Krull Dimensions of Rings of Holomorphic Functions

Michael Kapovich

Abstract. We prove that the Krull dimension of the ring of holomorphic functions of a connected complex manifold is at least the cardinality of continuum if and only if it is >0.

Let R be a commutative ring. Recall that the Krull dimension $\dim(R)$ of R is the supremum of cardinalities lengths of chains of distinct proper prime ideals in R. Our main result is:

Theorem 1. Let M be a connected complex manifold and $H(M)$ be the ring of holomorphic functions on M. Then the Krull dimension of $H(M)$ either equals 0 (if and only if $H(M) = \mathbb{C}$) or is infinite, if and only if M admits a nonconstant holomorphic function $M \to \mathbb{C}$. More precisely, unless $H(M) = \mathbb{C}$, $\dim H(M) \geq \aleph$, i.e., the ring $H(M)$ contains a chain of distinct prime ideals whose length has cardinality of continuum.

Our proof of this theorem mostly follows the lines of the proof by Sasane [S], who proved that for each nonempty domain $M \subset \mathbb{C}$ the Krull dimension of $H(M)$ is infinite (he did not prove that $\dim H(M) \geq \aleph$).

Remark 2. We note that Henricksen [H] was the first to prove that the Krull dimension of the ring of entire functions on \mathbb{C} has cardinality at least continuum.

In our proof we will use the Axiom of Choice in two ways: (a) to establish existence of certain maximal ideals and (b) to get existence of a nonprincipal ultrafilter ω on \mathbb{N} and, hence of the ordered field $^*\mathbb{R}$ of nonstandard real (or, hyperreal) numbers. The field $^*\mathbb{R}$ contains $^*\mathbb{N}$, the nonstandard natural (or hypernatural) numbers.

The field $^*\mathbb{R}$ is a certain quotient of the countable direct product $\prod_{k \in \mathbb{N}} \mathbb{R}$; we will denote the equivalence class (in $^*\mathbb{R}$) of a sequence (x_k) in \mathbb{R} by $[x_k]$. Accordingly, $^*\mathbb{N}$ consists of equivalence classes $[n_k]$ of sequences of natural numbers. Roughly speaking, we will use $^*\mathbb{N}$ and a certain order relation on it to compare rates of growth of sequences of natural numbers.

2010 Mathematics Subject Classification. Primary 32A10, 16P70.

Key words and phrases. Krull dimension; ring of holomorphic functions.

The author was supported in part by the NSF Grant DMS-12-05312 and by the Korea Institute for Advanced Study (KIAS).
Definition 3. A commutative unital ring R is ample if there exists a sequence of valuations ν_k on R such that for each $\beta \in \ast \mathbb{N}$, there exists an $a = a_\beta \in R$ with the property

\[(\nu_k(a)) = \beta.\]

The main technical result of this paper is:

Theorem 4. For each ample ring R, $\dim(R) \geq \epsilon$. In particular, R has infinite Krull dimension.

This theorem and its proof are inspired by Theorem 2.2 of [S], although some parts of the proof resemble the ones of [H].

We will verify, furthermore, that whenever M is a connected complex manifold which has a nonconstant holomorphic function, the ring $H(M)$ is ample. This, combined with Theorem 4, will immediately imply Theorem 1.

Remark 5. 1. We refer the reader to Section 5.3 of [Cla] for further discussion of algebraic properties of rings of holomorphic functions and for a shorter proof of Theorem 4, which uses ultralimits and but not the hyperreal numbers.

2. Theorem 1 shows that for every Stein manifold M (of positive dimension), the ring $H(M)$ has infinite Krull dimension. In particular, this applies to any noncompact connected Riemann surfaces (since every such surface is Stein, [BS]).

3. Noncompact connected complex manifolds M of dimension > 1 can have $H(M) = \mathbb{C}$; for instance, take M to be the complement to a finite subset in a compact connected complex manifold (of dimension > 1).

Acknowledgements. This note grew out of the MathOverflow question, http://mathoverflow.net/questions/94537, and I am grateful to Georges Elencwajg for asking the question. I am also grateful to Pete Clark for pointing at several errors in earlier versions of the paper (most importantly, pointing out that Lemma 14 is needed for the proof, which forced me to use ultrafilters) and for providing references.

1. Hyperreal numbers

We refer the reader to [Go] for a detailed treatment of hyperreal numbers, but we include a brief introduction below. A nonprincipal ultrafilter on \mathbb{N} can be regarded as a finitely-additive probability measure on \mathbb{N} which vanishes on each finite subset and takes the value 0 or 1 on each subset of \mathbb{N}. The existence of nonprincipal ultrafilters (the ultrafilter lemma) follows from the Axiom of Choice. Subsets of full measure are called ω-large. Using ω, one defines the following equivalence relation on the product

\[\prod_{k \in \mathbb{R}} \mathbb{R}.\]

Two sequences (x_k) and (y_k) are equivalent if $x_k = y_k$ for an ω-all k, i.e., the set

\[\{k : x_k = y_k\}\]

is ω-large. The quotient by this equivalence relation, denoted

\[\ast \mathbb{R} = \prod_{k \in \mathbb{N}} \mathbb{R}/\omega,\]
is the set of hyperreal numbers. Let $[x_k]$ be the equivalence class of the sequence (x_k). The binary operations on sequences of real numbers project to binary operations on $^\ast \mathbb{R}$ making $^\ast \mathbb{R}$ a field. The total order \leq on $^\ast \mathbb{R}$ is defined by $[x_k] \leq [y_k]$ if and only if $x_k \leq y_k$ for an ω-all $k \in \mathbb{N}$. With this order, $^\ast \mathbb{R}$ becomes an ordered field.

The set of real numbers embeds into $^\ast \mathbb{R}$ as the set of equivalence classes of constant sequences; the image of a real number x under this embedding is still denoted by x. We set $^\ast \mathbb{R}^+ := \{ \alpha \in ^\ast \mathbb{R} : \alpha > 0 \}$.

The projection of $\prod_{k \in \mathbb{N}} \mathbb{N} \subset \prod_{k \in \mathbb{N}} \mathbb{R}$ to $^\ast \mathbb{R}$ is denoted $^\ast \mathbb{N}$, this is the set of hypernatural numbers. We define a further equivalence relation \sim_u on $^\ast \mathbb{R}$ by:

$$\alpha \sim_u \beta$$

if there exist positive real numbers a, b such that $a \alpha \leq \beta \leq b \alpha$.

The equivalence class (α) of $\alpha \in ^\ast \mathbb{R}$ (for this equivalence relation) is a multiplicative analogue of the galaxy $\text{gal}(\alpha)$ of α, see [Go]:

Definition 6. The galaxy $\text{gal}(\alpha)$ of a hyperreal number $\alpha \in ^\ast \mathbb{R}$ is the union

$$\bigcup_{n \in \mathbb{N}} [\alpha - n, \alpha + n] \subset ^\ast \mathbb{R}.$$

In other words, $\beta \in \text{gal}(\alpha)$ if and only if there exists a real number a such that $\alpha - a \leq \beta \leq \alpha + a$.

The next lemma is immediate:

Lemma 7. For $\alpha \in ^\ast \mathbb{R}^+$, the equivalence class (α) of α equals $\exp(\text{gal}(\log(\alpha)))$.

We let $^\ast \mathbb{R}$ denote the quotient $^\ast \mathbb{R} / \sim_u$ and $^\ast \mathbb{N}$ the projection of $^\ast \mathbb{N}$ to $^\ast \mathbb{R}$. Define the total order \gg on $^\ast \mathbb{R}$ by

$$(\beta) \gg (\alpha)$$

if for every real number c, $c \alpha < \beta$. By abusing the notation, we will simply say that $\beta \gg \alpha$, with $\alpha, \beta \in ^\ast \mathbb{R}$.

For the reader who prefers to think in terms of sequences of (positive) real numbers, the relation $(\beta) \gg (\alpha)$ is an analogue of the relation

$$(a_n) = o((b_n)), \quad n \to \infty.$$

Remark 8. The equivalence relation \sim_u and the order \gg are similar to the ones used by Henricksen in [H].

Proposition 9. The set $^\ast \mathbb{N}$ has the cardinality of continuum.

Proof. Note first that $^\ast \mathbb{R}$ has cardinality of continuum, hence, the cardinality of $^\ast \mathbb{N}$ is at most \mathfrak{c}. The proof of the proposition then reduces to two lemmata.

Lemma 10. The set $\text{gal}(^\ast \mathbb{R}^+)$ of galaxies $\{ \text{gal}(\alpha) : \alpha \in ^\ast \mathbb{R}^+ \}$ has the cardinality of continuum.
Proof. For each \(\alpha = [a_k] \in {^*}\mathbb{R}_+ \), the galaxy \(gal(\alpha) \) contains the hypernatural number \(\lceil \alpha \rceil = [b_k] \), where \(b_k = [a_k] \). For each hypernatural number \(\beta \in {^*}\mathbb{N} \), and natural number \(n \in \mathbb{N} \), the intersection

\[
[\beta - n, \beta + n] \cap {^*}\mathbb{N}
\]

is finite, equal \{\(\beta - n, ..., \beta + n \)\}. Therefore, \(gal(\beta) \cap {^*}\mathbb{N} = \{\beta\} + \mathbb{Z} \). It follows that the map

\[
{^*}\mathbb{N} \to gal({^*}\mathbb{R}_+), \quad \beta \mapsto gal(\beta)
\]

is a bijection modulo \(\mathbb{Z} \). Lastly, the set of hypernatural numbers \({^*}\mathbb{N} \) has the cardinality of continuum.

Lemma 11. The map \(\lambda : {^*}\mathbb{N} \to gal({^*}\mathbb{R}_+) \), \(\lambda : \beta \mapsto gal(\log(n)) \), is surjective.

Proof. For each \(\alpha \in {^*}\mathbb{R}_+ \) let \(\beta = \lceil \exp(\alpha) \rceil \in {^*}\mathbb{N} \). Since \(\log(x+1) - \log(x) \leq 1 \) for \(x \geq 1 \), we have that

\[
\log(\beta) \in gal(\alpha).
\]

Now, we can finish the proof of the proposition. The map \(\lambda : {^*}\mathbb{N} \to gal({^*}\mathbb{R}_+) \) descends to a map \(\mu : {^*}\mathbb{N} \to gal({^*}\mathbb{R}_+) \). According to Lemma 11, the map \(\mu \) is surjective. By Lemma 10 the set \(gal({^*}\mathbb{R}_+) \) has the cardinality of continuum.

We will prove Theorem 4 in the next section by showing that for each ample ring \(R \), the ordered set \((\mathbb{N}, \gg) \) embeds into the poset of prime ideals in \(R \) reversing the order:

\[
(\beta) \gg (\alpha) \Rightarrow P_{\beta} \subsetneq P_{\alpha}
\]

for certain prime ideals \(P_{\gamma} \subset R \) determines by \((\gamma) \in {^*}\mathbb{N} \). Proposition 9 will then imply that the Krull dimension of \(R \) is at least \(c \).

2. Krull dimension of ample rings

Recall that a valuation on a unital ring \(R \) is a map \(\nu : R \to \mathbb{R}_+ \cup \{\infty\} \) such that:

1. \(\nu(a + b) \geq \min(\nu(a), \nu(b)) \),
2. \(\nu(ab) = \nu(a) + \nu(b) \),
3. \(\nu(a) = \infty \iff a = 0 \).
4. \(\nu(1) = 0 \).

For the following lemma, see Theorem 10.2.6 in [Coh] (see also Proposition 4.8 of [Cla] or Theorem 1 in [K]).

Lemma 12. Let \(I \) be an ideal in a commutative ring \(A \) and \(M \subset A \setminus I \) be a subset closed under multiplication. Then there exists an ideal \(J \subset A \) containing \(I \) and disjoint from \(M \), so that \(J \) is maximal with respect to this property. Furthermore, \(J \) is a prime ideal in \(A \).

Let \(R \) be an ample ring and \(\nu_k \) the corresponding sequence of valuations on \(R \). For each \(\beta \in {^*}\mathbb{N} \) we define

\[
I\beta := \{a \in R| [\nu_k(a)] \gg [\beta]\} \subset R.
\]

Lemma 13. Each \(I\alpha \) is an ideal in \(R \).
Proof. We will check that I_α is additive since it is clearly closed under multiplication by elements of R. Take $p', p'' \in I_\alpha$.

$$[\nu_k(p')] \gg \alpha, [\nu_k(p'')] \gg \alpha.$$

By the definition of a valuation,

$$n_k := \nu_k(p' + p'') \geq \min(\nu_k(p'), \nu_k(p'')),$$

for each $k \in \mathbb{N}$. For $m \in \mathbb{N}$, define the ω-large sets

$$A' = \{k : \nu_k(p') \geq m\alpha\}, \quad A'' = \{k : \nu_k(p'') \geq m\alpha\}.$$

Therefore, their intersection $A = A' \cap A''$ is ω-large as well, which implies that

$$\forall m \in \mathbb{N}, [n_k] \geq m\alpha \Rightarrow [n_k] \gg \alpha.$$

Then for each $\gamma \gg \beta$, the element a_γ as in Definition 3, belongs to I_β. It follows that $I_\beta \neq 0$ for every β. Define the subsets

$$M_\beta := \{a \in R | \exists n \in \mathbb{N}, [\nu_k(a)] \leq n\beta \} \subset R;$$

each M_β is closed under the multiplication. It is immediate that whenever $\alpha \leq \beta$,

$$I_\beta \subset I_\alpha, \quad M_\alpha \subset M_\beta.$$

It is also clear that $I_\beta \cap M_\beta = \emptyset$. At the same time, for each $\beta \gg \alpha$,

$$a_\beta \in I_\alpha \cap M_\beta.$$

For each α we let \mathcal{J}_α denote the set of ideals $P \subset R$ such that

$$I_\alpha \subset P, P \cap M_\alpha = \emptyset.$$

By Lemma 12, every maximal element $P \in \mathcal{J}_\alpha$ is a prime ideal.

Lemma 14. Every \mathcal{J}_α contains unique maximal element, which we will denote P_α in what follows.

Proof. Suppose that P', P'' are two maximal elements of \mathcal{J}_α. We define the ideal $P = P' + P''$. Clearly, P contains I_α. To prove that P is disjoint from M_α, take $p' \in P', p'' \in P''$, since $p' \notin M_\alpha, p'' \notin M_\alpha$. Then the same proof as in Lemma 13 shows that $[\nu_k(p' + p'')] \gg \alpha$ which means that $p' + p'' \notin M_\alpha$. Thus, $P \in \mathcal{J}_\alpha$ and, in view of maximality of P', P'', we obtain

$$P' = P = P''.$$

For each $\beta \gg \alpha$ we define the ideal $Q_{\alpha, \beta} := I_\alpha + P_\beta$.

Lemma 15. $Q_{\alpha, \beta} \cap M_\alpha = \emptyset$.

Proof. The proof is similar to the one of the previous lemma. Let $q = c + p, c \in I_\alpha, p \in P_\beta$. Since $p \notin M_\beta, p \notin M_\alpha$ as well. Therefore,

$$[\nu_k(p)] \gg \alpha.$$

Since $c \in I_\alpha$,

$$[\nu_k(c)] \gg \alpha.$$

Hence,

$$[\nu_k(c + p)] \gg \alpha.$$
as well. Thus, \(q \notin M_{\alpha} \).

Corollary 16. \(Q_{\alpha\beta} \in J_\alpha \). In particular, \(Q_\alpha \subset P_\alpha \).

Proof. It suffices to note that \(I_\alpha \subset Q_{\alpha\beta} \) according to the definition of \(Q_{\alpha\beta} \).

Lemma 17. The inequality \(\beta \gg \alpha \) implies \(P_\beta \subset P_\alpha \) and this inclusion is proper.

Proof. By the definition of \(Q_{\alpha\beta} \) and Corollary 16, we have the inclusions

\[
P_\beta \subset Q_\alpha \subset P_\alpha.
\]

We now claim that \(P_\beta \neq Q_{\alpha\beta} = I_\alpha + P_\beta \). Recall that \(a_\alpha \in I_\alpha \subset Q_{\alpha\beta} \) and \(a_\alpha \in M_\beta \), while \(M_\beta \cap P_\beta = \emptyset \). Thus, \(a_\alpha \in Q_{\alpha\beta} \setminus P_\beta \).

According to Proposition 9, the set \(*N \) of hypernatural numbers contains a subset \(S \) of cardinality continuum such that for all \(\alpha < \beta \) in \(S \), we have \(\beta \gg \alpha \). The map

\[
\alpha \mapsto P_\alpha
\]
sends each \(\alpha \in S \) to a prime ideal in \(R \); \(\alpha < \beta \) implies that \(P_\beta \subsetneq P_\alpha \).

We conclude that the ring \(R \) contains the (descending) chain of distinct prime ideals \(P_\alpha, \alpha \in S \); the length of this chain has the cardinality of continuum. In particular, \(\dim(R) \geq c \). Theorem 4 follows.

3. Ampleness of rings of holomorphic functions

We will need the following classical result, see e.g. [Con, Ch. VII, Theorem 5.15]:

Theorem 18. Let \(D \subset \mathbb{C} \) be a domain, and let \(c_k \in D \) be a sequence which does not accumulate anywhere in \(D \) and let \(m_k \) be a sequence of natural numbers. Then there exists a holomorphic function \(g \) in \(D \) which has zeroes only at the points \(c_k \) and such that \(m_k \) is the order of zero of \(g \) at \(c_k, \ k \in \mathbb{N} \).

Corollary 19. If \(M \) is a connected complex manifold which admits a non-constant holomorphic function \(h : M \to \mathbb{C} \), then the ring \(H(M) \) is ample.

Proof. We let \(D \) denote the image of \(h \). Pick a sequence \(c_k \in D \) which converges to a point in \(\hat{\mathbb{C}} \setminus D \) and which consists of regular values of \(h \). (Here \(\hat{\mathbb{C}} \) is the Riemann sphere.) For each \(c_k \) the preimage \(C_k := h^{-1}(c_k) \) is a complex submanifold in \(M \); in each \(C_k \) pick a point \(b_k \). Define valuations

\[
\nu_k : H(M) \to \mathbb{Z}_+ \cup \{\infty\}
\]

by \(\nu_k(f) := ord_{b_k}(f) \), the total order of \(f \) at \(b_k \), cf. [Gu, Chapter C, Definition 1].

Now, given \(\beta \in *\mathbb{N}, \beta = [m_k] \), we let \(g = g_\beta \) denote a holomorphic function on \(D \) as in Theorem 18. Define \(a = a_\beta := g \circ h \in H(M) \). Then \(\nu_k(a) = m_k \), which implies that the ring \(H(M) \) is ample.

Ampleness of \(H(M) \) together with Theorem 4 imply Theorem 1.
References

Department of Mathematics, University of California, Davis, CA 95616, USA

E-mail address: kapovich@math.ucdavis.edu