and the coarse compact core
theorem for higher-dimensional Kleinian groups. In Section 6 we discuss various
notions of equivalence between Kleinian groups: From the weakest (isomorphism)
to the strongest (conjugacy). In Section 7 we consider groups with zero-dimensional
limit sets; such groups are relatively well understood. Convex-cocompact groups
with 1-dimensional limit sets are discussed in Section 8. Although the topology
of the limit sets of such groups is well understood, their group-theoretic structure
is a mystery. We know very little about Kleinian groups with higher-dimensional
limit sets, thus we restrict the discussion to Kleinian groups whose limit sets are
topological spheres (Section 9). We then discuss Ahlfors finiteness theorem and its
failure in higher dimensions (Section 10). We then consider the representation va-
rieties of Kleinian groups (Section 11). Lastly we discuss algebraic and topological
constraints on Kleinian groups in higher dimensions (Section 12).

Acknowledgments. I am grateful to C. McMullen, T. Delzant, A. Nabutovsky and
J. Souto for several suggestions, and to L. Potyagailo for a number of comments,
suggestions and corrections. I am also grateful to the referee for numerous correc-
tions.
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2. Basic definitions

Mboébius transformations. For the lack of space, our discussion of the basics of
Kleinian groups below is somewhat sketchy. For the detailed treatment we refer
the reader to [18, 39, 116, 138, 190]. We let B"*! denote the closed ball H* T US";
its boundary S” is identified via the stereographic projection with R" = R"U{oo}.
A horoball B in H" ™ is a round ball in H"*! which is tangent to the boundary
sphere S™. The point of tangency is called the (hyperbolic) center of B.

Let Mob(S™) denote the group of all Mébius transformations of the n-sphere
S™, i.e., compositions of inversions in S™. The group Mob(S") admits an extension
to the hyperbolic space H"*!, so that Mob(S") = Isom(H"*1), the isometry group
of H"+1,

For elements v € Mob(S") define the displacement function

dy(z) :=d(x,y(z)), z=€H"
The elements v of Mob(S") are classified as:

1. Hyperbolic: The function d, is bounded away from zero. Its minimum is
attained on a geodesic A, C H""! invariant under . The ideal end-points
of A, are the fixed points of v in S™.

2. Parabolic: The function d, is positive but has zero infimum on H"+!: such
elements have precisely one fixed point in S™.

3. Elliptic: ~y fixes a point in H"*!.

The group Mob(S") is isomorphic to an index 2 subgroup in the Lorentz
group O(n + 1,1), see, e.g., [190]. In particular, Mob(S") is a matrix group. Sel-
berg’s lemma [203] implies that every finitely generated group of matrices contains
a finite index subgroup which is torsion-free. A group T is said to wirtually satisfy
a property X if it contains a finite index subgroup I'" C T', such that I satisfies X.
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Therefore, every finitely generated group of matrices is virtually torsion-free. More-
over, every finitely-generated matrix group is residually finite, i.e., the intersection
of all its finite-index subgroups is trivial, see [151, 203]. This, of course, applies to
the finitely generated subgroups of Mob(S") as well.

Definition 2.1. A discrete subgroup I' C Mob(S") is called a Kleinian group.

Dynamical notions. The discontinuity set Q(T') of a group I' C Mob(S"), is the
largest open subset in S™ where I' acts properly discontinuously. Its complement
S™\ Q(T') is the limit set A(T') of the group T'. Equivalently, the limit set of a
Kleinian group can be described as the accumulation set in the sphere S™ of an orbit
I"- 0. Here o is an arbitrary point in H**!. A Kleinian group is called elementary
if its limit set is finite, i.e., is either empty, or consists of one or of two points.

We will use the notation M™(T") for the n-dimensional quotient Q(T")/T" and
M"+(T) for the n + 1-dimensional quotient (H"** U Q(T))/T.

For a closed subset A C S™, let Hull(A) denote its conver hull in H* ™1, i.e.,
the smallest closed convex subset H of H"*! such that

clgn+1 (H)NS™ = AL

Clearly, if A is a point, then Hull(A) does not exist. Otherwise, Hull(A) exists
and is unique. We declare Hull(A) to be empty in the case when A is a single
point.

One way to visualize the convex hull Hull(A) is to consider the projective
model of the hyperbolic space, where the geodesic lines are straight line segments
contained in the interior of B"*!. Therefore, the Euclidean notion of convexity
coincides with the hyperbolic notion. This implies that the convex hull in this
model can be described as follows: Hull(A) is the intersection of the Euclidean
convex hull of A with the interior of B"*+!.

Suppose that A = A(T) is the limit set of a Kleinian group I' € Mob(S").
The quotient Hull(A)/T is called the convex core of the orbifold N = H"*!/T.
It is characterized by the property that it is the smallest closed convex subset in
N, whose inclusion to N is a homotopy-equivalence. For € > 0 consider the open
e-neighborhood Hullc(A) of Hull(A) in H"*!. Since Hull.(A) is T-invariant, we
can form the quotient Hull.(A)/T. Then Hull.(A)/T is the e-neighborhood of the
convex core.

Geometric finiteness. We now arrive to one of the key notions in the theory of
Kleinian groups:
Definition 2.2. A Kleinian group I' € Mob(S") is called geometrically finite if:
(1) T is finitely generated, and
(2) vol(Hull.(A(I"))/T) < cc.

In a number of important special cases, e.g., when I is torsion-free, or n = 2,
or when A(T') = S", the assumption (1) follows from (2), see [39]. However, E.
Hamilton [93] constructed an example of a Kleinian group I' € Mob(S?) for which
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(2) holds but (1) fails. This group contains finite order elements of arbitrarily high
order; by Selberg’s lemma such groups cannot be finitely-generated.

A Kleinian group I' C Mob(S?) is called a lattice if H" ™! /T" has finite volume.
Equivalently, A(T') = S™ and T' is geometrically finite. A lattice is cocompact (or
uniform) if H"*1/T" is compact.

One can characterize geometrically finite groups in terms of their limit sets.
Before stating this theorem we need two more definitions.

Definition 2.3. A limit point £ € A(T") is called a conical limit point if there exists
a geodesic o C H"*! asymptotic to &, a point o € H"*!, a number r < oo, and a
sequence y; € I' so that

1. lim; v;(0) = €.

2. d(yi(0),a) <r.

The reason for this name comes from the shape of the r-neighborhood of
the vertical geodesic o in the upper half-space model of H"*!: It is a Euclidean
cone with the axis «. Equivalently, one can describe the conical limit points of
nonelementary groups as follows (see [14, 39]):

¢ € A(T) is a conical limit point if and only if for every n € A(T) \ {£} there
exists a point ¢ and a sequence v; € I' such that:

1. lim; v;(¢) = € for every ¢ € A(T) \ {¢}.
2. Tim; ;7 (€) # limng 377 ().
The set of conical limit points of a Kleinian group I' is denoted A.(T").

Definition 2.4. A point £ € A(T") is called a bounded parabolic point if it is the fixed
point of a parabolic subgroup II C T" and (A(T) — {£})/II is compact.

Below is a dynamical characterizations of geometrically finite groups:

Theorem 2.5. (A. Beardon and B. Maskit [14], B. Bowditch [39]) A Kleinian group
I is geometrically finite if and only if each limit point § € A(T") is either a conical
limit point or a bounded parabolic point.

C. Bishop [32] proved that one can drop the word bounded in the above
theorem. We refer the reader to Bowditch’s paper [39] for the proof of other criteria
of geometric finiteness collected in Theorems 2.6, 2.7, 2.8 below. (The case n = 2
is treated in [152] and [213].)

Theorem 2.6. 1. If a Kleinian subgroup I' C Mob(S") admits a convez funda-
mental polyhedron with finitely many faces then it is geometrically finite.
2. Let T' C Mob(S") be a geometrically finite Kleinian group so that either (a)
n <2, or (b) T contains no parabolic elements, or (c) T is a lattice.
Then T admits a convex fundamental polyhedron with finitely many
faces.

On the other hand, there are geometrically finite subgroups of Mob(S?)
which do not admit a convex fundamental polyhedron with finitely many faces,
see [10].
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Theorem 2.7. Let I' C Mob(S") be a Kleinian subgroup containing no parabolic
elements. Then the following are equivalent:

(a) T is geometrically finite.
(b) Hull(A(T))/T is compact.
(c) M"HL(T) is compact.

If ' is geometrically finite and contains no parabolic elements, it is called
convez-cocompact. We will frequently use the fact that every convex-cocompact
Kleinian group is Gromouv-hyperbolic, see, e.g., [44].

The criterion given in Theorem 2.7 generalizes to the case of groups with
parabolic elements, although the statement becomes more complicated:

Theorem 2.8. The following are equivalent:

(a) T is geometrically finite.

(b) There exists a pairwise disjoint T'-invariant collection of open horoballs B; C
H"+,i € I, which are centered at fized points of parabolic subgroups of T,
such that the quotient

(Hull(A(F))\ U Bi> /T
iel
18 compact.
(¢c) Let1l;,i € I be the collection of mazimal (virtually) parabolic subgroups of T'.
For each i there exists a I;-invariant conver subset C; C B" T, so that the

quotient
(H"“ vam\ | Ci> /T
il

is compact. If Q(T) = 0, then one can take C; = B;, a horoball in H" 1.

If n =1, then every finitely generated Kleinian group is geometrically finite.
The proof is rather elementary, see, e.g., [53]. For n > 2 this implication is no
longer true. The first (implicit) examples were given by L. Bers, they are singly-
degenerate groups:

Definition 2.9. A finitely generated nonelementary Kleinian subgroup of Mob(S?)
is singly degenerate if its domain of discontinuity is simply-connected, i.e., home-
omorphic to the 2-disk.

L. Bers [19] proved that singly degenerate Kleinian groups exist and are never
geometrically finite. The first explicit examples of finitely generated geometrically
infinite Kleinian subgroups I' of Mob(S?) were given by T. Jgrgensen [104]. In
Jorgensen’s examples, I appears as a normal subgroup of a lattice Ic Mob(S?)
with T’ /T 2 Z. Remarkably, all known examples of finitely-generated geometrically
infinite Kleinian subgroups of Mob(S") can be traced to the 2-dimensional exam-
ples. More precisely, every known finitely-generated geometrically infinite Kleinian



Kleinian Groups 491

subgroup I' C Mob(S") admits a decomposition as the graph of groups
(g7 FU? F€)7

where at least one of the vertex groups I, is either a geometrically infinite subgroup
contained in Mob(S?), or is a quasiconformal deformations of such.

Problem 2.10. Construct examples of finitely-generated geometrically infinite sub-
groups of Mob(S"), n > 3, which do not have the 2-dimensional origin as above.

Assumption 2.11. From now on we will assume that all Kleinian groups are finitely
generated and torsion-free, unless stated otherwise.

Note that the second part of this assumption is not very restrictive because
of Selberg’s lemma.

Cusps and tubes. The I'-conjugacy classes [II] of maximal parabolic subgroups II
of a Kleinian group I' are called cusps of I'. More geometrically, cusps of I' can
be described using the thick-thin decomposition of the quotient manifold M =
H"*!/T. Given a positive number € > 0, let M, denote the collection of points
z in M such that there exists a homotopically nontrivial loop « based at x, so
that the length of v is at most €. Then M( ) is the complement of M q in M.
According to Kazhdan-Margulis lemma [130], there exists a number p = pi, 41 > 0
such that for every Kleinian group I' and every 0 < € < pu, every component
of M, has a wvirtually abelian fundamental group. The submanifold M ¢ is
called the thin part of M and its complement the thick part of M. The compact
components of Mg are called tubes and the noncompact components are called
CUSPS.

Then the cusps of I are in bijective correspondence with the cusps in Mg

For every cusp [II] in I', there exists a noncompact component C' C Mg,
so that II = m1(C). Conversely, for each cusp C' C M, there exists a maximal
parabolic subgroup IT C T' such that IT = 71 (C).

Taking the I'-conjugacy class of II reflects the ambiguity in the choice of the base-
point needed to identify 71 (M) and T'.

If n < 2 and the manifold M is oriented, then the components C; of M ¢
are convex: The cusps in M are quotients of horoballs in H" ™!, while the compact
components T; of Mg ¢ are metric R;-neighborhoods of closed geodesics v; C M.
In higher dimensions (n > 3) convexity (in general) fails. However every tube
T; in Mg, is a finite union of convex sets containing a certain closed geodesic
v C T;. In particular, every tube T; is homeomorphic to a disk bundle over S'.
A similar, although more complicated description, holds for the cusps, where one
has to consider (in general) a union of infinitely many convex subsets. See, e.g.,
[121].

Mbobius structures. In this paper we shall also discuss the subject closely related
to the theory of Kleinian groups, namely Mobius structures. When M is a smooth
manifold of dimension > 3, a Mébius (or flat conformal) structure K on a M is
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the conformal class of a conformally-Euclidean Riemannian metric on M. Topo-
logically, K is a maximal Mdbius atlas on M, i.e., an atlas with Mdbius transition
maps. Thus, for each Kleinian group I' and T-invariant subset Q@ C Q(T'), the
standard Mobius structure on 2 C S™ projects to a Mobius structure Kt on the
manifold Q/T. The Mobius structures of this type are called uniformizable.

Complex-hyperbolic Kleinian groups. Instead of considering the isometry group of
the hyperbolic space, one can consider other negatively curved symmetric spaces,
for instance, the complez-hyperbolic n-space CH™ and its group of automorphisms
PU(n, 1). From the analytical viewpoint, CH" is the unit ball in C"* and PU(n, 1)
is the group of biholomorphic automorphisms of this ball. The Bergman metric on
CH"™ is a Kahler metric of negative sectional curvature. The discrete subgroups
of PU(n,1) are complex-hyperbolic Kleinian groups. They share many properties
with Kleinian groups. In fact, nearly all positive results stated in this survey for
Kleinian subgroups of Mob(S™) (n > 3) are also valid for the complex-hyperbolic
Kleinian groups! (One has to replace virtually abelian with virtually nilpotent in
the discussion of cusps.) There exists an isometric embedding H" — CH"™ which
induces an embedding of the isometry groups and therefore complex-hyperbolic
Kleinian groups (n > 4) also inherit the pathologies of the higher-dimensional
Kleinian groups. We refer the reader to [80, 81, 199] for detailed discussion.

3. Ways and means of Kleinian groups

3.1. Ways: Sources of Kleinian groups

The following is a list of ways to construct Kleinian groups.

(a) Poincaré fundamental polyhedron theorem (see, e.g., [190] for a very
detailed discussion, as well as [157]). This source is, in principle, the most general.
The Poincaré fundamental polyhedron theorem asserts that given a polyhedron
® in H"*! and a collection of elements 71,72,...,7,... of Mob(S?), pairing
the faces of ®, under certain conditions on this data, the group I' generated by
V1,92 - -5 Vs - - - 18 Kleinian and ® is a fundamental domain for the action of the
group I on H* 1,

Every Kleinian group has a convex fundamental polyhedron (for example, the
Dirichlet fundamental domain). However, in practice, the Poincaré fundamental
polyhedron theorem is not always easy to use, especially if ® has many faces and n
is large. This theorem was used, for instance, to construct non-arithmetic lattices
in Mob(S™) (see [149, 150, 221]), as well as other interesting Kleinian groups, see,
e.g., [60, 98, 111, 139, 191].

(b) Klein—-Maskit Combination Theorems (see, e.g., [138] and [157]). Suppose
that we are given two Kleinian groups I'1,I's € Mob(S*) which share a common
subgroup I's, or a single Kleinian group I'y and a Mobius transformation 7 €
Mob(S") which conjugates subgroups I's,I'; C I';. The Combination Theorems
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provide conditions which guarantee that the group I' C Mob(S") generated by I'y
and 'y (or by I'; and 7) is again Kleinian and is isomorphic to the amalgam

['=Ty #r, 'y,
or to the HNN extension
' 2Tyxp, = HNN(I'q, 7).

The proofs of the Combination Theorems generalize the classical “ping-pong” ar-
gument due to Schottky and Klein. The Combination Theorems also show that the
quotient manifold M™(T') of the group I is obtained from M™(T'y), M™(T'y) (or
M(T)) via some “cut-and-paste” operation. Moreover, Combination Theorems
generalize to graph of groups. There should be a generalization of Combination
Theorems to complezes of groups (see, e.g., [44] for the definition); however, to the
best of my knowledge, nobody worked out the general result, see [118] for a special
case.

(c) Arithmetic groups and their subgroups (see, e.g., [148] and [222]). A
subgroup I' C O(n, 1) is called arithmetic if there exists an embedding

t:0(n,1) — GL(N,R),
such that the image ¢«(I") is commensurable with the intersection

1(O(n,1)) N GL(N,Z).
Recall that two subgroups I'y,I's C G are called commensurable if 'y N Ty has
finite index in both I'y and I's.

Below is a specific construction of arithmetic groups. Let f be a quadratic
form of signature (n, 1) in n+1 variables with coefficients in a totally real algebraic
number field K C R satisfying the following condition:

(*) For every nontrivial (i.e., different from the identity) embedding o : K — R,
the quadratic form f? is positive definite.

Without loss of generality one may assume that this quadratic form is diag-
onal. For instance, take

fl@) = —V2ag +ai + -+

We now define discrete subgroups of Isom(H™) using the form f. Let A denote
the ring of integers of K. We define the group I' :== O(f, A) consisting of matrices
with entries in A preserving the form f. Then T is a discrete subgroup of O(f,R).
Moreover, it is a lattice: its index 2 subgroup

I = 0'(f,A) == O(f,A) N O'(f,R)

acts on H™ so that H" /T’ has finite volume. Such groups I' (and subgroups of
Isom(H™) commensurable to them) are called arithmetic subgroups of the simplest
type in O(n, 1), see [222].
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Remark 3.1. If T' C O(n,1) is an arithmetic lattice so that either T' is non-
cocompact or n is even, then it follows from the classification of rational structures
on O(n, 1) that T" is commensurable to an arithmetic lattice of the simplest type.
For odd n there is another family of arithmetic lattices given as the groups of
units of appropriate skew-Hermitian forms over quaternionic algebras. Yet other
families of arithmetic lattices exist for n = 3 and n = 7. See, e.g., [222].

We refer the reader to [148] for the detailed treatment of geometry and topol-
ogy of arithmetic subgroups of Mob(S?).

(d) Small deformations of a given Kleinian group. We discuss this construc-
tion in detail in Section 11.1. The idea is to take a Kleinian group I' C Mob(S")
and to “perturb it a little bit”, by modifying the generators slightly (within
Mob(S")) and preserving the relators. The result is a new group I'V which may or
may not be Kleinian and even if it is, I is not necessarily isomorphic to I'. How-
ever if T' is convex-cocompact, IV is again a convex-cocompact group isomorphic
to I', see Theorem 11.12.

(e) Limits of sequences of Kleinian groups, see Section 11.3. Take a sequence
I'; of Kleinian subgroups of Mob(S") and assume that it has a limit I': It turns out
that there are two ways to make sense of this procedure (algebraic and geometric
limit). In any case, I is again a Kleinian group. Even if the (algebraic) limit does
not exist as a subgroup of Mob(S"), there is a way to make sense of the limiting
group as a group of isometries of a metric tree. This logic turns out to be useful
for proving compactness theorems for sequences of Kleinian groups.

(f) Differential-geometric constructions of hyperbolic metrics. The only (but
spectacular) example where it has been used is Perelman’s work on Ricci flow and
proof of Thurston’s geometrization conjecture. See [134, 173, 183, 184]. However
applicability of this tool at the moment appears to be limited to 3-manifolds.

A beautiful example of application of (b) and (c¢) is the construction of
M. Gromov and I. Piatetski-Shapiro [88] of non-arithmetic lattices in Mob(S").
Starting with two arithmetic groups I'; (j = 1,2) they first “cut these groups in
half”, take “one half” A; C I'; of each, and then combine A; and A, via Maskit
Combination. The construction of Kleinian groups in [89] (see also Section 9.1) is
an application of (b), (¢) and (d). Thurston’s hyperbolic Dehn surgery theorem is
an example of (e). One of the most sophisticated constructions of Kleinian groups
is given by Thurston’s hyperbolization theorem (see, e.g., [116], [180], [181]); still,
it is essentially a combination (a very complicated one!) of (b), (d) and (e).

Remark 3.2. There is potentially the sixth source of Kleinian groups in higher
dimensions: monodromy of linear ordinary differential equations. However, to the
best of my knowledge, the only example of its application relevant to Kleinian
groups, is the construction of lattices in PU(n,1) (i.e., the isometry group of the
complex-hyperbolic n-space) by Deligne and Mostow, see [62].
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3.2. Means: Tools of the theory of Kleinian groups in higher dimensions

Several key tools of the “classical” theory of Kleinian subgroups of Mob(S?)
(mainly, the Beltrami equation and pleated hypersurfaces) are missing in higher
dimensions. Below is the list of main tools that are currently available.

(a) Dynamics, more specifically, the convergence property. Namely, every
sequence of Mébius transformations v; € Mob(S™) either contains a convergent
subsequence or contains a subsequence which converges to a constant map away
from a point in S™. See, e.g., [116].

(b) Kazhdan-Margulis lemma and its corollaries.

It turns out that the lion share of the general results about higher-dimensional
Kleinian groups is a combination of (a) and (b), together with some hyperbolic
geometry.

(¢) Group actions on trees and Rips theory. This is a very potent tool for
proving compactness results for families of representations of Kleinian groups, see
for instance Theorem 11.16.

(d) Barycentric maps. These maps were originally introduced by A. Douady
and C. Earle [65] as a tool of the Teichmiiller theory of Riemann surfaces. In the
hands of G. Besson, G. Courtois and S. Gallot these maps became a powerful
analytic tool of the theory of Kleinian groups in higher dimensions, see, e.g., [21,
22|, as well as Theorems 10.21 and 11.24 in this survey. In contrast, equivariant
harmonic maps which proved so useful in the study of, say, Kahler groups, seem
at the moment to be only of a very limited use in the theory of Kleinian groups
in higher dimensions.

(e) Ergodic theory of the actions of I' on its limit set and Patterson—Sullivan
measures. See for instance [177, 208] and the survey of P. Tukia [219].

(f) Conformal geometric analysis. This is a branch of (conformal) differential
geometry concerned with the analysis of the conformally-flat Riemannian metrics
on M™(T') = Q(T")/T. This tool tends to work rather well in the case when M™(T")
is compact. The most interesting examples of this technique are due to R. Schoen
and S-T. Yau [198], S. Nayatani [176], A. Chang, J. Qing, J. and P. Yang, [54],
and H. Izeki [100, 101, 102).

(g) Infinite-dimensional representation theory of the group Mob(S"). The
only (but rather striking) example of its application is Y. Shalom’s work [204].

(h) Topological rigidity theorems of Farrell and Jones: See Section 5.

4. A bit of homological algebra

Why does one need homological algebra in order to study higher-dimensional
Kleinian groups?
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Essentially the only time one encounters group cohomology with twisted co-
efficients in the study of Kleinian subgroups of Mob(S?), is in the proof of Ahlfors’
finiteness theorem, see [136]. Another (minor) encounter appears in the proof of
the smoothness theorem for deformation spaces of Kleinian groups, Section 8.8 in
[116]. Otherwise, homological algebra is hardly ever needed. The main reason for
this, I believe, is 3-fold:

1. Solvability of the 2-dimensional Beltrami equation, which implies smooth-
ness of the deformation spaces of Kleinian groups in the most interesting situations.

2. Scott compact core theorem [201, 202] ensures that every finitely-generated
Kleinian group I' C Mob(S?) satisfies a very strong finiteness property: Not only
it is finitely-presented, it is also (canonically) isomorphic to the fundamental group
of a compact aspherical 3-manifold with boundary (Scott compact core).

3. The separation between Kleinian groups of the cohomological dimension 1,
2 and 3 comes rather easily: Free groups, “generic” Kleinian groups, and lattices.
Moreover, every Kleinian group I' € Mob(S?) which is not a lattice, splits as

IR IVTE TSR I (4.1)

where Iy is free and each I';, i > 1, is freely indecomposable, 2-dimensional group.
In the language of homological algebra, the group I'g has cohomological dimension
1, while the groups I';, ¢ > 1, are two-dimensional duality groups.

All this changes rather dramatically in higher dimensions:

1. Solvability of the Beltrami equation fails, which, in particular, leads to
non-smoothness of the deformation spaces of Kleinian groups, Theorem 11.4. In
order to study the local structure of character varieties one then needs the first
and the second group cohomology with (finite-dimensional) twisted coefficients.

2. Scott compact core theorem fails for Kleinian subgroups of Mob(S?), for
instance, they do not have to be finitely-presented, see Section 10. Therefore,
it appears that one has to reconsider the assumption that Kleinian groups are
finitely-generated. It is quite likely, that in higher dimensions, in order to get good
structural results, one has to restrict to Kleinian groups of finite type, i.e., type
F P, defined below. This definition requires homological algebra.

3. One has to learn how to separate k-dimensional from m-dimensional in the
algebraic structure of Kleinian groups. For the subgroups of Mob(S?) this separa-
tion comes in the form of the free product decomposition (4.1). It appears at the
moment that “truly” m-dimensional groups are the m-dimensional duality groups.
For instance, for Kleinian subgroups I' of Mob(S") which are n-dimensional du-
ality groups, one can prove a coarse form of the Scott compact core theorem,
[124]. In particular, every such group admits the structure of an n+ 1-dimensional
Poincaré duality pair (I'; A). The latter is a homological analogue of the funda-
mental group of a compact aspherical n + 1-manifold with boundary (where the
boundary corresponds to the collection of subgroups A in I'). See Section 5.3 for
more details.
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4. The (co)homological dimension appears to be an integral part of the dis-
cussion of the critical exponent of higher-dimensional Kleinian groups, see Section
10.2 and Izeki’s papers [100, 101].

(Co)homology of groups. Some of the above discussion was rather speculative;
we now return to the firm ground of homological algebra. We refer the reader to
[29, 47] for the comprehensive treatment of (co)homologies of groups.
Throughout this section we let R be a commutative ring with a unit. The
examples that the reader should have in mind are R = Z, Z/pZ and R = R. The
group ring RI" of a group I' consists of finite linear combinations of the form

ZTv77

yel

with 7, € R equal to zero for all but finitely many v € I". Let V' be a (left) RI'-
module. Basic examples include V' = R (with the trivial RT-module structure)
and V = RI'. If R is a field, then V is nothing but a vector space over R equipped
with a linear action of the group I'. The very useful (for the theory of Kleinian
groups) example is the following:

Let G = Mob(S"), g be the Lie algebra of G. Then G acts on g via the
adjoint representation Ad = Adg. Therefore g becomes an RG-module. For every
abstract group I" and a representation p : I' — GG we obtain the RI-module

V= g4d(p)>
where the action of I' is given by the composition Ad o p. We will abbreviate
this module to Ad(p). From the theory of Kleinian groups viewpoint, the most
important example of this module is when I' is a Kleinian subgroup of G' and p is
the identity embedding.

A projective RT'-module, is a module P, such that every exact sequence of

RT'-modules

Q—P—0

splits. For instance, every free RI[-module is projective.

Assume now that V' be an RI-module. A resolution of V is an exact sequence
of RI'-modules:

=P, — - > FP—V —=0.

Every RI'-module has a unique projective resolution up to a chain homotopy
equivalence.

Ezxample. Let V = Z, be the trivial ZI'-module. Let K be a cell complex which is
K(T,1), i.e., K is connected, m (K) 2T and m;(K) = 0 for i > 2. Let X denote
the universal cover of K. Lift the cell complex structure from K to X. The group
action I' ~ X, determines a natural structure of a ZI'-module on the cellular chain
complex C,(X). Since the latter is acyclic, we obtain a resolution of Z with

P, = Ci(X),
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and the homomorphism Py — Z given by the augmentation. Moreover, as the
group I' acts freely on X, each module P; is a free ZI'-module:

Pi = GB,jECiZFa
where C; is the set of i-cells in K.

A group T is said to be of finite type, or FP (over R), if there exists a
resolution by finitely generated projective RI’-modules

0—=P,—PFP,q—-—F—=R—D0.

For example, if there exists a finite cell complex K = K(T', 1), then I" has finite type
for an arbitrary ring R. Every group of finite type is finitely generated, although
it does not have to be finitely-presented, see [24].

The cohomology of T' with coefficients in an RI-module V', H*(T', V), is de-
fined as the homology of chain complex

Home(P*,M),

where P, is a projective resolution of the trivial RI'-module R. The homology of
T with coefficients in V', H,(T', V), is the homology of the chain complex

P*@RFV

An example to keep in mind is the following. Suppose that K is a manifold,
or, more generally, a cell complex, which is an Eilenberg-MacLane space K (I, 1).
Then one can use the chain complex C, (X, R) as the resolution P.. Therefore, for
the trivial ['-module R we have

H*(I,R)~ H*(K,R), H.(I,R)= H,(K,R).

For the more general modules V, in order to compute H*(T', V) and H,. (T, V'), one
uses the (co)homology of K with coefficients in an appropriate bundle over K.

Similarly, given a collection IT of subgroups of I', one defines the relative
(co)homology groups H*(T',II; V) and H.(T',II; V). Whenever discussing (co)ho-
mology with R = Z, trivial ZT'-module, we will use the notation H*(T"), H,(T).

The (co)homology of groups behaves in a manner similar to the more familiar
(co)homology of cell complexes. For instance, if I" admits an n-dimensional K (T, 1),
then HY(I',V) = H;(T,V) = 0 for all i > n and all RT-modules.

(Co)homological dimension. For a group T, let cdr(T") and hdgr(T') denote the
cohomological and homological dimensions of ' (over R):

cdr(T) = sup{n : 3 an R-module V so that H"(T, V') # 0},
hdg(T') = sup{n : 3 an RT-module V" so that H,(T',V) # 0}.
We will omit the subscript Z whenever R = Z.

Using the relative (co)homology one defines the relative (co)homological
dimension of T" with respect to a collection II of its subgroups, cdg(T,II) and
hdg(T,1I).
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We will use this definition in the case when I' is a Kleinian group as follows.
Let P denote the set of all maximal (elementary) subgroups of I" which contain
72. For every I'-conjugacy class [II;] in P, choose a representative II; C T'. Then
IT will denote the set of all these representatives II;. By abusing the notation, we
will refer to the set II as the set of cusps of virtual rank > 2 in T'.

If I is of type F'P, then
hdr(T') = cdr(T"), V rings R,
see for instance [29]. In general,
hdg(T') < cdr(T) < hdgr(T) + 1.

Ezample. Let T’ be a free group of finite rank & > 0. Then hdg(T') = cdg(T") for
all rings R. Indeed, I' admits a finite K (T, 1) which is the bouquet B of k circles.
Since B is 1-dimensional,

hdg(T) = cdr(T) < 1.
On the other hand, by taking the trivial RI-module V' = R we obtain
H,(B,R) = R,
the direct sum of k copies of R, and hence is nontrivial.

It turns out that the converse to this example is also true, which is an appli-
cation of the famous theorem of J. Stallings on the ends of groups:

Theorem 4.1. (J. Stallings [205].) If T is a finitely generated group with cd(T') =1,
then T is free.

This result was generalized by M. Dunwoody:

Theorem 4.2. (M. Dunwoody [66].) Let R be an commutative ring with a unit.

1. IfT is a finitely generated torsion-free group with cdr(T) = 1, then T is free.

2. If T is finitely-presented and cdr(T') = 1 then T is a free product of finite
and cyclic groups with amalgamation over finite subgroups. In particular, I’
18 virtually free.

Duality groups. A group I' is said to be an m-dimensional duality group, if T' has
type F'P and

HY(T,RT') #0, for i =m and H (T, RT") = 0, for i # m.

For instance, a finitely-presented group I' is a 2-dimensional duality group (over
Z) if and only if ¢d(T') = 2 and T" does not split as a nontrivial free product.

Poincaré duality groups. Poincaré duality groups are homological generalizations
of the fundamental groups of closed aspherical manifolds.

Definition 4.3. A group T is an (oriented) m-dimensional Poincaré duality group
over R (a PD(m)-group for short) if I is of type F'P and

HY(T,RT") = R, for i =m and H'(I', RT") = 0, for i # m.
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The basic examples are the fundamental groups of closed oriented aspherical n-
manifolds.

This definition generalizes to (possibly non-oriented) PD(n)-groups, where
we have to twist the module V' = RI' by an appropriate orientation character
X : RI' — R. The basic examples are the fundamental groups of closed aspherical n-
manifolds M. The character y in this case corresponds to the orientation character
m (M) — R.

We will need (in Section 5.3) the following relative version of the PD(n)
groups.

Definition 4.4. Let I be an (n — 1)-dimensional group of type F'P, and let
Ay,..., Ay CT

be PD(n—1) subgroups of I'. Set A := {Ay,...,Ax}. Then, the group pair (I, A)
is an n-dimensional Poincaré duality pair, or a PD(n) pair, if the double of T" over
the A;’s is a PD(n) group.

We recall that the double of I" over the A;’s is the fundamental group of the
graph of groups G, where G has two vertices labelled by I', k edges with the i-th
edge labelled by A;, and edge monomorphisms are the inclusions A; — T'.

An alternate homological definition of PD(n) pairs is the following: A group
pair (I'; A) is a PD(n) pair if T and each A; has type F'P, and

H*(T,A;ZT) ~ H:(R™).
If (T, A) is a PD(n) pair, where I and each A; admit a finite Eilenberg-MacLane
space X and Y; respectively, then the inclusions A; — I' induce a map
L;Y; — X

whose mapping cylinder C' gives a Poincaré pair (C,1;Y;). The latter is a pair
which satisfies Poincaré duality for manifolds with boundary with local coefficients,
where L;Y; serves as the boundary of C'. The most important example of a PD(n)
pair is the following. Let M be a compact manifold which is K(T',1). We suppose
that the boundary of M is the disjoint union

OM = N1 U---U Ny,
of mi-injective components, each of which is a K(A;, 1), i = 1,..., k. Then the
pair
(T, {A1,...,Ar})

is a PD(n) pair. See [30] for the details.
The following is one of the major problems in higher-dimensional topology:

Conjecture 4.5. (C.T.C. Wall, see a very detailed discussion in [131].) Suppose
that T is an finitely-presented n-dimensional Poincaré duality group over Z. Then
there exits a closed n-dimensional manifold M which is K(T',1).
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This problem is open for all n > 3. The case n = 1 is an easy corollary
of the Stallings-Dunwoody theorem. In the case n = 2, the positive solution is
due to Eckmann, Linnel and Muller, see [67, 68]. This result was extended to the
case of fields R by B. Bowditch [41] and for general rings R by M. Kapovich and
B. Kleiner [123] and B. Kleiner [133]. Cannon’s conjecture below is a special case
(after Perelman’s work) of Wall’s problem for n = 3:

Conjecture 4.6 (J. Cannon). Suppose that T' is a Gromov-hyperbolic group whose
ideal boundary is homeomorphic to S*. Then I' admits a cocompact properly dis-
continuous isometric action on H?.

5. Topological rigidity and coarse compact core theorem

First, few historical remarks. After the work of B. Maskit [156] and A. Marden
[152], it became clear that the major developments in the 3-dimensional topol-
ogy occurring at that time (in the 1960s and the early 1970s) were of extreme
importance to the theory of Kleinian groups. The key topological results were:

1. Topological rigidity theorems of Stallings and Waldhausen. Under appro-
priate assumptions they proved that homotopy equivalence of Haken manifolds
implies homeomorphism, see [95] for the detailed discussion. In the context of
Kleinian groups, it meant that the (properly understood) algebraic structure of a
geometrically finite Kleinian group I' € Mob(S?) determines the topology of the
associated hyperbolic 3-manifold H?/T.

2. Dehn Lemma, Loop Theorem and their consequences. The most impor-
tant (for Kleinian groups) of these consequences was the Scott compact core theo-
rem [201, 202]. This theorem meant for (possibly geometrically infinite) Kleinian
groups, that the hyperbolic 3-manifold M = H3/T" admits a deformation retrac-
tion to an (essentially canonical) compact submanifold M. C M (the compact core
of M).

Remark 5.1. Of course, after W. Thurston entered the area of Kleinian groups, the
theory experienced yet another radical change and became the theory of hyperbolic
3-manifolds. However, this is another story.

We now turn to the higher dimensions.

5.1. Results of Farrell and Jones

The following conjecture is a natural generalization of the topological rigidity of
3-manifolds:

Conjecture 5.2 (A. Borel). Let M, N be closed aspherical n-manifolds and f :
M — N is a homotopy-equivalence. Then f is homotopic to a homeomorphism.
(There is also a relative version of this congjecture.)

We refer the reader to [131] for a detailed discussion of Borel’s Conjecture
and its relation to Wall’s Conjecture 4.5. Although, in full generality, Conjecture
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5.2 is expected to be false, in the last 20 years there has been a remarkable progress
in proving this conjecture in the context to Kleinian groups. Most of these results
appear in the works of T. Farrell and L. Jones. We collect some of them below.

Theorem 5.3. (1. Farrell and L. Jones [71].) Suppose that T' C Mob(S") is a
convez-cocompact Kleinian group, n > 4, N is a compact aspherical manifold
(possibly with nonempty boundary ON ) and f : (M"+1(T'), M™(T')) — (N,ON) is
a homotopy-equivalence which is a homeomorphism on the boundary. Then f is
homotopic to a homeomorphism (rel. M™(T)).

Theorem 5.4. (7. Farrell and L. Jones, [72, Theorem 0.1]) Suppose that X is a
nonpositively curved closed Riemannian manifold, Y is a closed aspherical man-
ifold of dimension > 5 and f : X — Y is a homotopy-equivalence. Then f is
homotopic to a homeomorphism.

Theorem 5.5. (7. Farrell and L. Jones, [73, Proposition 0.10]) For each Kleinian
group T' the Whitehead group Wh(T') is trivial.

By combining Theorem 5.5 with the s-cobordism theorem (see, e.g., [137,
186, 196]), one gets:

Corollary 5.6. Suppose that W™ is a topological (resp. PL, smooth) h-cobordism
50 that n > 4 and 7 (W"™L) is isomorphic to a Kleinian group. Then W is trivial
in the topological (resp. PL, smooth) category.

5.2. Limit sets and homological algebra

Let I' € Mob(S") be a convex-cocompact subgroup with the limit set A and R
be a ring. (One can also deal with geometrically finite groups by using relative
cohomology, see [121].) The following theorem establishes a link between topology
of the limit sets and the cohomology of I":

Theorem 5.7. (M. Bestina, G. Mess [28].)
H*(,RT") = H*(Hull(A),R) = H*"'(A, R).
Here we are using the Chech cohomology of the limit set.

In particular, I is an m + 1-dimensional duality group over Z (see Section 4) iff
H*~1(A) vanishes except in dimension m. In this case A, homologically, looks like
an infinite bouquet of m-spheres. Moreover

cd(T') = dim(A),
which gives a geometric interpretation of the cohomological dimension of T'.

5.3. Coarse compact core

In this section we state the best (presently) available higher-dimensional gener-
alization of the Scott compact core theorem. The main drawback of this result
is that it applies only to Kleinian groups I' C Mob(S") which are n-dimensional
duality groups.
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We first need some definitions. We recall that every end e of a manifold M
admits a basic system of neighborhoods, which is a decreasing sequence (E;) of
nested connected subsets of M with compact frontier, so that

(N E;=0.

jEN
Given such (E}), we obtain the inverse system of the fundamental groups (7 (E};)).
Consider the image I'; of m1(E;) in m (M) =T. Then

o>

The fundamental group of e (or, rather, its image in I') is defined as

1 (6) = m Fj.
JEN
An end e is called almost stable if every sequence (I'j) as above is eventually
constant, in which case
m(e) =T
for all sufficiently large j. (This notion is weaker than the notion of semistabe
ends, which the reader might be familiar with.) For instance, if M is an open
handlebody of finite genus, then M has unique end e, which is almost stable,
whose fundamental group 71 (e) is the free group w1 (M). On the other hand, if S
is a surface of infinite genus with a unique end e, then e is not almost stable. If
M is the complement to a Cantor set in S?, then no end of M is almost stable.
The following is the Coarse Compact Core Theorem proved in [124] in the
general context of coarse Poincaré duality spaces.

Theorem 5.8. (M. Kapovich, B. Kleiner [124].) Let T C Mob(S") be a Kleinian
subgroup which is an n-dimensional duality group. Then the manifold M = H"*1/T
contains a compact submanifold M. (the coarse compact core) satisfying the fol-
lowing:

1. T contains a finite collection A of PD(n — 1) subgroups Ay, ..., A.

2. The pair (T',A) is an n-dimensional Poincaré duality pair.

3. The group w1 (M.) maps onto m (M) =T.

4. The manifold M has exactly k ends ey, ..., ek, each of which is almost stable;

the components Er, ..., E, of M\ M. are basic neighborhoods of e1, ..., e.
5. For everyi=1,...,k, m(e;) = A; is the image of m1(F;) in T.

See Figure 1. In the case when n = 3, this theorem, of course, is a special
case of the Scott compact core theorem [201, 202]. More precisely, it covers the case
when Scott compact core has incompressible boundary, for otherwise I' splits as a
free product and is not a 2-dimensional duality group. If M is a tame manifold,
e.g., I' is geometrically finite, this theorem is also obvious. At the moment, all
known examples of Kleinian groups in Mob(S"), n > 3, which are n-dimensional
duality groups, are geometrically finite.
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FI1GURE 1. A coarse compact core.

Problem 5.9. Generalize Theorem 5.8 to groups of type F'P which are not n-dimen-
stonal duality groups. (Of course, the conclusion of Part 1 of Theorem 5.8 would
have to be suitably modified.)

6. Notions of equivalence for Kleinian groups

In this section we discuss various equivalence relations for Kleinian subgroups
I'1,T'2 of Mob(S"). We start with the weakest one and end with the strongest.

(0)
(1)

Algebraic: I'; is isomorphic to I'; as an abstract group.

Dynamical: there exists a homeomorphism f : A(T'y) — A(T3) such that
fT1f~1 =Ty;ie., the groups I'; and I's have the same topological dynamics
on their limit sets. Thus, I'; is geometrically finite iff I's is, since geometric
finiteness can be stated in terms of topological dynamics of a group on its
limit set (Theorem 2.5).

Topological conjugation: there exists a homeomorphism f : S* — S" such
that fT'1f~! = I's. (One can relax this by assuming that f is defined only
on the domain of discontinuity of I';.)

Quasiconformal conjugation: in (2) one can find a quasiconformal homeomor-
phism. In the case n = 1 one should replace quasiconformal with quasisym-
metric.

Topological isotopy: in (2) there exists a continuous family of homeomor-
phisms h; : S* — S" such that: hg = id, Vt, h,['1h; ' C Mob(S") and
hiT1hyt =To.



Kleinian Groups 505

(5) Quasiconformal isotopy: in (4) all homeomorphisms are quasiconformal (qua-
sisymmetric).
(6) Mobius conjugation: there is f € Mob(S®) such that fT'yf~! = Ts.
We refer the reader to [94, 99] for the definitions of quasisymmetric and quasicon-
formal homeomorphisms.

Below is a collection of facts about the relation between different notions of
equivalence of Kleinian groups.

Suppose that both groups I'; are geometrically finite and ¢ : I'y — I'y is
an isomorphism which preserves the type of elements, i.e., for v € T'1, ¢(v) is
hyperbolic if and only if v is hyperbolic. It is clear that the above assumptions are
necessary for getting the equivalence (1). The following theorem shows that these
assumptions are also sufficient.

Theorem 6.1. (P. Tukia [217].) Under the above assumptions, the isomorphism ¢
can be realized by the equivalence (1), i.e., there exists a (quasisymmetric) home-
omorphism f of the limit sets, so that fyf=' = () for all v € T'y. Moreover,
if [:QT1) — QT2) is a p-equivariant quasiconformal (quasisymmetric) homeo-
morphism, then f admits a p-equivariant quasiconformal (quasisymmetric) exten-
ston to the entire sphere.

Question 6.2. (Quasiconformal vs. topological.) Suppose that two Kleinian groups
I',T2 € Mob(S") are topologically conjugate by a homeomorphism f (defined
either on QT'1), or on A(T'1), or on the entire S™), which induces a type-preserving
isomorphism ¢ : I't — T'a. Does it imply that ¢ is induced by a quasiconformal
(quasisymmetric) homeomorphism with the same domain as f?

Note that, for every n, the above question actually consists of 3 subques-
tions, depending on the domain of f. Here is what is currently known about these
questions:

1. If n = 1 then all three questions have the affirmative answer and the proof
is rather elementary. It also follows for instance from Theorem 6.1.

2. If n = 2 then the answer to all three questions is again positive, but
the proof is highly nontrivial. The easiest case is when the homeomorphism f is
defined on Q(T';). Then we get the induced homeomorphism f of the quotient sur-
faces S1 — S, where S; = Q(T;)/T';. The existence of a diffeomorphism S; — S
homotopic to f follows from the uniqueness of the smooth structure on surfaces.
If Sy is compact, then this diffeomorphism lifts to an equivariant quasiconformal
homeomorphism Q(I';) — Q(T'z). Two noncompact surfaces can be diffeomorphic
but not quasiconformally homeomorphic: For instance, the open disk is not quasi-
conformally equivalent to the complex plane. However, since ¢ is type-preserving,
Ahlfors Finiteness Theorem [3] in conjunction with a lemma of Bers and Maskit
(see, e.g., [116, Corollary 4.85]), implies the existence of a quasiconformal homeo-
morphism S; — Ss.

If f is defined on the limit set and I'y,I's are geometrically finite, then the
positive answer is a special case of Tukia’s theorem 6.1. However, if the groups



506 Michael Kapovich

T'; are not geometrically finite, the proof becomes very difficult and is a corollary
of the solution of the Ending Lamination Conjecture in the work of J. Brock,
R. Canary and Y. Minsky in [46, 166, 167], and M. Rees [193].

Combination of the Ahlfors Finiteness Theorem with the Ending Lamination
Conjecture also gives the positive answer in the case when f is defined on S2.

3. If f is defined on Q(T'7), then the answer is positive provided that n # 4
and M"™(T'y) is compact. This is a consequence of the theorem of D. Sullivan [207],
who proved uniqueness of the quasiconformal structure on compact n-manifolds
(n # 4): Apply Sullivan’s theorem to the manifolds M™(T;), ¢ = 1,2, and lift the
quasiconformal homeomorphism to the domain of discontinuity.

Remark 6.3. An alternative proof of Sullivan’s theorem and its generalization was
given by J. Luukkainen in [147], see also [220].

If n = 4, fis defined on Q(I';), and M*(T'1) is compact, then the situation is
unclear but one probably should expect the negative answer since the uniqueness
of quasiconformal structures in dimension 4 was disproved by S. Donaldson and
D. Sullivan [64].

Question 6.4. Is there a pair of Kleinian groups I'1,I's C Mob(S") so that the
manifolds M™(T'1), M™(T's) are homeomorphic but not diffeormorphic?

Note that in view of the examples in [70], the positive answer to the above
question would not be too surprising.

If f is defined on Q(T'1) and we do not assume compactness of M"™(T'y), then
the answer to Question 6.2 is negative in a variety of ways.

(a) For instance, take singly degenerate groups I'y,T's C Mob(S?), which are
both isomorphic to the fundamental group of a closed oriented surface S, contain
no parabolic elements and have distinct ending laminations. Then Q(T';) C S? are
open disks D; for both 4. There exists an equivariant homeomorphism h : D1 — Do,
which induces an isomorphism ¢ : I'y — I'y. However, since the ending laminations
are different, there is no equivariant homeomorphism A(T';) — A(T2).

Now extend both groups to the 3-sphere so that I'; € Mob(S?), i = 1,2. Then
the 3-dimensional domains of discontinuity B; of both groups are diffeomorphic to
the open 3-ball, i = 1,2; the quotient manifolds are

M) =B;)T; 2 S xR, i=1,2.

Therefore there exists an equivariant diffeomorphism f : By — Bs. We claim
that this map cannot be quasiconformal. Indeed, otherwise it would extend to an
equivariant homeomorphism of the limit sets (which are planar subsets of R?).
This is a contradiction.

(b) One can construct geometrically finite examples as well. The reason is
that even though all (orientation-preserving) parabolic elements of Mob(S?) are
quasiconformally conjugate, the analogous assertion is false for the parabolic ele-
ments of Mob(S?). Suppose that 7 is the translation in R? by a nonzero vector v.
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Let Ry,, i = 1,2, denote the rotations around v by the angles 61,605 € [0, 7]. Then
the skew motions

'Yi:Rb‘ioTiv 22172
are parabolic elements of Mob(S?). One can show that

Proposition 6.5. The Mdbius transformations 1 and 2 are quasiconformally con-
jugate in S? if and only if 61 = 6.

The proof is based on a calculation of the extremal length of a certain family
of curves in R? and we will not present it here.

Note that the cyclic groups I'; = (7;) are geometrically finite, the isomor-
phism ¢ : I’y — T’y sending 1 to v is type-preserving. The quotient manifolds
M3(T;) are both diffeomorphic to R? x S!, therefore there exists a p-equivariant
diffeomorphism f : Q(T'1) — Q(Ty) which, of course, extends to a homeomorphism
S? — S3. However, according to Proposition 6.5, this homeomorphism cannot be
made quasiconformal.

These examples do not resolve the following;:

Question 6.6. Suppose that T'1,T2 C Mob(S"), n > 3, are Kleinian groups and
f A1) — A(T2) is a homeomorphism which induces an isomorphism T'y — Ta.
Does it follow that f is quasisymmetric?

If n <2, then (in the list of equivalences between Kleinian groups) we have

the implication

(3) = (5).
Indeed, consider a quasiconformal homeomorphism f conjugating Kleinian groups
I'y and I'y and let p denote the Beltrami differential of f. Then for ¢ € [0, 1] the
solutions of the Beltrami equation

of _, 01

0z~ "oz
also conjugate I'; to Kleinian subgroups of Mob(S?), see, e.g., [20]. This gives the
required quasiconformal isotopy. Since (2) is equivalent to (3) for n < 2, it follows
that for n < 2 we have

2) = @) = @) <= ()

This argument however fails completely in higher dimensions, since the Bel-
trami equation in R™ for n > 3 is overdetermined.

Question 6.7. In the list of equivalences between Kleinian groups:
(a) Does (2) = (4) ?
(b) Does (3) = (5) ¢

One can show (using quasiconformal stability, see Section 11.2, cf. [154, Theo-
rem 7.2]) that for convex-cocompact groups parts (a) and (b) of the above question
are equivalent. In Theorem 11.11 we give examples of convex-cocompact Kleinian
groups in Mob(S"), n > 5, for which the answer to Question 6.7 is negative. The
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situation in dimensions 3 and 4 at the moment is unclear, but we expect in these
dimensions the answer to be negative as well.

The implications (i)=(6) for i< 5 are, of course, extremely rare. The most
celebrated example is provided by the Mostow rigidity theorem:

Theorem 6.8. Suppose that I'1,I's C Mob(S™) are lattices and n > 2. Then (0) =
(6) for these groups.

See [175] for G. Mostow’s original proof or [120] for a more elementary ar-
gument along the same lines which uses only the analytical properties of quasi-
conformal mappings. A completely different argument due to M. Gromov can be
found in [18]. Yet another proof is an application of the barycentric maps [21].
Note that, presently, there are no proofs using equivariant harmonic maps.

Mostow’s ergodic arguments were greatly generalized by D. Sullivan in [208],
see also [5]:

Theorem 6.9. (D. Sullivan [208].) Suppose that T'1,T's C Mob(S") are Kleinian
groups whose limit set is the entire S™ and so that the action of I'y on S™ is
recurrent. Then (3) = (6) for these groups.

The action of I' C Mob(S") on S™ is called recurrent if for every measurable
subset F C S™ of positive Lebesgue measure, the measure of the intersection
~v(E) N E is positive for some v € I'\ {1}.

7. Groups with zero-dimensional limit sets

In what follows, we let dim denote the covering dimension of topological spaces,
see for instance [96]. Suppose that I' C Mob(S") is a non-elementary Kleinian
subgroup of Mob(S*) and dim(A(T")) = 0; hence A(T') is totally disconnected (its
only connected components are points). Recall that a discontinuum is a nonempty
perfect totally disconnected compact topological space, see, e.g., [8]. Hence A(T")
is a discontinuum. It follows (see, e.g., [8]) that A(T") is homeomorphic to the
standard Cantor set K C [0, 1]. Below is a couple of examples of Kleinian groups
whose limit sets are totally disconnected.

Ezample. (A Schottky group, see, e.g., [138, 157].) Let n,k > 1. Suppose that we
are given a collection of disjoint closed topological n-balls

Bf,...,Bf,By,...,B; CS"

and Mobius transformations v; € Mob(S") so that ~;(int(B]")) = ext(B; ). We
assume that for each pair Blf, B} there exists a diffeomorphism of S" which carries
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these balls to the round balls.! Then
k
©:=5"— | J(Bf uint(B;))
j=1

is a fundamental domain for the group I' generated by ~1,...,7v,. The group I is
called a Schottky group. It is isomorphic to a free group of rank k, and the limit
set of I' is a discontinuum provided that k£ > 2. Every nontrivial element of I is
hyperbolic.

2

s

FIGURE 2. A Schottky group.

Before giving the next example we need a definition. Suppose that I' C
Mob(S") is a nontrivial elementary subgroup. Then, after conjugating I if neces-
sary, we can assume that either:

1. T fixes 0,00 € R™ = S" and therefore is generated by v(z) = Az, where A is

the product of a scalar ¢ > 1 by an orthogonal matrix.
2. Or I' acts on R™ C S™ by Euclidean isometries.

1By the smooth Schoenflies theorem, for n # 4 it suffices to assume that the balls Bj-' have

smooth boundary.
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In the first case we take the fundamental domain ® for the action of I' on S™ to
be an annulus bounded by two disjoint round spheres. In the second case we take
a Dirichlet fundamental domain ® C R” for I'.

We refer to the fundamental domains ® as standard fundamental domains. A
fundamental domain for I" is topologically standard if it is the image of a standard
fundamental domain of T' under a diffeomorphism of Q(T") commuting with T.
For instance, the fundamental domain for a rank 1 Schottky group is topologically
standard. Therefore, the fundamental domain ® for the Schottky group satisfies the
property that it is the intersection of topologically standard fundamental domains

®; =S" — (B Uint(B;))

for the groups I'; = (v;).

Given a domain ® C S, we let ®¢ C S™ denote the closure of the complement
of ®. We are now ready for the second example which is a generalization of the
first.

Ezample. (Schottky-type groups, see, e.g., [138, 157].) Start with a collection of
elementary Kleinian groups I'; € Mob(S"), i = 1,...,k. Let ®; C S™ be topolog-
ically standard fundamental domains for these groups. Assume that

DEN O =10
for all i # j. Let T' C Mob(S") be the group generated by I'y,...,T'x. Then:

1. As an abstract group, I' is isomorphic to the free product I'y - -« % T'y.
2. ®: =Py N---N Py is a fundamental domain for the group T'.
3. The limit set of T" is totally disconnected.

The groups I' obtained in this fashion are called Schottky-type groups.

A Schottky-type group is called classical if it admits a fundamental domain
P =Py N...N Dy, so that each ®; is geometrically standard. It is not difficult to
see that Schottky-type groups are geometrically finite. For instance, consider the
case of a Schottky group I' of rank &, for n > 2. We have the map

J:Z=Hy(M"()) — Hy,(M""H(I))

induced by the inclusion of manifolds. Since the manifold M = M"*+}(T)is K (T, 1),
it follows that

H"(M)=H"(T)=H"(B) =0,
where B is the bouquet of k circles. Therefore j = 0. Hence M is compact and
hence I' is convex-cocompact. A similar argument works for Schottky-type groups,
provided that one uses cohomology relative to the cusps.

The quotient manifolds of the Schottky-type groups I' have a rather simple
topology, as it follows from the explicit description of their fundamental domains.
Namely, let M; = M™(T;), i = 1,...,k. Then we get the smooth connected sum
decomposition

M™T) = My# - - - #Mjy,.

By combining this with Theorem 6.1 we obtain
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FIGURE 3. A classical Schottky-type group isomorphic to Z x Z>
with 7 = <’yl>, Z2 = <042,52>.

Proposition 7.1. 1. Suppose that T',T" are Schottky groups of the same rank.
Then there exists a quasiconformal homeomorphism [ : S™ — S™ which con-
jugates T to I, d.e., fTf1 =T".

2. Suppose that T, T are Schottky-type groups and ¢ : I' — T” is a type-
preserving isomorphism, so that for every free factor I'; in ', the restriction
v : Ty = T C IV is induced by a quasiconformal homeomorphism of S™. Then
there exists a quasiconformal homeomorphism f : S™ — S™ which induces the
isomorphism .

Question 7.2. Let n > 3. Is there a quasiconformal isotopy between T' and T’ in

the above theorem (either part 1 or part 2)?

In the case when I' and IV are both classical, the positive answer follows
rather easily. In the non-classical case the above question is open even if n = 3
and I' is a Schottky group.

Schottky subgroups of Mob(S?) can be characterized as follows:

Theorem 7.3. (B. Maskit [155].) A Kleinian subgroup T' C Mob(S?) is a Schottky
group if and only if T is free, has nonempty domain of discontinuity in S? and
consists only of hyperbolic elements.
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This result was generalized by N. Gusevskii and N. Zindinova [92]:

Theorem 7.4. Let I' C Mob(S?) be a Kleinian subgroup, which has nonempty
domain of discontinuity in S? and is isomorphic to a Schottky-type group I' via a
type-preserving isomorphism T' — T, Then T is a Schottky-type group.

Both theorems are easy under the assumption that I' is geometrically finite,
the key point here is that (in dimension 2) one can prove geometric finiteness
under the above mild assumptions.

If T is a Kleinian subgroup of Mob(S?), then the above results are not longer
true, moreover, I' can be geometrically infinite. For instance, take a free finitely
generated purely hyperbolic discrete subgroup of PSL(2,C), whose limit set is the
2-sphere (the existence of such groups was first established by V. Chuckrow [56]).
The Mébius extension of this group to S? has nonempty domain of discontinuity,
but is not geometrically finite.

Tameness of limit sets. Below we address the following:

Question 7.5. Suppose that I' C Mob(S") is a Kleinian group, whose limit set is
a discontinuum. What can be said about the embedding A(T') C S™?

A discontinuum D C S™ is called tame if there exists a homeomorphism
f S — S™ which carries D to the Cantor set K C [0,1] and is called wild
otherwise. It is a classical (and easy) result that every discontinuum in S? is tame,
see, e.g., [31]. The (historically) first example of a wild discontinuum was the
Antoine’s necklace A C S3:

m(S*\ A4) # {1},
which explains why A is wild, see [31]. D. DeGryse and R. Osborne [61] constructed
for every n > 3 examples of wild discontinua D,, C S™, such that

m(S"\ Dn) = {1}.

See also [77] for infinitely many inequivalent 3-dimensional examples of this type.
The algebraic structure of Kleinian groups with totally disconnected limit
sets is given by

Theorem 7.6. (R. Kulkarni [141].) Suppose that a Kleinian group I' C Mob(S")
has a totally disconnected limit set. Then T is isomorphic to a Schottky-type group.

One can even describe (to some extent) fundamental domains of such groups:

Theorem 7.7. (N. Gusevskii [90].) Suppose that the limit set of T C Mob(S") is
totally disconnected. Then I' admits a fundamental domain ® of the same shape
as in FExample 7, only the fundamental domains ®; for I';’s are not required to be
topologically standard.

The proof of Theorem 7.7 is based on the following
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Theorem 7.8. (M. Brin [45].) Let M be a smooth oriented n-manifold of dimension
> 2, so that H'(M) = 0. Let T ~ M is a smooth properly discontinuous free
action.

Then, for every smooth oriented compact hypersurface ¥ in M and an open
neighborhood U of T - X, there exists a smooth compact connected oriented hyper-

surface X* C U such that for every v € T either yX* N X* = () or yX* = ¥*.

This theorem allows one to split (inductively) the Kleinian group I' as a
free product in a “geometric fashion”: Start with a compact hypersurface in Q(T")
which separates components of A(T"). Find ¥* as in Brin’s theorem which still
separates. Then cut open the manifold M™(T") along the projection of ¥*. This
decomposition yields a free product decomposition I' = I * I'”/ so that I is a
Klein combination of the groups I'/,I"”. Continue inductively. Finite generation of
T" implies that the decomposition process will terminate and the terminal groups
must be elementary. Note that if all ¥* were spheres, then this decomposition
would be of Schottky-type.

Corollary 7.9. Every Kleinian group with a totally disconnected limit set is geo-
metrically finite.

Proof. Repeat the arguments which we used to establish geometric finiteness of
Schottky groups. O

Problem 7.10. Suppose that T' C Mob(S®) is such that A(T") is a tame discontin-
uwum. Does is follow that T is a Schottky-type group?

If n = 2 then the affirmative answer to this question follows for instance from
Masgkit’s theorem. If n = 3 then the answer is again positive; moreover,

Proposition 7.11. Suppose that I' C Mob(S?) is such that A(T') is totally discon-
nected and m (")) = 1. Then I' is a Schottky-type group

Proof. Under the above assumptions, w2 (Q(T')) # {0}; hence, by the Sphere The-
orem (see, e.g., [95]), we can find a smooth hypersurface 3* as in Brin’s theorem,
so that ¥* is diffeomorphic to S?2. Therefore, as we saw above, it follows that T is
a Schottky-type group. O

This argument however fails for n > 4, where Problem 7.10 is still open. On
the other hand, there are Kleinian subgroups of Mob(S?) with wild discontinua
as limit sets. The first such example was given by M. Bestvina and D. Cooper:

Theorem 7.12. (M. Bestvina, D. Cooper [25].) There exists a Kleinian group T' C
Mob(S?) which contains parabolic elements, so that A(T) is a wild discontinuum.

The proof that 71 (Q(T)) # 1 presented in [25] was incomplete; however the
gap was filled several years later by S. Matsumoto:

Theorem 7.13. (S. Matsumoto [158, 159], see also [91].) There are Kleinian groups
' in Mob(S?) without parabolic elements whose limit sets are wild discontinua.
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8. Groups with one-dimensional limit sets

The simplest examples of 1-dimensional limit sets of Kleinian groups are topo-
logical circles. For instance, the limit set of a lattice I' C Isom(H?) is the round
circle. Of course, even if the limit set of I' C Mob(S") is a topological circle, its
embedding in S™ can be complicated. We will discuss this issue later on. For now,
we are only interested in the topology of the limit set itself.

Given convex-cocompact Kleinian groups I'1,I's € Mob(S") with 1-dimen-
sional limit sets, one can use Klein—-Maskit Combination theorems in order to get
convex-cocompact Kleinian groups I' € Mob(S*) isomorphic to

Iy AT,

where A is either trivial or infinite cyclic. The limit sets of the resulting groups
are again 1-dimensional. For instance, if A(T;) is a topological circle for i = 1,2
then the limit set of I' = I'y x 'y will be disconnected: The connected components
of A(T") are topological circles and points. Similarly, if A = Z, then the limit set
of I' =Ty xa I's will have cut pairs: The complement to the 2-point set A(A) in
A(T) is disconnected.

A(A)

FIGURE 4. Combination of two 1-quasifuchsian groups: I' =T'1 %z I's.

These constructions are, of course, not very illuminating. Therefore we are
interested in examples of 1-dimensional limit sets which are connected and which
do not contain cut-pairs. It turns out that there are only two such examples:
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1. The Sierpinski carpet S. Start with the unit square S = I x I. Subdivide
this square into 9 squares of the size % X % and then remove from S the
open middle square (3, %) X (3, 2). Repeat this for each of the remaining
% X % sub-squares in S and continue inductively. After removing a countable
collection of open squares we are left with a compact subset S C R?, called
the Sierpinski carpet.

2. The Menger curve M. Start with the unit cube @ = I x I x I. Each face F;
of @) contains a copy of the Sierpinski carpet ;. Let p; : Q — F; denote the

orthogonal projection. Then
M=\ (S)
is called the Menger curve.

Ezample. There exists a convex-cocompact subgroup G C Mob(S?) whose limit
set is homeomorphic to the Sierpinski carpet S.

To construct such an example start with a compact hyperbolic manifold M3
with nonempty totally-geodesic boundary. Thus we get an embedding of I' =
71 (M?) into Mob(S?) as a convex-cocompact Kleinian subgroup. The limit set
of T' is homeomorphic to the Sierpinski carpet. To see this note that the convex
hull Hull(A(T)) in H? is obtained by removing from H? a countable collection of
disjoint open half-spaces H; C H3. The ideal boundary of each H; is the open
round disk D; C S?. Thus

A(D) = S2\Uint(Dj).

Clearly, D; N D; = (), unless i = j; since A(I') has empty interior. See Figure 5.
According to Claytor’s theorem [57], it follows that A(T') is homeomorphic to S.
Moreover, it is easy to see that this homeomorphism extends to the 2-sphere, since
it sends the boundary circles of A(T) to the boundary squares of S.

The construction of Kleinian groups whose limit sets are homeomorphic to
M is more complicated:

Ezample. (M.Bourdon [37]; see also [118].) There exists a convex-cocompact sub-
group I' C Mob(S?) whose limit set is homeomorphic to the Menger curve M.

The following theorem is proved in [122] in the more general context of
Gromov-hyperbolic groups:

Theorem 8.1. (M. Kapovich, B. Kleiner [122].) Suppose that I' C Mob(S") is a
(torsion-free) nonelementary convezr-cocompact subgroup such that:

(a) T does not split as a free product,

(b) T does not split as an amalgam over Z,

(¢) dim(A(T)) =1.
Then A(T") is either homeomorphic to the Sierpinski carpet or to the Menger curve.
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FIGURE 5. A limit set homeomorphic to the Sierpinski carpet.

Conjecture 8.2. (M. Kapovich, B. Kleiner [122].) If ' C Mob(S") is a (torsion-
free) convez-cocompact Kleinian group whose limit set is homeomorphic to the Sier-
pinski carpet, then T is isomorphic to a convex-cocompact subgroup in Mob(S?).

It was proved in [122] that this conjecture would follow either from the posi-
tive solution of the 3-dimensional Wall’s problem (Problem 4.5) or from Cannon’s
conjecture (Conjecture 4.6).

Topology of the limit sets of geometrically infinite Kleinian groups can be
more complicated. A dendroid is a compact locally connected simply-connected
1-dimensional topological space.

Theorem 8.3. (J. Cannon and W. Thurston [51], see also [1] and [58].) There exist
singly-degenerate Kleinian groups whose limit sets are dendroids.

Conjecturally, limit sets of all singly-degenerate Kleinian groups are den-
droids and the following problem is open even for n = 2:
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Problem 8.4. Suppose that ' C Mob(S") is a Kleinian group whose limit set is
connected and 1-dimensional. Is it true that A(T") is locally connected?

See [163], [165] and [168, 169] for partial results in dimension 2.

9. Groups whose limit sets are topological spheres

Definition 9.1. A Kleinian group I' C Mob(S") is called i-fuchsian® if A(T') is a
round i-dimensional sphere in S™.

To construct examples of i-fuchsian groups start with a lattice ' C Mob(S?).

The limit set of I' is the round sphere S'. Define the canonical embedding

¢ : Mob(S?) < Mob(S")
induced by the embedding of the Lorentz groups

O(i+1,1) = O(n+1,1)

A0

0o I}’
where I is the identity matrix. Therefore we get the canonical embedding

t:T'— Mob(S").

One can modify this construction as follows. Note that the stabilizer of S* in
Mob(S") contains Mob(S?) x SO(n—i). Choose a homomorphism ¢ : I' — SO(n—
1). For instance, being residually finite, the group I" will have many epimorphisms
to finite groups, which then can be embedded in SO(n — i) if n — i is sufficiently
large. Alternatively, in many cases the group I' will have infinite abelianization
I'*®. The abelian group I'** admits many embeddings into SO(n —i) provided that
n — i > 2. Then the image of

p=1x¢:T — Mob(S") x SO(n —1i) C Mob(S")

is also an i-fuchsian group, since p(I') preserves S’ and the action of p(I') on S is
the same as the action of I'.

|

Definition 9.2. A Kleinian group I' € Mob(S") is called i-quasifuchsian if its limit
set is a topological i-dimensional sphere.

We will refer to the number n — ¢ as the codimension of a (quasi)fuchsian
group I

Ezample. Suppose that I is an i-fuchsian subgroup of Mob(S") and IV C Mob(S")
is another group which is topologically conjugate to I' (with a homeomorphism f
defined on the entire n-sphere). Then I is i-quasifuchsian. However, as we will
see, there are i-quasifuchsian groups (for n > 3) which cannot be obtained in this
fashion.

20ur definition is somewhat different from the classical: fuchsian subgroups of PSL(2,C) are
usually required to preserves a round disk in S2.
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The (quasiconformal) homeomorphisms f as in the previous example exist in
abundance if i = 1,n = 2, due to the solvability of the Beltrami equation. If i > 2,
the situation is very different and it is not so easy to construct nontrivial examples
of i-quasifuchsian groups which are not fuchsian. Some of these examples will be
discussed below.

The following result was proved by M. Bestvina and G. Mess [28] in the
context of Gromov-hyperbolic groups:

Theorem 9.3. Each convex-cocompact i-quasifuchsian group is a Poincaré duality
group (over 7) of dimension i + 1. Conversely, if T' C Mob(S") is a convez-
cocompact Poincaré duality group, then A(I') is a homology manifold which is a
homology sphere.

Question 9.4. Is it true that each convex-cocompact quasifuchsian group is isomor-
phic to the fundamental group of a closed aspherical manifold?

This is, of course, a special case of Wall’s problem (Problem 4.5).

Question 9.5. Is there a convex-cocompact group T' C Mob(S™) whose limit set is
a homology manifold which is homology sphere, so that A(T) is not homeomorphic
to a sphere?

9.1. Quasifuchsian groups of codimension 1

The situation in the case of n = 2 is completely understood due to the following:

Theorem 9.6. (B. Maskit [156], see also [152].) Let T C Mob(S?) be a Kleinian
group whose domain of discontinuity Q(T) consists of precisely two components.
Then:

1. T is 1-quasifuchsian and geometrically finite.

2. T' is quasiconformally conjugate to a 1-fuchsian group.

3. M3(T) = (H3USUT))/T is homeomorphic to an interval bundle over a surface
S, which is 2-fold covered by Q(T)/T.

Our goal is to compare the higher-dimensional situation with this theorem.
Suppose that I' C Mob(S?) is a codimension 1 quasifuchsian group. Then Q(T)
consists of two components, €21, {2s. After replacing I' by an appropriate index 2
subgroup, we can assume that each 2, is T-invariant; hence M™(T") = M; U M,
where M; := Q;/T. Then, by the Alexander duality, H.(€;) & H.(point), i =1,2.
Therefore, if €; is simply-connected, then €); is contractible. Below we discuss
what is currently known about such quasifuchsian groups for n # 4.

Theorem 9.7. Suppose that both M; are compact and both Q; are simply-connected.
Then M™tY(T) is diffeomorphic to My x [0, 1] provided that n > 5.

Proof. Note that, for homological reasons, W = M"+1(I") is compact, hence T is
convex-cocompact, see Theorem 2.7. Since both Q1, Qy, H* ™! are contractible, the
inclusions

M; =W, i=1,2
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are homotopy-equivalences. Therefore W defines a smooth h-cobordism between
the aspherical manifolds M; and M. According to Corollary 5.6, this h-cobordism
is smoothly trivial. O

Suppose that n = 3 and both 1, Qs are contractible. Then
7T1(M1) = 7T1(M2) =~ F7

the manifolds M; and M, are both irreducible and have infinite fundamental
groups. If I" were to contain a subgroup II isomorphic to Z2, the subgroup II would
be parabolic. This would contradict compactness of W. Therefore, according to
Perelman’s solution of Thurston’s hyperbolization conjecture, there exists a closed
hyperbolic 3-manifold My which is homeomorphic to M; and Ms. Since My is
hyperbolic, its fundamental group I'y acts as a 2-fuchsian group on S?. Therefore,
according to our discussion in Section 6, the group I is quasiconformally conjugate
to I'y. It is not difficult to see that passage to the index 2 subgroup which we used
above does no harm and we obtain:

Proposition 9.8. Suppose that I' C Mob(S?) is a codimension 1 quasifuchsian sub-
group, so that both components of Q(T') are simply-connected and M3 (T') is com-
pact. Then T is quasiconformally conjugate to a 2-fuchsian group Ty C Mob(S?).

On the other hand, we do not know if the 4-dimensional manifold M (T) is
homeomorphic (or diffeomorphic) to an interval bundle over a 3-manifold.
Proposition 9.8 fails for n > 4:

Theorem 9.9. For every n > 4 there are codimension 1 convexr-cocompact quasi-
fuchsian subgroups T C Mob(S"), so that both components of Q(T') are simply-
connected, but ' is not isomorphic to a fuchsian group.

Proof. We give only a sketch of the proof, the details will appear elsewhere. Fix
n > 4. M. Gromov and W. Thurston in [89] construct examples of negatively
curved compact conformally-flat n-manifolds M™, so that M™ is not homotopy-
equivalent to any closed hyperbolic n-manifold N™. (See also [119] for a review
of the Gromov—Thurston examples and for a construction of a convex projective
structure on M™.)

By choosing parameters in the construction of [89] more carefully, one can
construct an example of a uniformizable flat conformal manifold M™ with the
same properties. Moreover, M"™ = Q;/T, I' C Mob(S") is convex-cocompact,
and QT") = Qp U Qo is the union of two simply-connected components. Then
A(T) is homeomorphic to S*~1, since the limit set of I' is homeomorphic to the
ideal boundary of the universal cover of the negatively curved manifold M™. If T’
were isomorphic to an n — 1-fuchsian group IV, then IV would be isomorphic to the

fundamental group of a closed hyperbolic n-manifold N", which is a contradiction.
O

The above examples have another interesting property. Let 2"*! denote the
domain of discontinuity of the group I' (regarded as a subgroup of Mob(S"*1)).
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Note that Q" *! is connected and 71 (Q"1) = Z. Since both €21, Q5 are contractible,
it follows that
Q") =0, i>2.
Set M1 = Q"+1/T. We have the short exact sequence
1= Z=mQ") - oM™ =T — 1.

The embedding M; — M"™*! determines a splitting of this sequence. Hence the
manifolds M"*! and S' x M"™ are homotopy-equivalent. Given the existence of a
metric of negative curvature on M"™, we obtain a metric of nonpositive curvature
on S x M™. Therefore, by Theorem 5.4, the manifolds M"*! and S' x M™ are
homeomorphic.

Let kZ C Z C w1 (M™"1) be the index k subgroup in the center of w1 (M™*1).
Then we obtain the k-fold covering X — X; = M"*!, where

7T1(Xk) =kZ xT C 7T1(X1).

Since the manifolds X}, have isomorphic fundamental groups and 7;(Xy) = 0 for
all i > 2,k € N, these manifolds are all homeomorphic to the smooth manifold X4
by Theorem 5.4. By [132, Essay IV], there only finitely many smooth structures on
the manifold X;. Therefore we obtain an infinite family of diffeomorphic manifolds

M =X, j €N

and smooth covering maps p; : MJTL“ — ML

The (n + 1)-manifold M"T = Q"1 /T" has the flat conformal structure K;
uniformized by the group I'. Let K; denote the flat conformal structure on M"+1,
which is the lift of K; via p;.> We thus obtain an infinite family of diffeomorphic
flat conformal manifolds

(M KG),j=1,2,...

Question 9.10. Suppose that M is a closed hyperbolic n-manifold. Is there a finite
cover f: M’ — M such that the pull-back map f* : H3(M,Z/2) — H3(M',7/2)
is trivial? (Recall [132] that the group H3(M,Z/2) classifies PL structures on M
ifn>5.)

We regard the structures K; as elements of 9t(X), the moduli space of the
flat conformal structures on a fixed smooth manifold X. The proof of the following
claim is similar to [108], where it was proved in the context of 3-manifolds:

Proposition 9.11. For different i, j the structures K;, K; lie in different connected
components of the moduli space M(X). Thus M(X) consists of infinitely many
connected components.

We note that K. Scannell in [197] constructed examples of hyperbolic 3-
manifolds X for which (X)) consists of infinitely many connected components.

3The structures K are obtained via grafting of (M™+1 K1) along the hypersurface M™.
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To get the same phenomenon in dimension 4 consider one of the hyperbolic
manifolds M3 obtained by Dehn surgery on a 2-bridge knot, so that the natural
embedding

I' =711 (M) — Mob(S?)
is (locally) rigid (see Example 11.1.2). Then the natural embedding of I' —
Mob(S*) is also rigid and hence the manifold M* = M*(T') =2 M x S! has rigid
flat conformal structure. Taking k-fold covers of this manifold we obtain infinitely
many rigid flat conformal structures on M*. By combining these results we obtain

Theorem 9.12. For every n > 3 there exists a smooth compact n-manifold X™ such
that M(X™) consists of infinitely many connected components.

We now return to our discussion of Kleinian groups, restricting to n = 3.
Suppose that I' is a convex-cocompact 2-quasifuchsian group, such that both com-
ponents of Q(T") are simply-connected. Then, by proposition 9.8, the limit set of
[ is tame, i.e., there is a homeomorphism of S* which maps A(T) to the round
sphere.

Theorem 9.13. (B. Apanasov and A. Tetenov [11].) There exists a convex-cocompact
2-quasifuchsian group T' C Mob(S3) whose limit set is a wild 2-sphere, i.c., there
is no homeomorphism of S* which maps A(T') to the round sphere. Moreover, one
component of Q(T') is simply-connected.

9.2. l-quasifuchsian subgroups of Mob(S?)

Given a Kleinian subgroup I' € Mob(S?) whose limit set is a topological circle C,
we would like to analyze the embedding C' < S3. It is clear that C could be an
unknot in S? (i.e., there exists a homeomorphism of §* which maps C' to a round
circle), take for instance any 1-fuchsian subgroup of Mob(S?).

A topological circle C in S? is called tame if it is isotopic to a polygonal knot
in S3; if C' is not tame, it is called wild.

Proposition 9.14. 1. IfT is a 1-quasifuchsian subgroup of Mob(S?), then either
A(T) is an unknot or it is a wild knot K such that 1 (S®\ K) is infinitely
generated.

2. Each 1-quasifuchsian group is geometrically finite.

Proof. Since T is a l-quasifuchsian subgroup of Mob(S?), this group is nonele-
mentary. The fundamental group of M = M?(T") is finitely generated (since I is)
and we have the exact sequence:

1->mQT) »m(M)—-T—1.

Suppose that w1 (2(T)) is finitely generated. Then, according to Jaco-Hempel’s
Theorem [95], 71 (2(T")) = Z. This immediately excludes tame nontrivial knots
(the result proved by R. Kulkarni [140]). It remains to exclude wild knots with

A:=m (D)) = Z.
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Without loss of generality (after passing to an index 2 subgroup in I'), we can
assume that A is contained in the center of 71 (M). Note that M is a Seifert mani-
fold since its fundamental group has infinite center. Hence M admits an S!-action.
Lift this action to Q(T") and then extend it to the entire 3-sphere (so that the fixed
point set is the limit set). Raymond’s classification [192] of topological S'-actions
on S? implies that this S'-action is topologically conjugate to the orthogonal ac-
tion, hence A(T") is an unknot. This proves (1).

To prove (2) note that the group I acts as a convergence group on St = A(T")
(see [218]). Hence, according to [218], there exists a homeomorphism f : A(T') — St
such that

fTft=1"c PSL(2,R).

Since finitely generated discrete subgroups of PSL(2,R) are geometrically finite,
it follows that I is geometrically finite. As geometric finiteness is an invariant
of the topological dynamics on the limit set (see Theorem 2.5), the group T is
geometrically finite as well. O

On the other hand, even if A(T") is an unknot, the 3-manifold Q(T")/T is not
necessarily a product:

Theorem 9.15. (M. Gromov, B. Lawson, W. Thurston [87], N. Kuiper [139], and
M. Kapovich [107, 112].) There are 1-quasifuchsian groups T C Mob(S?) such that
A(T) are unknotted but I' are not topologically conjugate to 1-fuchsian groups.

In the examples constructed in this theorem, the manifolds M3(T") are non-
trivial oriented circle bundles over orientable surfaces. On the other hand, for every
1-fuchsian group I'y C Mob(S?), the manifold M3(Ty) is a 3-dimensional Seifert
manifold with the zero Euler number, since it admits a natural H? x R-structure.
Hence, in this case, M?3(I') admits a finite cover which is homeomorphic to the
product of S! and a surface.

Theorem 9.16. (B. Apanasov [10], B. Maskit [157], see also [87].) There are 1-
quasifuchsian groups T' C Mob(S?) such that A(T") are wild knots.

Proof. (Sketch.) Start with a necklace of round balls
B07B17 s 7Bm—1 - 837

so that B; is tangent to Bj, if j =i+ 1 € Z/mZ and is disjoint otherwise. Assume
that this necklace is knotted, i.e., the polygonal knot obtained by connecting the
consecutive points of tangency is a nontrivial knot K C S3. See Figure 6.

Let 7; € Mob(S?) denote the inversion in the sphere 0B;, i = 0,1,...,m— 1.
Let T' € Mob(S") be the group generated by these inversions. By the Poincaré
fundamental polyhedron theorem,

m—1
=5\ |J B

=0



Kleinian Groups 523

FIGURE 6

is a fundamental domain for I', the group I' is geometrically finite and is iso-
morphic to a 1-fuchsian group I'. Therefore, Tukia’s theorem 6.1 applied to the
isomorphism I' — T implies that ' is 1-quasifuchsian. By Seifert—van Kampen
Theorem, 71(S* \ K) embeds in 71 (Q(T)). Therefore m1(Q(T")) is not isomorphic
to Z and, hence, the limit set of I" is a wild knot. O

By modifying the above construction, S. Hwang proved

Theorem 9.17. (S. Hwang [97].) Let L be a polygonal link in S®. Then there exists
a (torsion-free) convex-cocompact Kleinian group T' C Mob(S?) with a funda-

mental domain ® C S® such that the complement S® \ ® is isotopic to a reqular
neighborhood of L.

The above theorem is the key for proving

Theorem 9.18. (S. Hwang [97].) Let M3 be a closed oriented 3-manifold. Then
there exists a closed oriented 3-manifold N* such that the connected sum M3# N3
admits a Mobius structure.
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Results similar to Theorems 9.17 and 9.18 hold in dimension 4, see [117],
although one has to assume that M* is a Spin-manifold. One of the key ingredients
in [117] is the following:

Theorem 9.19. Let Q C R* C S* be a finite 2-dimensional subcomplex in the
standard cubulation of R*. Then there exists a convex-cocompact Kleinian subgroup
I' C Mob(S*) (generated by reflections) with a fundamental domain ® C S*, such
that the complement S*\ ® is isotopic to a reqular neighborhood of Q.

Very little is known about quasifuchsian groups in Mlob(S") whose limit sets
have dimension between 2 and n — 2. Perhaps the most interesting result here is
obtained by I. Belegradek [15] who used the construction from [87] to get

Theorem 9.20. There exist convex-cocompact 2-quasifuchsian subgroups I'1,T'y C
Mob(S*) so that:

1) A(T1) is a wild 2-sphere in S*.
2) A(T'2) is tame but the group Ty is not topologically conjugate to a 2-fuchsian
group: M*(T'3) is a nontrivial circle bundle over a hyperbolic 3-manifold.

Similar results probably hold for codimension 2 quasifuchsian subgroups in
Mob(S"), n > 5.

10. Ahlfors finiteness theorem in higher dimensions:
Quest for the holy grail

10.1. The holy grail

One of the most fundamental results of the theory of Kleinian subgroups of
Mob(S?) is the Ahlfors Finiteness Theorem (the “Holy Grail”), which we state
here together with its companions:

Theorem 10.1. Suppose that T' C PSL(2,C) is a Kleinian group* which may have
torsion. Then the following hold:

1. (L. Ahlfors [3], L. Greenberg [83].) The group T is analytically finite, i.e.,
the quotient O := Q(T')/T is a complex orbifold of finite conformal type®. In
particular, O is homotopy-equivalent to a finite CW complex.

2. (D. Sullivan [209].) T' has only finitely many cusps.

3. (M. Feighn and G. Mess [75].) T’ has only finitely many T'-conjugacy classes
of finite order elements.

4. (P.Scott [201, 202].) T is finitely presentable and the orbifold H? /T is finitely
covered by a manifold H3 /T, which is homotopy-equivalent to a compact 3-
manifold.

4Recall that all Kleinian groups are assumed to be finitely generated.
5I.e., as a Riemann surface it biholomorphic to a compact Riemann surface with a finite subset
removed; as an orbifold it has only finitely many singular cone-points.
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5. (L. Ahifors [4].) The action of T' on A(T") is recurrent with respect to the
Lebesgue measure fi.

Alternative analytical proofs of Part 1 (i.e., the original Ahlfors’ finiteness
theorem) are given for instance in [116, Section 8.14] and [153]. A geometric proof
(valid even in the context of manifolds of negative curvature) follows from the
solution of Tameness Conjecture, see [2].

Corollary 10.2. If T is as above, then:

(a) For each component Qo of Q(T'), the limit set of the stabilizer of Qg in T
equals O (follows directly from Part 1 of Theorem 10.1). In particular, no
component of Q(T) has trivial stabilizer.

(b) Kleinian subgroups T' of Mob(S?) are coherent, i.e., each finitely generated
subgroup of T' is also finitely presented (follows from Part 4 of Theorem 10.1).

(c) (W. Thurston, see [170].) If T C Mob(S?) is geometrically finite with Q(T') #
(0, then each finitely generated subgroup A C T is geometrically finite as well.

We also now fully understand the topology of the manifold (orbifold) H?/T":

Theorem 10.3 (Former tameness conjecture). The quotient H3/T' is tame, i.e., it
is homeomorphic to the interior of a compact manifold (orbifold) with boundary.

The above theorem was proved for freely indecomposable groups I' by F. Bo-
nahon [34] and by I. Agol [2], D. Calegari and D. Gabai [49] in the general case.

The next theorem is a combination of a result by Thurston [213], who proved
ergodicity for tame Kleinian subgroups of Mob(S?), and the proof of the tameness
conjecture:

Theorem 10.4. IfT" is as above, then the action of I on A(T") is ergodic with respect
to the Lebesgue measure: each measurable I'-invariant function on A(T') is constant
a.e..

Note, that the conglomerate of assertions presented above contains state-
ments of different nature: algebraic, topological, dynamical. For a while it was
hoped that a theorem analogous to Theorem 10.1 can be proved for Kleinian groups
in higher dimensions; an attempt to develop analytical technique to achieve this
was made by Ahlfors in [6] (see also [179]).

Nearly all algebraic and topological assertions of Theorem 10.1 and the Corol-

lary 10.2 have been disproved in the case of Kleinian groups acting in higher di-
mensions (M. Kapovich and L. Potyagailo [114], [127], [128], [187], [188]):

Theorem 10.5. There exist Kleinian subgroups I'1,...,T's C Mob(S?) so that:
1. The group 'y is not finitely presentable.
2. For each i, the manifold M(T;) = Q(T';)/T; contains a component with in-
finitely generated fundamental group.
3. Ty is free and has infinitely many cusps (of rank 1).
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4. T3 is not torsion-free and has infinitely many conjugacy classes of finite order
elements. N

5. Ty is a normal subgroup of a convex-cocompact group I'y C Mob(S?) and
satisfies (1), (2) and (4).

6. (B. Bowditch, G. Mess [42].) The group Ts satisfies (1) and (2) and is con-
tained in a cocompact lattice T's C Mob(S?).

7. Groups I';, i = 1,...,4 are normal subgroups of geometrically finite groups
fi so that IA}/FZ ~7,.

Remark 10.6. By modifying I's one can also construct an example I's C Mob(S?)
such that Q(T'g)/T'¢ has infinitely many connected components.

At the time when the above examples were constructed, they were regarded
as a “rare pathology”. It appears however that such examples are rather common:

Conjecture 10.7. (M. Kapovich, L. Potyagailo, E. Vinberg [129].) Suppose that
I' € Mob(S") is an arithmetic lattice, where n > 3. Then T' is noncoherent, i.e.,
it contains a finitely generated subgroup A which is not finitely presentable.

This conjecture was proved in [129] in a number of special cases, e.g., for all
non-cocompact arithmetic lattices provided that n > 5.

All the examples I'; in the above theorem are based upon the existence of
hyperbolic 3-manifolds M? of finite volume which fiber over the circle: the groups
I'; are obtained by manipulating with the normal surface subgroups in m;(M?3).

Problem 10.8. Find ezamples similar to I';’s without using hyperbolic 3-manifolds
fibering over the circle.

Problem 10.9. Construct a finitely generated Kleinian subgroup T' C Mob(S")
such that Part (a) of Corollary 10.2 fails for T.

Problem 10.10. (G. Mess.) Construct a finitely-presented Kleinian subgroup of
Mob(S"™) (n > 3) which contains no parabolic elements and for which any of the
assertions of Theorem 10.1 fail. (In Part (a) one would need to replace analytical
finiteness with finiteness of the homotopy type.)

Problem 10.11. Construct a finitely generated Kleinian subgroup T C Mob(S?)
such that Q(T) contains a contractible component Qg so that:

The stabilizer Ty of Qo in ' is finitely-generated, but the manifold Qo /Ty is
not tame.

Note however that although algebra and topology fail, the assertions of dy-
namical nature (part 5 of Theorem 10.1, part (a) of Corollary 10.2, and Theorem
10.4) remain open in higher dimensions. Moreover, an attempt to construct a
higher-dimensional counter-example to Theorem 10.1 (part 5) along the lines of
the examples I';, is doomed to failure:
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Theorem 10.12. (K. Matsuzaki [160].) Let T' be a geometrically finite subgroup® in
Mob(S"). Suppose that T' C T is a normal subgroup (which does not have to be
finitely generated). Then the action of T' on its limit set is recurrent.

Ergodicity fails however for discrete subgroups of PU(2,1) (it probably also
fails for Kleinian groups in higher dimensions but an example would be difficult
to construct):

Theorem 10.13. There exists a finitely generated (but not finitely presentable!)
discrete group T' of isometries of complex-hyperbolic 2-plane CH? so that the limit
set of T is the 3-sphere and the action of T on S? is not ergodic.

Proof. There are examples (the first was constructed by R. Livne in his thesis
[145], see also [62]) of cocompact torsion-free discrete subgroups I' ¢ PU(2,1)
such that the complex 2-manifold M = CH?/ T admits a nonconstant holomorphic
map [ : M — S to a Riemann surface S of genus > 2. The fundamental group of
the generic fiber of f maps onto a normal subgroup I' in f, so that I is finitely
generated but is not finitely presentable [115]. By lifting f to the universal covers
we get a nonconstant holomorphic I'-invariant function
f : CH? — H2.

Then the bounded harmonic function Re( f) is also I'-invariant and nonconstant.
This harmonic function admits a measurable extension h to S*, the boundary of
the complex ball CH?, so that h is I'-invariant and not a.e. constant. O

10.2. Groups with small limit sets

So far, our quest for the holy grail mostly resembled Monty Python’s: We are not
sure what to look for in higher dimensions. Nevertheless, there is a glimmer of
hope.

Recall that the Hausdorfl dimension dimg of a subset £ C R"” is defined as
follows. For each @ > 0 consider the a-Hausdorff measure of E:

mesq(F) = lir% inf{z ri': 1 < p, Eis contained in the union of r;-balls}.
p— .

The Hausdorff dimension of F is
dimpy (E) = inf{a : mes,(F) = 0}.
According to [96], for every bounded subset E C R™ one has the inequality
dim(F) < dimg(F)

between topological and Hausdorff dimensions. In particular, if I' is a Kleinian
group with dimg (A(T)) < 1, then T is geometrically finite and is isomorphic to a
Schottky-type group, see Theorem 7.7.

Conjecture 10.14. If dimgy (A(T")) < 1, then T is a Schottky-type group. Moreover,
T is classical.

6 Actually, the proof also works for subgroups of any rank 1 Lie group.
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The critical exponent of a Kleinian group I' C Mob(S*) is
() :=1inf{s > 0: Z e 31@) < o0}
yerl

where d is the hyperbolic metric in H**!. The following theorem is the result of
combined efforts of a large number of mathematicians, including P. Tukia, D. Sul-
livan and P. Nicholls, we refer to [177], [33] for the proofs:

Theorem 10.15. For every Kleinian subgroup IT' C Mob(S"),
0(T) = dimg (A(T)).

Recall that A.(T") is the conical limit set of T'.
The critical exponent relates to Ag, the bottom of the spectrum of Laplacian
on the hyperbolic manifold H"*!/I", by the following

Theorem 10.16. (D. Sullivan [211])
n\ 2 n
= (= ) < < —
)\0 (2) ) Zf 0—5(F>—27

Ao = 8(T)(n — 8(I")), if g < () < n.

The expectation is that Kleinian groups in Mob(S") with small limit sets
behave analogously to the Kleinian subgroups of Mob(S?).

Conjecture 10.17. Suppose that T is a (finitely generated) subgroup of Mob(S™)
so that A(I") has Hausdorff dimension < 2. Then I" is geometrically finite.

For n = 2, this conjecture is a theorem of C. Bishop and P. Jones [33]. A
partial generalization of [33] was proved by A. Chang, J. Qing, J. and P. Yang
[54]:

Theorem 10.18. Suppose that T is a (finitely generated) conformally finite” sub-
group of Mob(S*) such that dimy (A(T")) <n. Then I' is geometrically finite.

The converse to the above theorem was proved earlier by P. Tukia [216].

Theorem 10.19. (Y. Shalom [204].) Suppose that T is a geometrically finite subgroup
of Mob(S") such that dimy (A(T)) < 2 and A CT is a finitely generated normal
subgroup. Then A has finite index in I'. In particular, A is geometrically finite as
well.

Thus, attempts to construct geometrically infinite groups using normal sub-
grooups in geometrically finite Kleinian groups with small limit sets, are doomed
to failure. On the other hand, the assumption that 6(I") is small should impose
strong restrictions on the algebraic properties of the group I'.

Conjecture 10.20. Suppose that T is a Kleinian group in Mob(S*) which does not
contain parabolic elements. Then:

Te., M™(T) = Q(I')/T" is compact modulo cusps.



Kleinian Groups 529

1. ed(T) —1 < §(1).
2. In the case of equality, T is an i-fuchsian convex-cocompact group, i = 6(T).

Recall that cd and hd stand for the cohomological and homological dimensions
of a group. A partial confirmation of Part 1 of this conjecture is obtained in

Theorem 10.21. (M. Kapovich [121].) Suppose that T C Mob(S™) is a Kleinian
group. Then for every ring R,

hdg(T,10) — 1 < §(T),

where II C T is the set of virtually abelian subgroups of T' of (virtual) rank > 2
and hdgr (T, 1) is the relative homological dimension.

We refer the reader to the series of papers by H. Izeki [100, 101, 102] for the
related results.

Corollary 10.22. (M. Kapovich [121].) Suppose that the group T is finitely-presented
and 6(T') < 1. Then T is free.

Proof. Since §(T") < 1, it follows that T' contains no rank 2 abelian subgroups.
Then we have the inequalities

cd(T) <1+ hd(T) < §(T)+2 < 3.

Combined with finite presentability of I", the inequality c¢d(I') < 2 implies that I"
has finite type; therefore

cdT)=ndT) <o) +1<2.
Hence T is free by Stallings’ Theorem 4.1. O

An inequality similar to Conjecture 10.20 was proved by A. Reznikov: For a
(finitely-generated) group I' define

a(T) :=inf{p € [1,00] : £, H'(T) # 0}.

Here ¢, H! is the first £,-cohomology of the group T', see [38] for the precise defi-
nition. Then

Theorem 10.23. (A. Reznikov [194], see also [38] for the detailed proof in the case
of isometries of CAT(—1) spaces.) For every Kleinian group I' C Mob(S"),

a(T) <max(6(T),1).

Question 10.24. What can be said about I' in the case of equality in Reznikov’s
theorem?

In the case of geometrically finite groups, Part 2 of Conjecture 10.20 holds:

Theorem 10.25. 1. (Chenbo Yue [228], see also [22] and [35].) Suppose that T is
convex-cocompact and i = 0(T') = ¢d(T") — 1. Then T is i-fuchsian.
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2. (M. Kapovich [121].) Suppose that T is geometrically finite. Then the following
three conditions are equivalent:
1=0(T) =ed(T, 1) — 1,
1 =dim(A(T")) = dimg (A(T)),
I' is i-fuchsian.
Conjecture 10.26. Suppose that ' is a Kleinian group in Mob(S™) whose limit set
is not totally disconnected and has Hausdorff dimension 1. Then I is 1-fuchsian.

This conjecture is known to be true for n = 2, see [50].

Problem 10.27. (The gap problem, L. Bowen, cf. [206].)

1. Is there a number d,, < n such that for every Schottky subgroup T' C Mob(S"),
n > 3, we have:

oI) < dy.

2. More generally, consider a sequence I'; C Mob(S") of convez-cocompact
groups isomorphic to a fized group T' so that: A(T';) # S™ for each j. Is
it true that

lim sup 6(I';) <n ?

Jj—00

By the work of R. Phillips and P. Sarnak [185], the answer to the Part 1 of
this question is positive in the class of classical Schottky groups.

11. Representation varieties of Kleinian groups

For a finitely-generated I' consider the representation variety of T':

R, (T) := Hom(T', Mob(S")).
If T has the presentation

D=(x1, ., Tm|r1y ey Ty o),
the representation variety is given by

{(g1,---y9m) € Mob(S")™ :r1(g1, -, 9m) =1, .r:(g1, - -y gm) = 1,....}.
The group Mob(S") acts on R, (I") via conjugation:
0-p(y) =0p(7)0~", 6c Mob(S").
Given this action, one can form the quotient variety
X,(T) := R,(T")// Mob(S"),

called the character variety. Roughly speaking, the elements of X,,(I") are repre-
sented by conjugacy classes of representations p : ' — Mob(S"). This is literally
true for “most” representations, the ones for which p(I') does not contain a nor-
mal parabolic subgroup, see [103]. In general, the representations p1, p2 project to

the same point in X, (I") iff the closures of their Mob(S")-orbits have nonempty
intersection. We let [p] denote the projection of p € R, (T") to X,,(T).
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A trivial deformation of a representation py € R, (T") is a connected curve
pt € R, (T) which projects to a point in X,,(T"). A representation pq is called rigid
if it admits no nontrivial deformations.

We will be mostly interested in representations p € R, (I") which have dis-
crete, nonelementary image, however much of our discussion is more general.

In this section we address the following issues related to the character vari-
eties:

(i) Local structure of X, (I") and existence of small deformations of a given
Kleinian group (rigidity vs. flexibility).

(ii) Connectedness of the subspace D,,(T") of discrete and faithful representations
in X, ().

(iii) Structural stability: What happens to a Kleinian group in Mob(S") if we
deform it a little bit? Does it stay Kleinian?

(iv) Compactness of D, (T") and estimates on various natural continuous function-
als on D, (T).

(v) Difficulties in constructing “truly higher-dimensional” geometrically infinite
Kleinian groups.

11.1. Local theory

We start by considering the local structure of X, (T"). Given an abstract group T’
and a representation p € R, (I'), we have the adjoint action of p(I') on the Lie
algebra g of Mob(S") and the associated first cohomology group

H'(T, Ad(p)) = Z*(T, Ad(p))/ B (T, Ad(p)),

see Section 4. It was first observed by A. Weil [226] (in the general context of repre-
sentations to Lie groups) that if X,,(T') is smooth at [p] € X, (") then H(T', Ad(p))
is isomorphic to the tangent space to X, (I") at [p]. Moreover, Weil proved that if
HY(T, Ad(p)) = 0 then [p] is an isolated point on X,,(T'), i.e., p is rigid.
Therefore, the elements of H!(T', Ad(p)) can be regarded as infinitesimal de-
formations of the representation p. An infinitesimal deformation [¢] € H(T, Ad(p))
is called integrable if it is tangent to a smooth curve in X,,(I"). The obstruc-
tions to integrability are cohomological in nature, they are certain elements of
H?%(T, Ad(p)), called Massey products. However, in practice, these cohomology
classes are very difficult to compute. The first such obstruction is the cup-product:

#([€) =[] U [€] € HA(T, Ad(p)),
see for instance [82]. Here ¢([£]) is represented by the 2-cocycle

(x,y) = [£(x), Ad o p(x)E(y)];

where [,] is the Lie bracket on the Lie algebra g. If the first obstruction vanishes
and T' is the fundamental group of a surface, then X,,(T') is smooth at p, see [82],
where a much more general result is proved.
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We will be mostly interested in the case where p : I' < Mob(S"?) is a discrete
embedding, whose image we will identify with I'. Then, by abusing the terminology,
we will talk of small deformations of p in R, (T") as small deformations of T" itself.

11.1.1. Small deformations of 1-quasifuchsian groups. Recall that Mob(S") has
dimension d = (n+ 2)(n+1)/2. Suppose that I' € Mob(S") is 1-quasifuchsian; in
this subsection we allow I' to have nontrivial finite order elements. We assume how-
ever that T’ contains no elements fixing the circle C' = A(T") pointwise. Therefore
we obtain the injective map
I' — Isom(H?)
given by the restriction of the elements of I' to the round circle C. To simplify the
discussion we assume that I" preserves the orientation on C. Then I' embeds as a
lattice in PSL(2,R).
If T contains no parabolic elements then it has the presentation:

(a1,b1,....,aq,bq,c1,...,cxl|[ar,b1] - [ag, bgl-c1-+ e = l,c;j =1,7=1,...,k).
For a representation p : I' — Mob(S") we let

eji=d—dim{{ € g: Adop(c;)(§) =&}
in other words, e; is the codimension of the centralizer of p(c;) in Mob(S"). Let
s denote the dimension of the centralizer of p(I') in Mob(S").

Theorem 11.1. (A. Weil [226].)
h = dim H (T, Ad(p)) = (2¢ — 2)d + 25 + 1 + --- + ey (11.1)
Moreover, if s =0, then X,,(T') near [p] is a smooth h-dimensional manifold.

For instance, if n = 1, ' € PSL(2,R) C Mob(S!); therefore d = 3, we get
e; =1foreach:=1,...,k, s =0. Hence

h=6g—6+k,

which is the familiar formula for the dimension of the Teichmiiller space of the
orbifold O = H2/T. If n = 2, we, of course, obtain h = 2(6¢g — 6 + k) which is the
(real) dimension of the space of the quasifuchsian deformations of I in PSL(2, C).

To better understand the difficulties which one encounters in the case of
i-fuchsian groups for ¢ > 2, we consider the hyperbolic triangle groups I'. The
reason for considering these groups is that they are rigid in PSL(2,R) (similarly
to rigidity of lattices in Mob(S"), n > 2).

The triangle groups are the 1-fuchsian groups with ¢ = 0, k = 3; every such
I' has the presentation

(cr1,e9,¢3lc1 e c3 = 1,6 =1,j=1,2,3),

where 7, 4+ 75 + 731 < 1. Such group embeds discretely into PSL(2,R) and we
will denote the image of this embedding by A = A(ry,re,73)

As a subgroup of Mob(S?), the group A is rigid (which follows from vanishing
of H'). Moreover, triangle groups are “strongly rigid” in Mob(S?), i.e., every
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discrete embedding of I' into Mob(S?) is induced by conjugation of the identity
embedding, see [84] for the complete description of X5 (T").

The situation changes somewhat if we consider representations into Mob(S?).
First, let po : A — IV C Mob(S?) be the embedding obtained as the composition

A C Mob(S') < Mob(S?) < Mob(S?).

of natural embeddings. Then dim H*(A, Ad(py)) = 0 and hence py is still rigid in
Mob(S?). The easiest way to see this is to use Weil’s formula (11.1):

d=10,s=1,e;=6, forj=1,2,3

and hence
h=-20+2+6+6+6=0.

However, instead of py we can take a twisted extension. Suppose that we can find
numbers m; € Z,1 < |m;| <r; —1 (j = 1,2,3) such that:

ml_1 + mgl + mgl =0, and Vj, m; divides ;.

(This is satisfied for instance by mi = mg = 4, m3 = —2 and r; = 8 for all j.)
Define a homomorphism 6 : A — SO(2) by sending ¢; to the rotation by
27 /m;. Then define p : A — Mob(S!) x SO(2) C Mob(S?) by twisting po via 6:

p(7) =po(7) x 6(7), v €A

It is clear that p(A) is again a 1-fuchsian subgroup in Mob(S?). If r; > 3 for
each j, then e; = 8, s = 1 and the formula (11.1) gives the dimension h = 6 for
H(A, Ad(p)). I do not know if any of these infinitesimal deformations is integrable.
To decide this one has to analyze the quadratic form

¢ H' (A7Ad(p)) - H2(A7 Ad(p)) =R,

given by the cup-product. According to [82], the quadratic cone {¢ = 0} is ana-
lytically isomorphic to a neighborhood of [p] in X5(A); hence it suffices to find a
nontrivial 1-cocycle £ for which ¢([¢]) = 0 to get nontrivial deformations of the
representation p.

On the other hand, one can use (11.1) to show that every representation p
of the group A = A(2,3,73) into Mob(S?) has zero cohomology H'(A, Ad(p)).
Therefore X5(A) is a zero-dimensional algebraic variety and, hence, is a finite set.

This situation is somewhat typical for representations of lattices in Mob(S™)
(n > 2) into Mob(S"*1): In a number of cases we can prove rigidity by making co-
homological computations; in some cases we can only conclude that H! is nonzero,
without being able to make a definitive conclusion about existence of nontrivial
deformations.
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11.1.2. Small deformations of i-quasifuchsian groups for ¢ > 2. In the case of
(n — 1)-quasifuchsian groups I' (n > 2), the existence of nontrivial deformations
of T in Mob(S") is not at all clear. Suppose that I' C Isom(H") is a cocompact
lattice. Then the identity embedding

t: T Isom(H"),
is rigid by Mostow’s theorem.

Remark 11.2. Actually, (local) rigidity of ¢ was known prior to the work of Mostow;
it was first established by E. Calabi [48], whose proof was later generalized by
A. Weil [224, 225]. These arguments were based on proving that H*(T', Ad()) = 0.

Consider now the composition of ¢ with the natural embedding:
p: T — Isom(H") — Isom(H" ).

Then

HY (T, Ad(1)) = H (T, Vp),
where V;, = R™! and I" acts on the Lorentz space R™! via the usual embedding
I' = O(n,1).

It turns out that p may or may not be rigid, even if I is torsion-free: Rigidity
depends on the lattice I'. One has the following list ((a) through (e)) of construc-
tions of deformations and infinitesimal deformations of [p] in X, (T"):

(a) Bending, see [103], [135]. Given a connected properly embedded totally-
geodesic hypersurface S € M = H"/I", one associates with S a smooth curve
through [p] in X,,(T"), called the bending deformation of [p]. More generally, given
a disjoint collections of such hypersurfaces S, ..., Sk, one obtains a k-dimensional
smooth submanifold in X,,(T") containing [p]. This construction is completely anal-
ogous to bending deformations of 1-fuchsian subgroups in Mob(S?) defined by
W. Thurston in [213]. We let [£s] denote the element of H'(T', Ad(p)) correspond-
ing to a connected totally-geodesic hypersurface S C M.

There are numerous groups I satisfying assumptions of the bending con-
struction. Namely, start with an arithmetic group O’(f, A) of the simplest type
(see Section 2), where

2 2 2
f=aoxy+ a1y + -+ anz;,

and ag < 0,a; > 0,7 =1,...,n. Identify H" with a component of the hyperboloid
{f(z) = —1}. Then the stabilizer of the hyperplane P = {x,, = 0} in O'(f, A) is
an arithmetic lattice in Isom(H"~1!). The intersection H = PNH" is a hyperplane
in H". After passing to an appropriate finite-index subgroup I' in O’(f, A), one
obtains a totally-geodesic embedding of the hypersurface S = H/T" into H/T,
where I =T NO'(f, A). We refer the reader to [164] for the details.

Problem 11.3 (I. Rivin). Construct examples of hyperbolic n-manifolds M of finite
volume (n > 4) such that M contains a separating properly embedded totally-
geodesic hypersurface S C M. Note that the main objective of [164] was to construct
nonseparating hypersurfaces.
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The idea of bending deformations of representations is quite simple and has
nothing to do with the hyperbolic space. Below is a general description of bending
as defined by D. Johnson and J. Millson in [103]. Suppose that we are given a graph
of groups G with the vertex groups I';, and the edge groups I'c. Let I' = w1 (G) be
the fundamental group of G. For instance, the amalgam

[ =T,, #p, Ty, (11.2)

is the fundamental group of a graph of groups which is a single edge e with two
vertices vy, vs. Let pg : I' — G be a representation of I to a Lie group G. A bending
deformation of pg is a curve of representations p; : I' — G,t € [—1, 1], such that
for each vertex group I';,, we have

pelTo = gu,e(po|T0)gui
for some curve g, + of elements of G.

Therefore, the restriction of p; to each vertex group determines a trivial
deformation of the representation of this group. The trick is that the deformation
of the representation of the entire group I' may be still nontrivial. For instance,
in the case of the amalgam (11.2), let g € G,g0 = 1, be a curve of elements
centralizing p(T'.), but not p(T'y, ), p(T's,). Define the family of representations

pr:T =G, piTo, = polTurs  pelTws = ge(poToy)gs '
In the case of the HNN extension
I' =T, *r,
generated by I',, and 7 € I such 777! =T, C T,,, we take

pe|To, = pollurs  pe(T) = po(T)g:-

This is a nontrivial deformation of the representation py.

We now return to the case when I' = w1 (M), M is a hyperbolic n-manifold
containing pairwise disjoint totally geodesic hypersurfaces S;,i = 1,...,k. Then
the group I splits as the graph of groups G, so that the vertex subgroups I', are
the fundamental groups of the components of M \ (S; U --- U Sk) and the edge
groups I, are the fundamental groups 7 (S;). Therefore

1. The centralizer of each T'e;, = m1(S;) in Mob(S") is 1-dimensional (the group
of elliptic rotations around the limit set of T'.,).
2. The centralizer in Mob(S") of the fundamental group of each Ty, is zero-
dimensional (i.e., Zs).
Hence one obtains nontrivial bending deformations p; of the identity embedding of
p: T < Mob(S"). The set of bending parameters t = (¢1,...,t;) can be identified
with (S1)*, as the centralizer of each I'., in Mob(S?) is the circle SO(2).

Theorem 11.4. (D. Johnson and J. Millson [103].) For every n > 4 there exists a
uniform lattice T C Isom(H"™) and intersecting hypersurfaces Si,Sa C H"/T, so
that

[€5,] U [€s,] € H*(T, Ad(p)) # 0.
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In particular, X, (T) is not smooth at [p].
In contrast with this result, the character varieties X2(I") tend to be smooth:

Theorem 11.5. (M. Kapovich [116, Theorem 8.44].) Let ' C Mob(S?) be a discrete
subgroup. Then the identity embedding ¢ : T — Mob(S?) determines a smooth
point on Xo(T).

On the other hand, there are cocompact lattices I' € Mob(S?) and (nondis-
crete) representations p : I' — Mob(S?) for which X5(I") has nonquadratic singu-
larity at [p], see [126].

(b) Generalized bending associated with a collection of compact totally-geo-
desic submanifolds with boundary in M", see [12]%, [125], [161], [13].

The idea of the generalized bending is that instead of considering fundamental
groups of graphs of groups, one looks at the more general complexes of groups.
The only examples which had been worked out are 2-dimensional complexes of
groups. Let X be such a complex with the vertex groups I'y. Let m1(X) =T and
po : I' — G be a representation to a Lie group. Then, as in the definition of bending,
a generalized bending of pg is a curve of representations p; : I' — G, t € [—1,1],
whose restrictions to each vertex subgroup T',, are trivial deformations of pg|T',,.

(¢) Suppose that a lattice I' C Isom(H") is a reflection group, i.e., it is
generated by reflections in the faces of a convex acute polyhedron ® C H" of finite
volume (the fundamental domain of T'). If f is the number of facets of ®, then one
can show that

dim HY(T', Ad(p)) = f —n — 1,
see [113]. The facets of ® correspond to vectors spanning H'. If n > 4, it is unclear
which (if any) of these infinitesimal deformations are integrable. Of course, in some
examples some of these infinitesimal deformations are integrable, since they appear
as infinitesimal bending deformations. If n = 3, then X3(I") is smooth near [p] and
has dimension f — 4, see [113].
And that’s all for n > 3.

Problem 11.6 (P. Storm). Let M be a compact hyperbolic (n + 1)-dimensional
manifold with nonempty totally-geodesic boundary, n > 3. Let T' := m (M) C
Mob(S"). Is it true that T is rigid in Mob(S")?

Note that (by Mostow rigidity) rigidity of I" would follow if we knew that for
each component S of OM, the fundamental group I's := 71 (S) is rigid in Mob(S").
At the moment, we do not have results in either direction of this problem:

1. It is unclear if any of the rigid hyperbolic 3-manifolds, or their disjoint union

(see Example 11.1.2), bounds a compact hyperbolic 4-manifold.

2. Even if some I'g is not rigid, it is unclear if its deformations extend to defor-

mations of T.

8Some of the theorems stated in this paper are probably incorrect since they do not take into
account the restrictions on the angles between the totally-geodesic submanifolds.
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The only known example of a rigid group I' (as in Problem 11.6) is the fun-
damental group of a 4-dimensional hyperbolic orbifold. Moreover, in this example
the group I'g is not rigid:

Consider the 120-cell D* C H* which appears in [60]. Pick a facet F' C D*.
Let I' C Mob(S?) be the Kleinian group generated by reflections in all facets of
D* except for F. Then T is the fundamental group of a right-angled 4-dimensional
reflection orbifold @ with boundary (the boundary S = 9O corresponds to the
facet F'). The subgroup I's := 71 (.9) is the Coxeter group generated by reflections
in the facets of the regular right-angled hyperbolic dodecahedron. In particular,
X3(T) is a smooth 8-dimensional manifold near [¢], where ¢ : T's < Mob(S?) —
Mob(S?) is the identity embedding.

Theorem 11.7 (M. Kapovich). T is rigid in Mob(S?).
Assume now that n = 3.

(d) The first obstruction to integrability of infinitesimal deformations is al-
ways zero, see [126].

Question 11.8. Suppose that T C Mob(S?) is a cocompact lattice. It it true that
the character variety X5(T') is smooth at the point [p]?

(e) Finally, there are several constructions which work for specific examples
of lattices I' € Mob(S?), e.g., stumping deformations [9], generalized in [212].

We recall the following

Conjecture 11.9. Suppose that T' C Mob(S") is a lattice. Then T’ contains a finite-
index subgroup I such that T has infinite abelianization, i.e., H(I",R) # 0.

We refer the reader to [144, 146, 164, 189, 200] for various results towards
this conjecture in the case of arithmetic lattices in Isom(H"). The methods used in
these papers for proving virtual nonvanishing of the first cohomology group usually
also apply to the cohomology groups H'(I', Ad(p)), where p : I' — Isom(H"*1) is
the natural embedding. On the other hand, the proofs of special cases of Conjecture
11.9 for hyperbolic 3-manifolds which use the methods of 3-dimensional topology
(see, e.g., [142]), usually provide no information about rigidity of ' in Isom(H*).

Conjecture 11.10. Suppose that T' C Isom(H™) is a lattice. Then there exists a
finite-index subgroup T'" C T so that H*(I", Ad(p)) # 0.

On the other hand, some uniform torsion-free lattices in Mob(S?) are rigid
in Mob(S?):

Ezample. In [113] we constructed examples of (torsion-free) cocompact lattices T’
in Mob(S?) for which H'(T', Ad(p)) = 0, where p : I' — Mob(S?) is the natu-
ral embedding. The quotient manifolds H?/T" in these examples are non-Haken.
K. Scannell [197] constructed analogous examples with Haken quotients H?/T.
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More specifically, it was proved in [113] that for every hyperbolic 2-bridge
knot K C S3, there are infinitely many (hyperbolic) Dehn surgeries on K, so that
for the resulting manifolds M, j € N, we have

H(T';, Ad(p)) = 0, where T'; = 71 (M;).

11.1.3. Failure of quasiconformal isotopy. The goal of this section is to construct
examples of Kleinian groups which are quasiconformally conjugate, but cannot be
deformed to each other. As the reader will see, the tools for constructing such
examples were available 12 years ago. I realized that such examples exist only
recently, while working on this survey.

Theorem 11.11. There exists a pair of convex-cocompact Kleinian groups A1, Ay C
Mob(S®) and a quasiconformal homeomorphism f : S® — S conjugating Ay to
Ay, which is not isotopic to the identity through homeomorphisms h; : S? — S?
such that

hiA1h; ' € Mob(S%).

Proof. We begin with a lattice I' = m; (IV), where N = M is as in the discussion
of Example 11.1.2 and K C S3 is the figure 8 knot. Consider the representation
p1: T < Mob(S?) < Mob(S®)
obtained by the composition of natural embeddings. Then
HY(T, Ad(p1)) = H'(T, Vs & V3 © V3 © R?),
where V3 = R*! and R? is the trivial 3-dimensional R[-module. Since H(T", V3) =
0 by [113] and H*(I',R?) = 0 since N is a rational homology sphere, we obtain
HY(T, Ad(p1)) = 0.
Therefore p; is rigid. If N is an integer homology 3-sphere, then nonvanishing of
the Casson invariant of K implies that I' admits a nontrivial homomorphism
0:T — SO(3),

which lifts to SU(2), see [7]. If M; is not an integer homology sphere, then I' has
nontrivial abelianization and hence we also obtain a nontrivial homomorphism
0 : T — SO(3) with cyclic image. In any case, we twist the representation p; by 6:

pa = p1 x 0 :T — Mob(S?) xSO(3) C Mob(S°).

It is clear that [p1], [p2] are distinct points of X5(I"). The images of p; and ps are
2-fuchsian, convex-cocompact groups Aj, Ay C Mob(S?). We obtain the isomor-
phism
pi=proprt i Ar — Ay
Clearly,
M3(Ay) = N x §?,

while M5(Ay) is the 2-sphere bundle over N associated with 6. It is easy to see
that the latter bundle is (smoothly) trivial. Therefore we obtain a diffeomorphism

h: Ms(Al) — M5(A2)
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which lifts to a p-equivariant diffeomorphism f : (A1) — Q(As). The latter
extends to a quasiconformal homeomorphism f : S — S5 by Theorem 6.1. If
there was a continuous family of homomorphisms p; connecting p to the identity
embedding A; — As, then the representation p; would not be rigid in X5(T).
Contradiction. O

By embedding naturally the groups A, As to Mob(S") for n > 6 one obtains
higher-dimensional examples.

11.2. Stability theorem

Let T' C Mob(S") be a geometrically finite Kleinian group. Consider the set of
cusps in I':

[, ..., M),
where II; are maximal parabolic subgroups of I'. We define the (topologically)
relative representation variety

RIP(T) = {p: T — Mob(S") : p(II;) is topologically conjugate to II; in S™,Vi}
and the (quasiconformally) relative representation variety
RIC(T) = {p: T — Mob(S") : p(II;) is quasiconformally conjugate to II; in S"}.

Let Homeo(S™) and QC(S™) be the groups of homeomorphisms and qua-
siconformal homeomorphisms of S” with the topology of uniform convergence.
Let Xt°P(T'), X3¢(T') be the projections of RI°P(T), Ri(T') to X, (). Let ¢ : ' —
Mob(S") be the identity embedding. Then the Stability Theorem for geometri-
cally finite groups states that every homomorphism p of I' sufficiently close to
¢ is induced by a (quasiconformal) homeomorphism %, close to the identity and
depending continuously on p. More precisely:

Theorem 11.12. (Stability theorem, see [40, 69, 79, 108, 152, 210].) There exist
neighborhoods U'P U of v in RLP(T), Ri(T') respectively, and continuous maps

L'°P . U — Homeo(S™), L%:U%* — QC(S"™)
so that
L'P(1) = L%(1) = Id,
and for every p € U™P, resp. p € U, the homeomorphism L'°P(p), resp. L(p)
18 p-equivariant.

This theorem was first proved by A. Marden in [152] in the case n = 3.
Marden was using convex finitely-sided fundamental domains with simplicial links
of vertices: Such polyhedra are generic among the Dirichlet fundamental domains,
see [106]. Marden then argued that a small perturbation of such fundamental
domain is again a fundamental domain (by the Poincaré fundamental polyhedron
theorem). Moreover, the simplicial assumption implies that the combinatorics of
the fundamental domain does not change under a small perturbation. This allowed
Marden to construct an equivariant quasiconformal homeomorphism close to the
identity. This argument does not readily generalize to higher dimensions, mainly
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because finiteness of the number of faces is not equivalent to geometric finiteness.
(Otherwise, the same argument goes through.)

D. Sullivan [210] considered the case of general n, but assumed that T is
convex-cocompact. Then he proved the existence of a homeomorphism £, defined
on the limit set of I and the fact that it depends continuously on p. The fact that

By s A(T) = A(p(T)

is necessarily quasi-symmetric, then follows from Tukia’s theorem 6.1. One then has
to show existence of a p-equivariant diffeomorphism of the domains of discontinuity

o+ QT) = Q(p(I))

smoothly depending on p. This is achieved by appealing to Thurston’s holonomy
theorem (see [69, 79]) for the Mobius structures on the manifold M™(T'), as it is
done in [101, 108]. The homeomorphisms h, and f, yield a p-equivariant quasi-
conformal homeomorphism of the n-sphere by Theorem 6.1.

The proof in [69] is a good alternative to the above argument; it is also
sufficiently flexible to handle the case of geometrically finite Kleinian groups with
cusps. Namely, instead of working with the n-dimensional manifold M™(T") one
works with the convex hyperbolic (n + 1)-manifold

H(T) == Hull.(A(D))/T.

An analogue of Thurston’s holonomy theorem for manifolds with boundary applies
in this case. Thus, for p € UP, there exists a hyperbolic structure s(p) (with the
holonomy p) on the thick part

H(F>[,u,oo)

of the manifold H(T"). Moreover, convexity of the boundary for the new hyper-
bolic structures (away from the cusps) persists under small perturbations of the
hyperbolic structure. Therefore, if T' is convex-cocompact, IV := p(T') is again
convex-cocompact and p : I' — I is an isomorphism. If " is merely geometrically
finite, because p belongs to the relative representation variety, it follows that the
hyperbolic structure s(p) extends to a convex complete hyperbolic structure on
the cusps. This argument also yields a p-equivariant diffeomorphism

Hull (A(T)) — Hull (A(I"))

depending continuously on p. To get from the convex hulls to the domain of discon-
tinuity one uses the existence of the canonical equivariant diffeomorphisms (“the
nearest-point projections”)

QT) — OHull(A(I)), Q') — dHull (A(I")).
We refer the reader to [69] for the details.

Sullivan also had a converse to the Stability Theorem for (finitely-generated)
subgroups on Mob(S?):
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Theorem 11.13. (D. Sullivan, [210, Theorem A’]) If a (finitely-generated) Kleinian
subgroup of Mob(S?) is stable in the sense of Theorem 11.12, then it is geometri-
cally finite or its identity embedding in Mob(S?) is rigid in X2(T).

It was proved in [116] that every rigid T' in the above theorem has to be
geometrically finite. Now it, of course, follows from the positive solution of the
Bers—Thurston density conjecture (geometrically finite groups are dense among
Kleinian subgroups of Mob(S?)).

Question 11.14. Does Theorem 11.13 hold for subgroups of Mob(S"), n > 3¢
We expect the answer to be negative.

11.3. Space of discrete and faithful representations

Let D,(TI') € X,,(T') denote the subset corresponding to discrete, injective and
nonelementary representations of T.

Theorem 11.15 (Chuckrow—Jgrgensen—Wielenberg). D,,(I") C X,,(T") is closed. See
for instance [227, 154].

It turns out that there exists another way to construct limits of sequences of
Kleinian groups, by regarding them as closed subsets of Mob(S"). This leads to
the topology of geometric convergence of Kleinian groups. With few exceptions,
the space of Kleinian groups is again closed in this topology (see, e.g., [215, 116]).
In general, D, (T") is not compact. Nevertheless, this space can be compactified
by projective classes of nontrivial I'-actions on real trees. This compactification
generalizes Thurston’s compactification of the Teichmiiller space. The compactifi-
cation by actions on trees was first defined by J. Morgan and P. Shalen [172] and
J. Morgan [171] using algebraic geometry. More flexible, geometric, definitions of
this compactification were introduced by M. Bestvina [23] and F. Paulin [182]. See
also [116] for the construction of this compactification using ultralimits of metric
spaces.

This viewpoint provides a powerful tool for proving compactness of D, (T")
for certain classes of groups: If D, (T") is non-compact then I' admits nontrivial
action on a certain R-tree. One then proves that such action cannot exist. The
tools for proving such non-existence theorems are originally due to Morgan and
Shalen (but limited to the fundamental groups of 3-manifolds, see [172]); a much
more general method is due to E. Rips (Rips theory), see [27]. One then obtains
the following (see, e.g., [116]):

Theorem 11.16 (Rips—Thurston Compactness theorem). Suppose that T is a fini-
tely-presented group which does not split as an amalgam over a virtually abelian
group. Then D, (T) is compact.

Remark 11.17. W. Thurston [214] proved this theorem for a certain class of 3-
manifold groups in the case n = 2.

Unfortunately, none of the known proofs of Theorem 11.16 gives an explicit
bound on the “size” of D, (T").
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Problem 11.18. Find a “constructive” proof of Theorem 11.16. More precisely,
consider a group T' with a finite presentation (g1, ..,gx|R1,.., Rm). Given [p] €
Dy—1(T) define

Bn-1(lp]) = inf = max d(z,p(9:)(x)).

Find an explicit constant C, which depends on n, k, m and the lengths of the words
R;, so that the function By—1 : Dyp—1(T') — R is bounded from above by C.

Remark 11.19. In the case of Coxeter groups I', such explicit bound was obtained
by Y. Lai [143]: The constant C' depends only on the rank of the Coxeter group
and n.

Theorem 11.16 suggests that one should also look for geometric bounds on [p] €
D, (T): Even if D, (T) is noncompact (or its “size” is unknown), one can still try
to find some natural functionals on D,,(T") and obtain explicit bounds (from below
and from above) on these functionals.

Definition 11.20 (Diameter of a representation). Given a discrete embedding p :
I' - TV = p(T') € Mob(S"), consider the set S of connected subgraphs o C
H"*! /T with the property: The map (o) — m1 (M) is surjective.

Then the diameter of p is
diam(p) := inf{length(c) : 0 € S}.

Problem 11.21. Given a group T' as in Theorem 11.16, find explicit bounds on
diam(p) (in terms of the presentation of T') for representations [p] € D, (T).

Note that the positive lower bound on diam(p) is an easy corollary of the
Kazhdan-Margulis lemma.

Definition 11.22. (Volumes of a representation) Fix a homology class [(] € Z,(I'),
2 < p < cd(T"). For a representation p € D, (I') consider the quotient manifold
M =H"/p(T'). Define the set E(¢) of singular p-cycles ¢! € Z, (M) which represent
the homology class [(] under the isomorphism

Hy(I') — Hp(M)
induced by the isomorphism p : I' — m1(M). Lastly, define the p-volume of the
class [(] by
Vol,(¢) := inf{Vol((') : ¢' € E(O)}.
Let ||¢|| denote the Gromov-norm of the class [¢] and let ¢, denote the vol-

ume of the regular ideal geodesic p-simplex in HP. Then an easy application of
Thurston’s “chain-straightening” is the inequality

Vol,(¢) < ¢llC]|

for all p, [¢] and p > 2. However good lower bounds on the volume are considerably
more difficult to get.
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Given a hyperbolic manifold M define Hp" (M) to be the image in H,(M) of
the p-th homology group of the union of all cusps of M. Then for every parabolic
class [(] € HP*" (M) and every p, we clearly have

Vol,(¢) =0.

However there exists a positive constant € = €(p,n) such that for every p > 0,
every non-cuspidal class [(] and every p, we obtain

VOZP(C) Z €,
see [121]. Below are some more interesting lower bounds on the volume:

Theorem 11.23. (Follows directly from [86, Theorem 5.38]%). Let I' be isomorphic
to the fundamental group of a compact aspherical k-manifold N and [(] = [N]
be the fundamental class of M. Then there exists a universal (explicit) constant
¢(p,n) > 0 depending only on p and n, such that

Voly(¢) = c(p,n)|IN1|.

One gets better estimates using the work of Besson, Courtois and Gallot [21]
10.

Theorem 11.24. Fiz a representation [¢] € D, (I'). Then for every [p] € D, (T') and
p > 3 we obtain
PP+
(2)" vols() < VoL, (0).

n

For instance, if I := ¢(T") happens to be a uniform lattice in Isom(HP), we
obtain

Corollary 11.25. For every [p] € D, (') and p > 3 we have
p\PT! /
(2)" voiar) < vel, (o),

where M' = HP /T and [(] is the fundamental class.

11.4. Why is it so difficult to construct higher-dimensional geometrically infinite
Kleinian groups?
(i). The oldest trick for proving existence of geometrically infinite groups is due to
L. Bers [19]:
Start with (say) a convex-cocompact subgroup I' € Mob(S"). Let Q(T') C
D, (T) be the (open) subset of representations induced by quasiconformal conju-
gation. Let Qo(I") denote the component of Q(I') containing the (conjugacy class
of) identity representation [pg]. We assume that the closure of Qo(T") is not open
in X,,(T"). Then there exists a curve [p;] € X, (T'),t € [0,1], so that p; is either
nondiscrete or non-injective. Since D, (T") is closed, it follows that there exists
s € (0,1) such that [ps(I")] belongs to D, (I") but ps(T") is not convex-cocompact.

91 am grateful to A. Nabutovsky for this reference.
107 am grateful to J. Souto for pointing this out.
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If I7 = ps(T") contains no parabolic elements, it would follow that I is isomorphic
to I' and is not geometrically finite. However, it could happen that the frontier of
Qo(T) consists entirely of the classes [p] for which p(I") contains parabolic elements.

The latter cannot occur if n = 2 for dimension reasons: The set of parabolic
elements of PSL(2,C) has real codimension 2 and, hence, does not separate. How-
ever for all n # 2, the set of parabolic elements has real codimension 1 and this
argument is inconclusive.

One can try to apply the above argument in the case of a codimension 1
fuchsian group I' C Mob(S*) which acts as a cocompact lattice on H" C H"*!.
Suppose that M = H"/T" contains a totally-geodesic compact hypersurface S. Then
we have the circle S' worth of bending deformations p; along S. As t = =, the
image of p; is again contained in Mob(S"~!). Therefore p, is either nondiscrete
or non-injective. However, conceivably, in all such cases, for [ps] € 9Qo(T) the
representation ps is geometrically finite (because its image may contain parabolic
elements). It happens, for instance, if I" is a reflection group.

Note that even when n = 2 and we are bending a 1-fuchsian group T, it
is hard to predict which simple closed geodesics o C H?/T" yield geometrically
infinite groups (via bending along «).

(ii). One can try to construct explicit examples of fundamental domains,
following, say, T. Jergensen [104] or A. Marden and T. Jgrgensen [105].

The trouble is that constructing fundamental polyhedra with infinitely many
faces in H* is quite a bit harder than in H?. One can try to find a lattice T c
Mob(S?) which contains a nontrivial finitely-generated normal subgroup I' of in-
finite index.!! This is, probably, the most promising approach, since it works for
complex-hyperbolic lattices in PU(2,1), cf. [115]. One can try to imitate Livne’s
examples, by constructing I' C T such that f/ I is isomorphic to a surface group.
This would require coming up with a specific compact convex polyhedron in H*
such that the associated 4-manifold appears as a (singular) fibration over a surface.

(iii). One can try to use combinatorial group theory. Note that there are
plenty of examples of (mostly 2-dimensional) Gromov-hyperbolic groups T which
contain nontrivial finitely-generated normal subgroups I' of infinite index. See,
e.g., [26, 43, 174, 195] for the examples which are not 3-manifold groups. However
embedding a given hyperbolic group T in Mob(S") is a nontrivial task, cf. [37, 118]
and discussion in Section 12. The groups considered in [118], probably provide
the best opportunity here, since most of them do not pass the perimeter test of
J. McCammond and D. Wise [162]. (If a geometrically finite group I satisfies the
perimeter test, then every finitely-generated subgroup of Tis geometrically finite.)

(iv). What would geometrically infinite examples look like? Let T' C Mob(S?)
be a singly-degenerate group; assume for simplicity that the injectivity radius of

1Tf T is a Kleinian group containing a nontrivial normal subgroup I'" of infinite index, then T is
necessarily geometrically infinite.
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H?3/T is bounded away from zero. Let S denote the boundary of
Hull(A(T))/T

and A C S be the ending lamination of I'. Then every leaf of A lifts to an expo-
nentially distorted curve s in H?: Given points x,y € &, their extrinsic distance
d(z,y) in H? is roughly the logarithm of their intrinsic distance along .

One would like to imitate this behavior in dimension 4. Let M be a closed
hyperbolic 3-manifold containing an embedded compact totally-geodesic surface
S C M. Let A C S be an ending lamination from the above example. One would
like to construct a complete hyperbolic 4-manifold N homotopy-equivalent to M,
so that under the (smooth) homotopy-equivalence f : M — N we have:

For every leaf L of \, f(L) lifts to an exponentially distorted curve in H*.

Then 1 (N) will necessarily be a geometrically infinite subgroup I' of Mob(S?).
At the moment it is not even clear how to make this work with a hyperbolic metric
on N replaced by a complete Riemannian metric of negatively pinched sectional
curvature, although constructing a Gromov-hyperbolic metric with this behavior is
not that difficult. (Recall that a Riemannian metric is said to be negatively pinched
if its sectional curvature varies between two negative numbers.) An example I' of
this type is likely to have two components of (T'): One contractible and one not.

More ambitiously, one can try to get a singly degenerate group I' C Mob(S?)
(so that Q(T) is contractible and M3(T") is compact). How would such an example
look like? One can imagine taking a 1-dimensional quasi-geodesic foliation A of the
3-manifold M as above and then requiring that for every leaf L C A, the curve
f(L) lifts to an exponentially distorted curve in H*. At the moment I do not see
even a Gromov-hyperbolic model of this behavior. Another option would be to
work with 2-dimensional laminations v (with simply-connected leaves) in M and
require every leaf L C v to correspond to an exponentially distorted surface in
H* (or a negatively-curved simply-connected 4-manifold), which limits to a single
point in S3.

Problem 11.26. Construct a complete negatively pinched 4-dimensional Riemann-
ian manifold N homotopy-equivalent to a hyperbolic 3-manifold M, so that the
convez core of N either has exactly one boundary component or equals N itself.

Question 11.27. Is there a geometrically infinite Kleinian subgroup of Mob(S*)
whose limit is homeomorphic to the Menger curve? Is there a geometrically infinite
Kleinian subgroup of Mob(S™) which is isomorphic to the fundamental group of a
closed aspherical manifold of dimension > 3?2 Are there examples of such groups
acting isometrically on complete negatively pinched manifolds? Are there examples
of hyperbolic (or even negatively curved) 4-manifolds M such that (M) =T fits
into a short exact sequence

1—-m(S) =T —-m(F)—1,

where S, F' are closed hyperbolic surfaces? Note that there are no complex-hyperbolic
examples of this type, see [115].
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12. Algebraic and topological constraints on Kleinian groups

Sadly, there are only few known algebraic and topological restrictions on Kleinian
subgroups in Mob(S") that do not follow from the elementary restrictions, which
come from the restrictions on geometry of complete negatively curved Riemannian
manifolds. Examples of the elementary restrictions on a Kleinian group I' are:

1. Every solvable subgroup of a Kleinian group is virtually abelian.

2. The normalizer (in T') of an infinite cyclic subgroup of T" is virtually abelian.

3. Every elementary (i.e., virtually abelian) subgroup A C I is contained in a
unique maximal elementary subgroup AcCT.

4. Every Kleinian group has finite (virtual) cohomological dimension.

In this section we review known nonelementary algebraic and topological
restrictions on Kleinian groups.

12.1. Algebraic constraints

Definition 12.1. An abstract Kleinian group is a group I' which admits a discrete
embedding in Mob(S") for some n. Such a group is called elementary if it is
virtually abelian.

In order to eliminate trivial restrictions on abstract Kleinian groups one can
restrict attention to Gromov-hyperbolic Kleinian groups. Below is the list of known
algebraic constraints on Kleinian groups under this extra assumption:

1. Kleinian groups are residually finite and virtually torsion-free.!? (This, of
course, holds for all finitely generated matrix groups.)
2. Kleinian groups satisfy the Haagerup property, in particular, infinite Kleinian

groups do not satisfy property (T), see [55].

3. If a Kleinian group I' is Kdhler, then T' is virtually isomorphic to the fun-
damental group of a compact Riemann surface. This is a deep theorem of

J. Carlson and D. Toledo [52], who proved that every homomorphism of a

Kéhler group to Mob(S") either factors through a virtually surface group,

or its image fixes a point in B"*!.

Recall that a topological group G is said to satisfy the Haagerup property
if it admits a (metrically) proper continuous isometric action on a Hilbert space
H. An action of a metrizable topological group G on H is metrically proper if for
every bounded subset B C H, the set

{9eG:g(B)NB # 0}

is a bounded subset of G. Since Mob(S") satisfies the Haagerup property for every
n (see, e.g., [55]), all Kleinian groups also do.

A group 7 is called Kdhler if it is isomorphic to the fundamental group of a
compact Kahler manifold. For instance, every uniform lattice in CH™ is Kahler;
therefore it cannot be an abstract Kleinian group unless n = 1.

121t is widely believed that there are Gromov-hyperbolic groups which are not residually finite.
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Remark 12.2. A (finitely-generated) group satisfies the Haagerup property if and
only if it admits an isometric (metrically) properly discontinuous action on the
infinite dimensional hyperbolic space H*>, see [85, 7.A.III]. The result of Carlson
and Toledo shows that (for Gromov-hyperbolic groups) there are nontrivial ob-
structions to replacing these infinite-dimensional actions with finite-dimensional
ones.

Observation 12.3. All currently known nontrivial restrictions on abstract Kleinian
groups can be traced to 1, 2 or 3.

Problem 12.4. Find other restrictions on abstract Kleinian groups.

Potentially, some new restrictions would follow from the Rips-Thurston com-
pactness theorem. The difficulty comes from the following. Let I" be a Gromov-
hyperbolic group which admits no nontrivial isometric actions on R-trees. Then
(see [116]) there exists C' < oo, such that for every sequence [p;] € D, (T'), we
obtain a uniform bound

Bn(lps]) < C, (12.1)

where B,, : D,,(I') — R is the minimax function defined in Problem 11.18. If n were
fixed, then the sequence (p;) would subconverge to a representation to Mob(S™)
(for some choice of representations p, in the classes [p;]). However, since we are
not fixing the dimension of the hyperbolic space on which our I' is supposed to act,
the inequality (12.1) does not seem to yield any useful information. By taking an
ultralimit of p;’s we will get an action of I' on an infinite-dimensional hyperbolic
space. This action, however, may have a fixed point, since
lim wp, =0,

n—oo

where 1, is the Margulis constant for H"*!. See also Remark 12.2.

Example. Let M? be a closed non-Haken hyperbolic 3-manifold, so that II :=
m1 (M) contains a maximal 1-fuchsian subgroup F. For each automorphism ¢ :
F — I we define the HNN extension

Ty :=spar, = (I tltgt ™" = ¢(g),¥g € F).

Then T’y is Gromov-hyperbolic for all pseudo-Anosov automorphisms ¢, see [27].
It is a direct corollary of Theorem 11.16 that for every n, only finitely many of the
groups I'y embed in Mob(S") as Kleinian subgroups. Is it true that there exists a
pseudo-Anosov automorphism ¢ such that I'y is not an abstract Kleinian group?

Infinite finitely-generated Gromov-hyperbolic Coxeter groups are all linear,
satisfy the Haagerup property and are not Kéhler (except for the virtually surface

groups).

Problem 12.5. Is it true that every finitely-generated Gromov-hyperbolic Cozeter
group I' is an abstract Kleinian group?
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Note that there are Gromov-hyperbolic Coxeter groups I' which do not admit
discrete embeddings p : I' — Mob(S") (for any n), so that the Coxeter generators
of T" act as reflections in the faces of a fundamental domain of p(T"), see [76].

The answer to the next question is probably negative, but the examples would
be tricky to construct:

Question 12.6. Is it true that a group weakly commensurable to a Kleinian group
is also a Kleinian group? Even more ambitiously: Is the property of being Kleinian
a quasi-isometry invariant of a group?

Recall that two groups I' and I" are called weakly commensurable if there
exists a chain of groups and homomorphisms

1—‘:1_‘0—>1_‘1<—1—‘2—>1—‘3---,<—1—‘k_1—>1—‘k:1—‘/7

where each arrow I'; — I';41 is a homomorphism whose kernel and cokernel are
finite.

There are few more known algebraic restrictions on geometrically finite Klei-
nian groups. All such groups are relatively hyperbolic.

We recall that a group I is called cohopfian if every injective endomorphism
I' = T is also surjective.

Remark 12.7. A group I is called hopfian if every epimorphism I' — T is injective.
Every residually finite group T' is hopfian, see [151]. In particular, every Kleinian
group is hopfian.

For instance, free groups and free abelian groups are not cohopfian. More
generally, if T" splits as a nontrivial free product,

=Ty +Ty,

then T' is not cohopfian: Indeed, for nontrivial elements y; € I'1,72 € T's, set
o= 7Y172, and

I :=ala™t.
Then

=N A Y

is a proper subgroup of I'. On the other hand, lattices in Isom(H"), n > 3, and
uniform lattices in Isom(H?) are cohopfian. Indeed, Mostow rigidity theorem im-
plies that if Mj, Ms are hyperbolic n-manifolds of finite volume (and n > 3) or
compact hyperbolic surfaces, and M; — M, is a d-fold covering, then

Vol(My) = dVol(Ms).
On the other hand, if M is a hyperbolic manifold of finite volume (or a compact
hyperbolic surfaces), then every proper embedding
T (M) — m (M)

induces a d-fold covering M — M, with d € {2,3,...,00}. Hence 71 (M) is cohop-
fian.
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If a Kleinian group I' C Mob(S") fails to be cohopfian, we can iterate a
proper embedding ¢ : I' — T', thereby obtaining a sequence of discrete and faithful
representations

pi=go-0d
h.\/_/
i tlmes
of T into Mob(S"). By analyzing such sequences, T. Delzant and L. Potyagailo
[63] obtained a characterization of geometrically finite Kleinian groups which are
cohopfian. We will need two definitions in order to describe their result.

Definition 12.8. If I' is a Kleinian group and A C I' is an elementary subgroup,
let A denote the maximal elementary subgroup of I' containing A.

Definition 12.9. Suppose a group I' splits as a graph of groups
I ~m(G,T.,T,), (12.2)

and suppose that edge groups I, of this graph are elementary. We say that the edge
group I, is essentially non-maximal if the subgroup I. CT,isnot conjugate into
any of the vertex subgroups of the graph of groups G. The splitting is essentially
non-mazximal if there exists at least one such an edge group. Otherwise we say that
the splitting is essentially maximal.

For instance, if every edge subgroup is a maximal elementary subgroup of I,
then the splitting is essentially maximal.

Theorem 12.10. (7. Delzant and L. Potyagailo [63].) Let T' be a non-elementary,
geometrically finite, one-ended Kleinian group without 2-torsion. Then T is cohop-
fian if and only if the following two conditions are satisfied:

1) T has no essentially non-mazximal splittings.
2) T does not split as an amalgamated free product
I'= Fl *Tg f3,
with I's mazimal elementary, such that the normal closure of the subgroup I's

in 'z is of infinite index in T'3.

One of the ingredients in the proof of this theorem was the fact that nonele-
mentary geometrically finite groups I' do not contain subgroups I, which are
conjugate to I' in Mob(S"), see [223].

Question 12.11 (L. Potyagailo). Let I' C Mob(S") be a finitely generated non-
elementary Kleinian group. Suppose that o € Mob(S™) is such that
I"=ala ' CT.
Does it follow that TV =T7
The affirmative answer to this question for n = 2 was given in a paper of

L. Potyagailo and K.-I. Ohshika [178] (modulo Tameness Conjecture, Theorem
10.3).
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Question 12.12. Is the isomorphism problem solvable within the class of all finitely-
presented Kleinian groups? Note that the work of F. Dahmani and D. Groves [59]
implies solvability of the isomorphism problem in the category of geometrically
finite Kleinian groups.

It was proved by M. Bonk and O. Schramm [36] that every Gromov-hyperbolic
group I' embeds quasi-isometrically in the usual hyperbolic space H" for some
n =n(I'). A natural question is if one can prove an equivariant version of this re-
sult. Note that there are many Gromov-hyperbolic groups which are not Kleinian,
e.g., groups with property (T) and Gromov-hyperbolic Ké&hler groups. Therefore
one has to relax the isometric assumption. The natural category for this is the
uniformly quasiconformal actions. Such an action is a monomorphism

p: T — QCES")

whose image consists of K-quasiconformal homeomorphisms with K depending
only on p.

Problem 12.13. Let I' be a Gromov-hyperbolic group. Does I' admit a uniformly
quasiconformal discrete action on S™ for some n? For instance, is there such an
action if T is a uniform lattice in PU(n,1) or satisfies the property (T)?

T. Farrell and J. Lafont [74] proved that the topological counterpart of this
problem has positive solution. A corollary of their work is that every Gromov-
hyperbolic group I' admits a convergence action p on the closed n-ball, so that
the limit set of IV = p(T') is equivariantly homeomorphic to the ideal boundary
of ' and (T)/T” is compact and connected. We refer the reader to [78] for the
definition of a convergence action.

12.2. Topological constraints

The basic problem here is to find topological restrictions on the hyperbolic man-
ifold H**!/T and on the conformally-flat manifold Q(T")/T’, which do not follow
from the algebraic restrictions on the group I' and from the general algebraic topol-
ogy restrictions (e.g., vanishing of the characteristic classes). There are only few
nontrivial results in this direction. For n = 3 we have:

Theorem 12.14. (M. Kapovich [109].) There exists a function c(x) with the follow-
ing property. Let S be a closed hyperbolic surface. Suppose that M* is a complete
hyperbolic 4-manifold which is homeomorphic to the total space of an R?-bundle
& E — S with the Euler number e(€). Then

le(€)] < e(x(9))-
More generally,
Theorem 12.15. (M. Kapovich [109].) There exists a function C(x1,x2) with the
following property. Suppose that M* is a complete oriented hyperbolic 4-manifold.
Let oj : ¥j — M* (j = 1,2) be m -injective maps of closed oriented surfaces 3;.
Then
[(o1,02)] < C(x(21), x(22))-
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Here (,) is the intersection pairing on Hy(M*). The bounds appearing in
these theorems are explicit but astronomically high. The expected bounds are
linear in x(S) and x(S5;), ¢ = 1,2, cf. [87].

Other known restrictions are applications of the compactness theorem 11.16
and therefore explicit bounds in the following theorems are unknown.

Theorem 12.16. (M. Kapovich [111].) Given a closed hyperbolic n-manifold B (n >
3) there exists a number c¢(B) so that the following is true. Suppose that M*" a
complete hyperbolic 2n-manifold which is homeomorphic to the total space of an
R™-bundle £: E — B with the Fuler number e(§). Then

le(§)| < c(B).
I. Belegradek greatly improved this result:

Theorem 12.17. (1. Belegradek [16].) Given a closed hyperbolic n-manifold B (n >
3) there exists a number C(B, k) so that the number of inequivalent R¥-bundles

¢+ E — B whose total space admits a complete hyperbolic metric, is at most
C (B, k).

Given a group m, let M ,, denote the set of n-manifolds, whose fundamental
group is isomorphic to 7 and which admit complete hyperbolic metrics.

Theorem 12.18. (I. Belegradek [17].) Suppose that w is a finitely-presented group
with finite Betti numbers. Assume that m does not split as an amalgam over a
virtually abelian subgroup. The set My , breaks into finitely many intersection
preserving homotopy types.
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