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Abstract

We prove realizability theorems for vector-valued polynomial mappings, real-algebraic
sets and compact smooth manifolds by moduli spaces of planar linkages and arrange-
ments of lines in the projective plane.

1 Introduction

In this paper we describe the results of our papers [KM6] and [KMS8]. Both papers deal
with moduli spaces of elementary geometric objects, the first with arrangements of lines
in the projective plane, the second with linkages in the Euclidean plane. We conclude the
paper with a brief sketch from [KM6] of how the study of arrangements of lines leads to
examples of Artin and Shephard groups which are not fundamental groups of smooth (not
necessarily compact) complex algebraic varieties (Theorem 14.1). The problem of deciding
which finitely-presented groups are the fundamental groups of smooth complex algebraic
varieties is called “Serre’s problem” in [Mo]. Our contribution to this problem is based
on our discovery of the connection between configuration spaces of elementary geometric
objects and representation varieties of Coxeter, Shephard and Artin groups, developed in
[KM2]-[KM3], [KM5]-[KM6]. The reader may also find our works on polygonal linkages
[KM1] (in R?), [KM4] (in R?) and [KM7] (in S?) to be of interest.

We devote most of this paper to our most recent work [KMS8|, dealing with moduli
spaces of planar linkages. A linkage (L,£) is a graph L with a positive real number £(e)
assigned to each edge e. We assume that we have chosen a distinguished oriented edge
e* = [vive] in L, we refer to L := (L,4,e*) as based linkage. The moduli space M(L) of
planar realizations of L is the set of maps ¢ from the vertex set of L into the Euclidean
plane R? (which will be identified with the complex plane C) such that

e |[p(v) — d(w)]|? = £([vw])? for each edge [vw] of L.
e ¢(v1) = (0,0).
o ¢(vg) = (£(e"),0).

Clearly these conditions give M (L) natural structure of a real-algebraic set in R?" where
r is the number of vertices in L. The “double pendulum” (Figure 1) is a based linkage, its
moduli space is the 2-torus S! x S*.

In Definition 3.7 we define functional linkages. They come equipped with two sets of
vertices: the inputs (P, ..., Py) and the outputs (Q1, ..., @rn). These vertices determine the
input and output projections p, g from M(L) to A™, A" so that gop ! is the restriction of
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Figure 1: The double pendulum.

a certain polynomial mapping f : A™ — A" to a domain in A™. Informally speaking, as
the images of the input vertices ¢(F;) vary freely in a domain Dom(L) C A™, the images
of the output vertices are related to (¢(Py), ..., $(Py,)) via the function f.

Here the affine line A is either C = R? (in which case we refer to £ as a complex
functional linkage) or R = R x {0} C R? (in which case we refer to £ as a real functional
linkage). Thus, for each real functional linkage the images of the input vertices are restricted
to the z-axis in R?.

Theorem A. Let f: A™ — A" be a polynomial map with real coefficients, B,(O) be a ball
in A™. Then there is a functional linkage L for f such that the input projection p is an
analytically trivial algebraic covering over B.(O).

We first prove Theorem A for germs at the origin 0 and then we the “expand the
domain” using Theorem 7.2 to prove the general statement.

Let § C R be a compact real-algebraic set, i.e. it is the zero set of a polynomial
f:R* -5 R We may assume S C B,(O). We then apply Theorem A and construct a
functional linkage £ for the polynomial f. We let £y be the linkage obtained from L by
gluing the output vertex to the base-vertex vg. We let py denote the restriction of the input
mapping to M(Ly). It is shown in [KMS] that py : M(Ly) — S is an analytically trivial
algebraic covering over S. We obtain

Theorem B. Let S be any compact real-algebraic subset of R™. Then there is a linkage Lo
and an analytically trivial covering M(Ly) — S.

Now let M be a compact smooth manifold. By work of Seifert, Nash, Palais and
Tognoli (see [AK] and [T]) M is diffeomorphic to a real algebraic set S, hence as a corollary
of Theorem B we get

Corollary C. Let M be a smooth compact manifold. Then there is a linkage Ly whose
moduli space is diffeomorphic to disjoint union of a number of copies of M.

We next study the analogues of Theorems A, B and Corollary C for planar arrangements.
We define an arrangement A to be a bipartite graph with the set of vertices P U L (vertices
in P are called points and vertices in £ are called lines). A point-vertex is said to be incident
to a line-vertex if they are connected by an edge. We then define the projective scheme
R(A) of projective realizations of A, where projective realization is a map on the set of
vertices of A which sends the “points” of A to points in P? and the “lines” in A to lines in
P? and preserves the incidence relation.
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Figure 2: Example of an arrangement A and its projective realization.

For instance, the realization scheme R(A) of the arrangement 4 described in Figure 2,
is isomorphic to P? x P! x P!,

We take a cross-section, the space of based arrangements BR(A), to the action of PG L3
on a certain Zariski open and dense subset of R(A) defined over Z. This subset is the
set of stable (and semistable) points for a suitable projective embedding of R(.A), whence
BR(A) is again a projective scheme. The cross-section involves an embedding of graphs
i: T < A for a certain arrangement 7" which we call the standard triangle, see Figure 14.
We restrict to projective realizations ¢ of A such that ¢ o i is “standard”, see Figure 14.
This allows us to distinguish the z-axis, y-axis, the line at infinity and the point (1,1) in
the affine plane A2. In Definition 9.6 we define functional arrangements, which (similarly to
functional linkages) have input points P, ..., P, and output points Q1, ..., @, whose images
under realizations are related by a function f. The input points are incident to the line [,
(corresponding to the “z-axis”) in A, hence for all realizations of A, the images of the input
vertices lie on the z-axis in P2.

Theorem D. Let f : A™ — A" be any morphism (i.e. a vector-valued polynomial mapping
with integer coefficients). Then there is a functional arrangement for f.

By gluing output vertices to zero we obtain an arrangement Ay containing distinguished
vertices Py, ..., P;,. Hence for each realization of Ag the images of the input vertices satisfy
the equation f(z1,..., %) = 0. We define a Zariski open subscheme BRy(Ag) C BR(Ayp)
by requiring ¢(P;) € A%2. We get the induced (input) morphism p : BRy(Ag) — A™.

Theorem E. Let S be a closed subscheme of A™ (again over Z). Then there exists a based

arrangement Ay such that the input mapping p : BRo(Ap) — A™ induces an isomorphism
T: BR(](.A()) — 5.

Remark 1.1 Because of our applications to the Serre’s problem we wish to keep track of
the scheme structure of BRy(Ag) (e.g. keep track of nilpotent elements in the coordinate
ring of BRy(Ap)).

Theorem F. Let S be a compact real algebraic set defined over Z. Then there exists a based
arrangement Ay such that S is entirely isomorphic to a Zariski closed and open subset

of BR(Ag)(R).

We now apply the Seifert-Nash-Palais-Tognoli theorem (here we need a strengthening
to the case where polynomials have integer coefficients) to obtain

Corollary G. Let M be a compact smooth manifold. Then there exists a based arrangement
Ag such that M is diffeomorphic to a union of Zariski components in BR(Ap)(R).



Remark 1.2 It seems surprising that one can prove a somewhat stronger realization theo-
rem for arrangements than for linkages. Omne explanation for this is that the image of the
input map of any connected functional linkage is bounded. By a theorem of Sullivan [Sul]
a manifold with nonempty boundary can not be an algebraic set '. Thus there are no
functional linkages if we require the input map to be injective and L connected.

We need to acknowledge a long history of previous work on linkages and arrangements.
In particular, a version of Theorem A for polynomial functions R — R? was formulated
by A. B. Kempe in 1875 [Ke], however, as far as we can tell, his proof requires corrections
(due to possible degenerate configurations). Kempe’s methods were also insufficient to
prove Theorem B and Corollary C even if the problem of “degenerate configurations” is
somehow resolved. The second obstacle in deducing Theorem B from Theorem A is that
the restriction py of the regular ramified covering p : M(L) — Dom(L) to M(Ly) apriori
does not have to be an analytically trivial covering;:

(a) It is possible that M (L) intersects the ramification locus of p;

(b) Even if pg is a topologically trivial covering it can fail to be analytically trivial (for
instance the function z3 : R — R).

Both problems of degenerate configurations and reflection symmetries of linkages were
neglected (or incorrectly resolved) in the previous work we have seen. Much of the previous
work was not sufficiently precise. We have formulated our results in terms of algebraic
varieties (schemes) associated to realizations of graphs with additional structure and the
morphisms to affine space associated to distinguished vertices in these graphs. Once we
formulated our results in these terms we were forced to deal with degenerate configurations
and reflection symmetries of linkages.

Thurston has been lecturing on Corollary C for twenty years. Since he has not yet
written up a proof we have written our own. The methods used in our proof of Theorems
D, E were used by Mnev in [Mn] (in fact they too have their roots in the 19-th century
[St]). However Mnev claims only existence of a piecewise-algebraic homeomorphism between
BRy(Ap)(R) x R® and S x RF for some s,k. As we remarked above the scheme-theoretic
version is critical for our application to Serre’s problem.

We would like to thank a number of people who helped us with this work. The first
author is grateful to A. Vershik for a lecture on Mnev’s result in 1989. The authors thank
E. Bierstone, J. Carlson, R. Hain, J. Kollar, P. Millman, C. Simpson and D. Toledo for
helpful conversations related to the last part of this paper and H. King, S. Lillywhite and
R. Schwartz for helpful conversations about real algebraic geometry and linkages. We are
also grateful to the referee for several suggestions. The first author was supported by NSF
grant DMS-96-26633, the second author by NSF grant DMS-95-04193.

2 Some Real Algebraic Geometry

An affine real algebraic set W C R" is the set of roots of a collection of polynomial functions
R™ — R (clearly one polynomial is enough). The set W is defined over Z if these polynomial
functions can be chosen to have integer coefficients. Suppose that Z C R*, W C R™ are
affine real-algebraic sets. An entire rational function f : Z — W is a function which
is locally (near each point of Z) the quotient of polynomials. A entire isomorphism f :
Z — W is an entire rational function which has entire rational inverse (in particular f is a
homeomorphism). If there is an entire isomorphism f : Z — W we say that Z and W are
entirely isomorphic.

!The Euler characteristic of the link of a boundary point is 1.



We will identify R"® with the affine part of RP". Suppose that X C R" is an affine real
algebraic set. Then X is said to be projectively closed it its Zariski closure in RP" equals
X. Clearly each projectively closed subset must be compact (in the classical topology). It
turns out that the converse is “almost true” as well:

Theorem 2.1 (Corollary 2.5.14 of [AK]) Suppose that X C R™ is a compact affine alge-
braic set. Then X is entirely isomorphic to a projectively closed affine algebraic subset X'
of R®. Moreover if X is defined over Z then X' is defined over Z as well.

We will need the following theorem which is a modification of [AK, Corollary 2.8.6] or [T]:

Theorem 2.2 (Seifert-Nash-Palais-Tognoli) Suppose that M is a smooth compact mani-
fold 2. Then M is diffeomorphic to a projectively closed real affine algebraic set S defined
over Z.

Remark 2.3 This theorem is stated in [AK, Corollary 2.8.6] without the assertion that S
is projectively closed and defined over Z. We are grateful to H. King for explanation how
to guarantee these extra properties of S.

We will need another definition:

Definition 2.4 Suppose that X,Y are real algebraic sets. Then a finite analytically triv-
ial covering f : X — 'Y is an analytic map such that there is a finite set F' and an analytic
isomorphism h : X — Y X F so that f = hony, where 7y : Y X F — Y is the projection
to the first factor. We say that f : X — Y is an analytically trivial algebraic covering if
it is an polynomial morphism which is an analytically trivial covering whose group G of au-
tomorphisms consists of algebraic automorphisms of X. We retain the name analytically

trivial algebraic covering for the restriction of such an f to a G-invariant open subset®
of X.

Note, that we do not claim here that X splits into Zariski components each of which is
birationally isomorphic to Y.

3 Abstract Linkages and Their Configuration Spaces

In the next five sections we will describe the two main results of [KM8] concerning the
realization of polynomial maps and real algebraic sets by planar linkages. We begin with
several definitions.

If L is a graph then V(L) and £(L) will denote the sets of vertices and edges of L.

Definition 3.1 A marked linkage L is a triple (L,£,W) consisting of a graph L, an
ordered subset W C V(L) and a positive function £ : E(L) — Ry (a metric on L). The
elements of W are called the fixed vertices of L and the choice of W is called marking.
If W is empty then we call £ a linkage. A special case of a marked linkage is a based
linkage where W consists of two vertices v1,ve connected by an edge e*.

In particular, if W consists of two vertices v1,vo which are the end-points of an edge e*,
then (L, £, W) is the based linkage as defined in the Introduction.

*Not necessarily connected.
3With respect to the classical topology.



Figure 3: The square.

Definition 3.2 Let £ = (L,¢,W) be a marked linkage. A planar realization of L is a
map ¢ : E(L) — R2 such that

|6(v) = d(w)]* = Llow]?

for each edge [vw] of L. The collection C(L) of planar realizations of L is called the
configuration space of L, it is clear that it has natural structure of a real-algebraic set.

Definition 3.3 Let £ = (L,£,W) be a linkage, W = (v1,...,v,) be the marking. Suppose
that we are given a vector Z = (z1,...,zn) € C", called the image of marking. A
relative planar realization of L is a realization ¢ € C(L) such that ¢(v;) = z; for all j.
We let C(L,Z) be the set of all relative planar realizations of L, it is called the relative
configuration space of L.

In the case L is a based linkage and Z = (0, £(e*)) € R?, the relative configuration space
equals the moduli space of £. The algebraic set C(L£) canonically splits as the product
M(L) x E(2) (the group E(2) of orientation-preserving isometries of R? has obvious real-
algebraic structure), thus we shall identify the quotient C'(£)/E(2) and M(L). Note that
M(L) admits an algebraic automorphism induced by the complex conjugation in C = R2.

Many of the problems with the 19-th century work on linkages can be traced to neglect-
ing degenerate realizations of a square. A square is the polygonal linkage where all four
sides have equal length (see Figure 3). We have

Lemma 3.4 The moduli space of the square is isomorphic to a union of three projective
lines in general position in the projective plane.

Proof: See [KM1, §12] and [KM4, §6].
Two of the components of the moduli space of the square consist of “degenerate” squares.

We can eliminate the components consisting of degenerate squares by “rigidifying” the
square as on Figure 6. We have

Lemma 3.5 The moduli space of the rigidified square Q is isomorphic to RP' (i.e. a
circle). For any ¢ € M(Q) the points (¢(v1), p(v3), d(vs), d(vs)) form the set of vertices of
a rhombus in R?.



Figure 4: The moduli space of the square.
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Figure 5: Degenerate realizations of the square. Small circles denote images of the vertices.

Remark 3.6 In fact we have added nilpotent elements to the structure sheaf of the moduli
space but we are only considering reduced structure here.

We rigidify parallelogram linkages in an analogous way. Henceforth all parallelogram
linkages that appear in this paper will be rigidified— but we will not draw the extra edges.
We now give the main definition of [KM8|]. Let k denote either C or R. We will identify C
with R? and R with the real axis in C.

Definition 3.7 Let O € k™ and F : k™ — k" be a map. We define a k-functional linkage
L for the germ (F,O) to be a marked linkage L = (L,2, W) with m distinguished vertices
In(L) = {P1,..,Py} (called the input vertices) and n additional distinguished vertices
Out(L) = {Q1, .., Qn} (called the output vertices) and a choice of the image of a marking
Z satisfying the azioms:

(1) The forgetful map p: C(L,Z) — (R?)™ given by

p(¢) = (p(P1), -, ¢(Pm)), ¢ € C(L,7)

is a regular topological branched covering of a domain * Dom(L) in k™. We let Dom*(L)
denote the set of regular values of p : C(L,Z) — Dom(L). We require O € Dom*(L).
(2) The forgetful map q: C(L,Z) — R?" given by

Q(¢) = (¢(Q1)a a¢(Qn))a XS C(‘C’Z)

factors through p and induces the map F|Dom(L) : Dom(L) — k™.

We will say that the map F is defined by the linkage L. The group of automorphisms of
the branched covering p is called the symmetry group of L. We will refer to R-functional
linkages as real functional linkages and C-functional linkages as complex functional
linkages.

1A domain in RY is a subset U with nonempty interior.
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Figure 6: The rigidified square Q). Here £[v1vq] = {[vovs] = L[v1v3]/2 = L[vgvs] = L[vsva] =
Llvgvy] /2.

It is clear that Dom(L), Dom*(L) and the symmetry group depend also on the choice Z,
we suppress this choice to simplify the notations. Notice that in the definition of a functional
linkage for a germ (F, Q) the metric ball around O which is contained in Dom*(L) is not
specified. We will also need the following modification of the above definition:

Definition 3.8 Suppose that the pair (L,Z) as above defines the germ (F, Q) and, more-
over, U is a neighborhood of O such that U C Dom*(L). Then we say that the pair (L, Z)
defines (F,U).

Remark 3.9 In this paper (for the sake of brevity) we will suppress the choice of O for
certain functional linkages: it is often a tricky issue, we refer to our paper [KM8] for details.
For certain (but not for all!) functional linkages the point O is the origin.

Examples of functional linkages are given in section 5.

4 Fiber Sums of Linkages

The operation of fiber sum of linkages is analogous to the generalized free products of
groups (i.e. the amalgamated free product and HNN-extension). Let £ = (L', ¢, W'),
L" = (L", 2", W") be marked linkages. Suppose that we have a map

B:S8 — V(L")
where S C V(L'). If the images Z', Z" of W/, W" are given we require
¢'(w;) = ¢"(B(w;))
for each w; € W' and ¢' € C(L',Z"),¢" € C(L",Z"). Then the fiber sum L of linkages
L', L" associated with 3 is constructed as follows:

Step 1. Take the disjoint union of metric graphs (L', £') U (L",£") and identify v and
B(v) for all v € S’. The result is the metric graph (L, £).

Step 2. Let W be the image in L of W/ LUW", we let W be the marking of the resulting
fiber sum L := (L,¢,W). If the images Z', Z" of W', W" are given, we define the vector
Z (the image of W) as the vector with the coordinates ¢(w;), where w; € W and ¢ is in
C(L',Z" orin C(L",Z").

In what follows we will consider £, £L” to be canonically embedded in L.



Figure 7: A translator. The parallelograms ACDB and CEFD are rigidified. The set of
intput/output vertices is {E, F'}.

5 Elementary Functional Linkages

The main tool in proving Theorem A is the composition operation on functional linkages,
this is a fiber sum which involves identifying an output vertex (or vertices) of a functional
linkage to an input vertex (or vertices) of another. Also if we have a functional linkage £,
for fi(z1,...,2n) and a functional linkage Lo for fo(z1, ..., 2,) we use fiber sum to construct
a functional linkage for the vector-valued mapping f = (f1, f2) by gluing inputs of £; and
L. The above operations correspond to appropriate fiber products of the moduli spaces of
these linkages.

Remark 5.1 One has to show of course that such gluing again produces a functional link-
age, in particular, if O € Dom*(Lp,), F1(O) € Dom*(Lp,) then O € Dom*(Lp,or,). Here
L¢ 1s a functional linkage for polynomial vector-valued function G.

With these observations the proof of Theorem A follows a path familiar to the re-
searchers of the 19-th century. Because we can compose linkages the problem reduces to
constructing an adder and a multiplier which is done in this section. We will also need sev-
eral other auxiliary “elementary” linkages. All elementary linkages in the section (with the
exception of the multiplier) are modifications of classical constructions, where appropriate
modification was made to ensure functionality. We decided to avoid Kempe’s construction
of the multiplier [Ke] since the computation of Dom and Dom™* for Kempe’s linkage presents
some difficulties, we use an algebraic trick instead.

(1) The translators. Let b be a fixed positive number. The translation operations
Tp =2 £+ b, 7_p ~ww — b are defined using the translator which is described in Figure

7. We let W := (A, B) be the marking and Z = (0,b) be its image. Depending on the
situation either F' or E is the input (resp. output). The point is that if F is the input then
by adjusting side-lengths of the translator we can get any z € C — {0} into Dom* of this
C-functional linkage for 7,. To get 0 € C into Dom* we use the point F' as the input (and
E as the output) of a functional linkage L, , for 7_. If

¢{[BD]+{¢[DF]>b>({DF|—¢DB] >0

then the origin belongs to Dom*(L,_,).
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Figure 8: Domain of the translator.

It is clear that the relative configuration space of each translator £ is the same as for the
double pendulum, i.e. the 2-torus. The group of symmetries is Z/2, it is generated by the
transformation which fixes ¢(E), ¢(F) and simultaneously reflects the points ¢(C), ¢(D) in
the lines (¢(E), O), (¢(F),b). The fixed-point set of this symmetry consists of two circles
and Dom(L) is the annulus in C. To obtain Dom*(L) we remove the boundary circles
C1, 5 of this annulus as well as four other circles that are orthogonal to the real axis and
tangent to C4, Co, see Figure 8.

The adder. This linkage is described in Figure 9. We let W := {v1}, Z := (0). Notice
that the point (0,0) € C x C does not belong to Dom* of this linkage. To get a functional
linkage for the addition in a neighborhood the origin we use the formula:

z+w=(z+b)+ (w—0>)

where (b, —b) belongs to Dom™* of the adder. The functions 7, : 2 — 2+ b, 7 p: 2+~ 2 —b
are constructed using the appropriate translators.

B

O

Pq

)
V1

Figure 9: The adder. The vertices P, and P, are inputs and () is the output, the four
parallelograms are rigidified. The point ¢(v1) = (0,0) € C? does not belong to Dom*. We
use translators to resolve this problem.

(3) The rigidified pantograph. This linkage is described on Figure 10.
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Figure 10: The rigidified pantograph P: the parallelogram BCDE is rigidified, A > 1. This
linkage is not marked, we shall use different choices of input/output vertices later on. We
take: s = £[AB] = M[AC] # t = {[BG] = M[BE].

The pantograph is a versatile linkage, its role in engineering was as a functional linkage
for the functions z + Az,z + A7z, A > 1. In the case of the function z — Az we let
W := {A} be the fixed vertex, Z := 0, take D as input and G as output, let Py be the
resulting linkage (it will be functional for z +— Az). By switching input and output we
obtain a functional linkage P/, for z — z/\.

A r D
r r
r
a B C
a

Figure 11: The Peaucellier inversor.

By letting {D} = W instead of A, the same Z as before, A = 2 and taking A as input
and G as output we obtain a functional linkage for the function z — —z in the complex
plane. Notice that the condition s # t implies that for each realization ¢ the points ¢(A),
#(D), $(G) are pairwise distinct.

Remark 5.2 Note that zero does not belong to Dom™ of the pantograph. To resolve this

11



problem we use the translators:
—z=—(24+b)+b=7(—7(2))
Az = Az 4+ b) — Ab = 7_xp (AT (2))
2/A = (24 b) /A —b/X=T_y5 (T 4(2)/N)

We call the linkages computing the above functions the modified pantographs and denote
them P, Py, P] /» Tespectively.

The following is a key lemma which shows that domains of pantographs can be made
arbitrarily large, this lemma will be used to prove Theorem on expansion of domain of
functional linkages (Theorem 7.2):

Lemma 5.3 Fix A > 1 and let r > 0. Then we can choose b € R and edge-lengths for the
translators and for the pantographs Py, Py so that

B,(0) C Dom*(Py), B,(0)C Dom*(P{/,\)

(4) The most famous functional linkage is the Peaucellier inversor (see [HC-V, page 273]
and [CR, page 156]) depicted on Figure 11 (with a? — r? = #2),

A r D
r
E
r
r
a B C
a

Figure 12: The modified Peaucellier inversor [J;: the square ABCD is rigidified and {[AE]—
LEC]|=2¢>0,[EC]>r.

The vertex F' is the only fized vertezr of the inversor, Z := (0). According to the 19-
th century work on linkages, the Peaucellier inversor is supposed to be functional for the
inversion J;(z) = #2/z with the center at zero and radius ¢.

Unfortunately this is not true for our definition of functional linkage because of the
degenerate realizations ¢, ¥ with ¢(B) = ¢(D) and ¥(A) = (C). Note that there is a
3-torus of degenerate realizations with ¢(B) = ¢(D), so even the dimension of C(L, Z) is
not correct for a functional linkage with n =m = 1.

Many of the degenerate realizations can be eliminated by rigidifying the square ABCD,
but there remains S! x S! of degenerate realizations with (A) = 1 (C) for which v(B) and
(D) are not in general related by inversion. We eliminate these by attaching a “hook”® to
{A, C} as on the Figure 12.

®Notice that by attaching this hook we have created an extra symmetry on the moduli space: the
transformation which fixes images of all vertices except ¢(E) and reflects ¢(E) with respect to the line

(¢(A4)¢(C)).
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Lemma 5.4 The modified Peaucellier inversor (with B as input and D as output) is func-
tional for F(z) = t?/z.

Remark 5.5 Note that the origin does not belong to the domain of this linkage.

(5) The multiplier. Guided by the identity

1 1 1
z—0.5 z4+05 22-0.25

we compose the linkages for translation, inversion, addition to obtain a functional linkage
for germ of the function F(z) = z? at the origin. Then we use the identity

22w = (z 4+ w)? — 2% — w?

and combine linkages for squaring, addition and the pantograph to construct a functional
linkage for complex multiplication.

(6) We obtain the Peaucellier straight-line motion linkage S (Figure 13) as follows:

F G

Figure 13: The Peaucellier straight-line motion linkage: t*> = a®> — 2. B is the input vertex,
the image of B under all realizations lies on a segment of the real axis which contains the
open interval (—@t, @t) C Dom*.

Add the edge [GD] to the with the rigidified inversor [J;. The vertices F,G are the fized
vertices of the resulting linkage S. The images of B, D are: ¢(F) = —¢(G) = £/ —1t/2.
Take the vertex B as both the input vertex and the output vertex.

Remark 5.6 This choice is somewhat strange from the classical point of view since the
linkage S was invented to transform circular motion of the vertex D to a periodic linear
motion of the vertex B (from this point of view D is the input and B is the output). However
for us the input-projection is always onto a domain in the Fuclidean space, which is satisfied
by B as the input-vertex and is not satisfied if we take D as the input. The point is that
we do not use the linkage S to transform circular to linear motion but to restrict motion
of the input-vertex B to the real axis. We obtain a “functional linkage” for the inclusion
of the real line into the complex plane (we leave to the reader the necessary modification of
Definition 3.7 for this new type of functional linkage).
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The point ¢(D) is now restricted to the circle with the center at ¢(G) and radius
t = ¢[GD] = ¢[FG]. The input ¢(B) is obtained from ¢(D) by inversion with the center at
¢(F) and radius t. Accordingly the input ¢(B) moves along a segment in the real axis.
We use the following restrictions on the side-lengths of the linkage:

0 < 2¢ = ([AE] — ([CE] ,

L[CE]>2r, a>r>¢ 17r > 15a

Under these conditions the linkage S is a real functional linkage for the identity inclusion
id : R — C and the input map p : M(S) — R? has the following property:

Dom*(S) contains the open interval (—@t, ?t)

The straight-line motion linkage is used for constructing real functional linkages from the
complez ones.

6 Fixing fixed vertices

In this section we explain how to relate the relative configuration spaces C(L, Z) of marked
linkages and the moduli spaces M(L) of based linkages. Let £ = (L,£, W) be a marked
linkage, Z = (z1,...,25) € C* and W = (wy,...,ws). Pick any relative realization ¢ €
C(L,Z).

We first let £ be the disjoint union of £ and the metric graph Z which consists of a single
edge e* of the unit length connecting the vertices v1,v2. Choose the isometric embedding
¢ = ¢z : T — C which maps v; to 0 and vy to 1 € R. We get a map ¢ : W UV(Z) — C.
Then for each pair of vertices a,b € W UV(Z) we do the following:

(a) If ¢p(a) = ¢(b) for ¢ € C(L, Z), we identify the vertices a, b.

(b) Otherwise add to L' the edge [ab] of the length |p(a) — ¢(b)|-

Let £ be the resulting based linkage (with the distinguished edge e* = [v1v9] C T).
In the case £ is functional with the input map p we have obvious input map p for the
linkage L.

Lemma 6.1 (i) In the case Z ¢ R® there is a 2-fold analytically trivial’® covering T :
M(L) = C(L, Z).

(i) In the case Z € R® there is an algebraic isomorphism 7 : M(L) — C(L, Z).

(iii) Suppose that L is a (possibly closed) functional linkage for a function f, then L
is again a (possibly closed) functional linkage for f. Moreover, p = po 1 and Dom*(L) =

Dom™*(L). If p is an algebraic covering then p also is.

7 Expansion of Domains of Functional Linkages

Lemma 7.1 Suppose that g(z) is a homogeneous polynomial of degree d, L is a functional
linkage which defines the germ (9,0). Then for any r > 0 we can modify L so that the new
linkage L is functional for the function g and Dom™*(L) contains the disk B(0).

Sketch of the proof: By the assumption Dom*(L) contains a disk B¢(0) centered at the
origin, we can assume € < . Choose positive A < ¢/r < 1. Let p := A~% > 1. We use the
formula

9(y) = A% (\y) = png(Ay)

Snonalgebraic
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to construct a functional linkage £ for the function g as a composition of the following
linkages:

e P, (the modified pantograph for the multiplication by ),
e the linkage L,

e P, (the modified pantograph for the multiplication by ).

Lemma 5.3 is used to ensure that Dom*(L) contains the disk B,.(0). O

As a corollary we get the following Theorem:

Theorem 7.2 (Theorem on expansion of domain.) Suppose that f : k™ — k™ be a polyno-
mial morphism, L is a functional linkage which defines the germ (f,0). Then for any r > 0
we can modify L so that the new linkage L is functional for the morphism f and Dom* (/:',)
contains the disk B,(0).

Proof: We consider the case when n = 1. Write f(z) as

f(z) =7 filx)

j<d

where each f; is a homogeneous polynomial of degree j. Let g(y) := y1 + ... + y4. Hence we
can represent f as a composition of homogeneous polynomials f;,j < d, and g. Now the
assertion follows from the previous lemma. O

8 Realization of polynomial morphisms by functional link-
ages

In this section we sketch a proof of Theorem A. We consider the case of polynomials

f:C"=C, fl@)=ao+ ) ajg;(x)
J

where g; = z%'...2%™ are monomials of positive degrees and a; € C are constants (§ =
j 1 m j

0,1,...,N). Let y = (yo,.-.,yn)- Consider the function

flz,y) =y + Z Y;95 ()

J

This function is obtained via composition of the multiplication and addition operations.
Hence we use the elementary linkages for the addition and multiplication we get a complex
functional linkage £ for the germ (f,0). Then we use Theorem 7.2: for each given p > 0
we can modify £ to £ so that £ is functional for the pair (f, B,(0)), 0 € C™*N. We use p
so large that B,(0) contains the disk

{(‘Tay) HENS Br(o),y] = aj,j = O, ,N}
We represent f as a composition of the function f and the constant function
a: (Yo, - yn ) (a0, - an)

The constant function is defined by a functional linkage as follows:
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A is the graph which consists of the set of vertices [In(A) = (P, ..., Pp)] U [Out(A) =
(Q1,...,QnN)], has no edges, W = Out(A) and Z = (ay, -..,an).

Composition of the linkages £ and A gives us a functional linkage for the pair (f, B,(0)).
This proves Theorem A in the complex case when n = 1, to prove it for general n we use
the fiber sum of linkages. Let f : R — R" be a polynomial function. We extend it to a
morphism f¢: C™ — C" and construct a C-functional linkage £ for f¢. We next alter £ via
fiber sums with the Peaucellier straight-line motion linkage S. Namely, take m isomorphic
copies §; of the linkage S. Then identify each input vertex’ P; of £ with the input vertex
Bj of S;. For all 1 < i < j < m identify F; and Fj, G; and G;. The new linkage £’ has the
property:

For each input vertex P; of L C £’ and for all realizations ¢ of £, the image ¢(P;) be-
longs to the real axis R C C. Moreover, suppose that we are given a point O = (9, ...,2%) €
R™, choose the number # (in the definition of S) to be sufficiently large®, then £’ is a real-
functional linkage for the polynomial f and Dom*(L') contains the point O. This proves
Theorem A for the relative configuration spaces. The assertion about the moduli space

follows from the relative case via Lemma 6.1. (0

To derive Theorem B from Theorem A we argue as in the Introduction.

9 The Moduli Space of a Planar Arrangement

Let A be an arrangement, i.e. a bipartite graph with parts P and £. We say that a “point”
p € P is incident to a “line” [ € L if p and [ are connected by an edge. A projective
realization ¢ of A is a map

$:PUL—P2U(PYY, 4(P)CP? ¢(L)cC (P

such that if p and [ are incident then ¢(p) € ¢(I). We will also use the term projective
arrangements for projective realizations. When we draw a figure of an arrangement we
draw points of A as solid points and lines as lines.

Definition 9.1 An arrangement is called admissible if the bipartite graph has no isolated
vertices.

We let R(A,P?(C)) denote the set of (complex) projective realizations of .A. We have

Lemma 9.2 R(A,P?(C)) is the set of complez points of a projective scheme R(A) defined
over Z..

Proof: Let

X =[] x[[®*)"
P c

and let I C P2 x (P?)Y be the incidence relation. Then I is the projective scheme associated
to the inverse image of zero for the canonical pairing A3 x (A%)Y — A. Then R(A) C X is
obtained by imposing the equations defining I for each incident pair (P, L) of vertices of A.
O
We now want to pass to the quotient of R(A) by PGL3. We do this by restricting to
realizations in a “general position” and then taking a cross-section. To make it precise we
first define based arrangements.

"Here and below we use the symbol X; to denote the vertex in S; corresponding to the vertex X of S.
8E.g. larger than ma.xj(|x?|%)
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Definition 9.3 The standard triangle is the arrangement T consisting of 6 point-vertices
and 6 line-vertices that corresponds to a triangle with its medians, see Figure 14.

0,0 (1,0 (<, 0)

Abstract arrangement Projective realization

Figure 14: The standard triangle T' and its standard realization.

Definition 9.4 The standard realization ¢ of the standard triangle T is determined
by:
¢T('UOO) = (050)5¢T(Uz) = (OOaO)aqST('Uy) = (Oa 00)5¢T(U11) = (la 1)

Here (0,0), (00,0), (0,00),(1,1) are points in the affine plane A2 C P? which have the
homogeneous coordinates: (0:0:1),(1:0:0),(0:1:0),(1:1:1) respectively.

We say that an arrangement A is based if it comes equipped with an embedding ¢ : T' —
A. Let (A, i) be a based arrangement. We say that a projective realization ¢ of A is based if
¢poi = ¢r. Let BR(A,P?(C)) be the subset of R(A,P?(C)) consisting of based realizations.

Ly

Iy A

yl Ly

'-2\

(1.0) ab

Abstract arrangement Projectiverealization

Figure 15: Arrangement Ajs for the multiplication.

Lemma 9.5 BR(A,P%(C)) is the set of complex points of a projective scheme over Z which
is a scheme-theoretic quotient of R(A) by the action of PGLs.
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Proof: Let U C R(A) be Zariski open subscheme such that ¢(vo), #(vz), ¢(vy), $(v11) are
in general position. Clearly

BR(A,P*(C)) = U(C)/PGL3(C)

But in fact U is the set of stable points for an appropriate projective embedding R(A) «— PV
(see [KM6, §8.5]). There are no semistable points which are not stable in this case, whence
U/PGLs is projective. [

Suppose that (.4, 1) is a based arrangement and y C P is a collection of vertices incident
to l;. We get a marked based arrangement A, (to simplify the notation we will sometimes
drop the subscript p for marked arrangements). We define the Zariski open subscheme
BRy(A,) of finite (relative to u) realizations by requiring that for all P; € p and ¢ €
BRy(A,), ¥(P;) is not in the line at infinity. Now we can define functional arrangements.

Definition 9.6 A functional arrangement is a based arrangement (A, i) with two sub-
sets of marked point-vertices yp = (Py, ..., Py) and v = (Q1, ..., Qyn) such that all the marked
vertices are incident to the line-vertez l € i(T') (which corresponds to the z-azis) and such
that the following two azxioms are satisfied:

(1) BR()(.AH) C BR()(.A,/)

(2) The projection p : BRy(A,) = A™ given by p(¢) = (4(P1), ..., d(Pr)) is an isomor-
phism of schemes over Z.

Each functional arrangement determines a morphism f : A™ — A" (which is defined
over Z) by the formula:

f(@)=qop~!(z)
where ¢(¢) = (¢(Q1), ..., d(Qn))-

10 Realization of Affine Schemes as Moduli Spaces of Ar-
rangements

We can compose functional arrangements by gluing® outputs and inputs, hence (as in the
case of linkages) in order to prove Theorem D it suffices to produce functional arrangements
for addition and multiplication as well as for the constant functions fi(z) = +1. These
arrangements come from the classical projective geometry [H] and [St], see Figures 15, 16.
The scheme-theoretic proofs are to be found in [KM6, Theorem 9.1]. For instance, for
any projective realization ¢ € BRy(A4) of the arrangement A4 (which is functional for
addition), the images of v1,vq,w are related by the formula:

B(v1) + p(v2) = p(w1)

To obtain a functional arrangement Ay, for the function h(z,y, z) = (z + y)z we take the
fiber sum of A4 and Ay where we identify the output wy € A4 and the input v; € Ayy.
To obtain a functional arrangement A, for the function g(z,y) = (z + y)z we take the
arrangement A, and identify the input v; € A, with the input v;1 € A4. For details of the
proof of Theorem D see [KM6, Section 9].

Let S be a closed subscheme (over Z) in A™ defined by the system of equations:

fl(‘Tla ,LL‘m) = O
fQ(.’I,'l, ,J)m) = O

fn(.'I,'l, ,.’Em) =0

9 Abstractly speaking such gluing is a fiber sum of arrangements.
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Ly

Abstract arrangement Projectiverealization

Figure 16: Arrangement A4 for addition.

By Theorem D we have a functional arrangement Ay for the vector-function f. Consider the
linkage Ay obtained by gluing the output vertices of A to the vertex vgg. This amounts to
restricting realizations ¢ € BRy(Ay) to those for which g(¢) = 0 or, equivalently, f(p(¢4)) =
0. Thus the input-projection p : BRy(Ag) — A" induces an isomorphism BRy(Ag) — S
and we obtain Theorem E (the scheme-theoretic version of Mnev’s Theorem). For instance,
to obtain an arrangement such that BRo(Ag) = {22 = 0} C Al we take the arrangement
Ay for the multiplication, identify the vertices v; and vy (this gives us an arrangement for
the function f(z) = z2) and then glue the vertex w; to vgo. This produces the required
arrangement Ag.

To prove Theorem F we combine Theorems E and 2.1. We apply Theorem 2.2 to deduce
Corollary G.

For our application to Serre’s problem we will need the following. Suppose that X is an
affine scheme of finite type over Z which has an integer point £ € X. Assume X is realized
in A™ so that © = O is the origin. Thus X is defined by a system of polynomial equations
with integer coefficients without constant terms. Let A be a based marked arrangement so
that BRy(A) = X. Let ¢y € BRy(A) be the realization corresponding to O € X. Then we
have

Lemma 10.1 We may choose A such that ¢o(A) = ¢g o i(T).

Proof: To prove this lemma we will need a slight modification of the previous construction.

We first write down polynomial equations defining X C A™ so that the formulae involve
only addition and multiplication and no multiplicative and additive constants. Namely,
suppose that we have a system of polynomial equations

f1(.’L‘1, ey I )

fg(.’I,‘l, ceey x:)

0
0

fn(.’El, ,:cm) =0

Represent each polynomial f; as the difference f]T" — fj_ where f]i have only positive coef-
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ficients. Then our system of equations is equivalent to

A (@) = fi (=)
f3 (z) = f5 (z)

fi(@) = fi (o)

We can write down each polynomial function ff as the sum of monomials without multi-

plicative constants:
E ner® = E (z® + ...+ z%)
~————
«

®  ps times

o k1

where « is a multi-index (ki, ..., k), 2@ = z*1...2¥. For instance the equation 2% —y = 0
will be rewritten as 22 + 22 = y.

Let F* := (f{", .., f;1),F~ :== (f{, - fn ). Take functional arrangements Ap+, Ap- for
these vector-functions. They have the output vertices Qf, Q@ QT, ..., Q;, corresponding
to the functions fji. Let A be the arrangement obtained from Ap+, Ap- by identifying Q;
and Qj_ for each j =1,....n.

Then A is a fiber sum of the basic arrangements for the addition and multiplication. We
notice that if we specialize the realizations of input-vertices of the two basic arrangements
(for the addition and multiplication) to zero then the conclusion of Lemma holds for these
arrangements. Hence the lemma holds for the fiber sums of these arrangements as well.

O

11 Coxeter, Shephard and Artin groups

Let A be a finite graph where two vertices are connected by at most one edge, there are no
loops (i.e. no vertex is connected by an edge to itself) and each edge e is assigned an integer
e(e) > 2. We call A a labelled graph, let V(A) and £(A) denote the sets of vertices and edges
of A. When drawing A we will omit labels 2 from the edges (since in our examples most of
the labels are 2). Given A we construct two finitely-presented groups corresponding to it.
The first group G is called the Cozeter group with the Cozeter graph A, the second is the
Artin group G§. The sets of generators for the both groups are {g,,v € V(A)}. Relations
in G§ are:

g2 =1,v € V(A), (gogw)® =1, over all edges e = [vw] € E(A)

Relations in G are:

GvJwIvguw--. = GugvGuwgo--- , €= €(e), over all edges e = [vw] € £(A)

e terms e terms
For instance, if we have an edge [vw] with the label 4, then the Artin relation is
Gv9wGv9w = JwGvGwIv

Note that there is an obvious epimorphism G§{ — G§. We call the groups G§ and G§
associated with each other. The Artin groups appear as generalizations of the Artin braid
group. Each Coxeter group G§ admits a canonical discrete faithful linear representation

h:G{ — GL(n,R) C GL(n,C)
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where n is the number of vertices in A. Suppose that the Coxeter group G is finite, then
remove from C" the collection of fixed points of elements of h(G§ — {1}) and denote the
resulting complement X 5. The group G§ acts freely on X, and the quotient X5/GY is a
smooth complex quasi-projective variety with the fundamental group G4, see [B] for details.
Thus the Artin group associated to a finite Coxeter group is the fundamental group of a
smooth complex quasi-projective variety.

The construction of Coxeter and Artin groups can be generalized as follows. Suppose
that not only edges of A, but also its vertices v; have labels J; = 6(v;) € {0,2,3,...}. Then
take the presentation of the Artin group G'§ and add the relations:

o) =1, veV(A)

If 6(v) = 2 for all vertices v then we get the Coxeter group, in general the resulting group
is called the Shephard group, they were introduced by Shephard in [Sh]. Again there is a
canonical epimorphism G§ — G3.

12 Groups Corresponding to Abstract Arrangements

Suppose that A is a based arrangement. We start by identifying the point-vertex vgy with
the line-vertex /o, the point-vertex v, with the line-vertex [, and the point-vertex v, with
the line-vertex [/, in the standard triangle 7. We also introduce the new edges

[vi0voo),  [vo1v00],  [v11v00]

(Where v19,v00, v11, Vo1 are again points in the standard triangle T'.) We will use the notation
A for the resulting graph. Put the following labels on the edges of A:

1) We assign the label 4 to the edges [v10vg0], [vo1v00] and all the edges which contain
v11 as a vertex (with the exception of [v11v99]). We put the label 6 on the edge [v11vg0]-

2) We assign the label 2 to the rest of the edges.
Now we have labelled graphs and we use the procedure from the Section 11 to construct:

(a) The Artin group G% := G .

(b) We assign the label 3 to the vertex v1; and labels 2 to the rest of the vertices. Then
we get the Shephard group G*% := G} .

We will denote the generators of the above groups g,,g;, where v,l are elements of A
(corresponding to the vertices of A).

13 Representations Associated with Anisotropic Projective
Arrangements

Let g be the quadratic form z? + z2 +:1:§ and PO(3) be the projectivized group of isometries
of g. From now on we work over QQ (rather than Z). Let Z be the projectivized null quadric
of ¢ and P2 = P? — Z. We let (P2)V be the image of PZ under the polarity defined by
g. A projective arrangement 1 will be said to be anisotropic if 1(P) € P, (L) € (P3)Y,
for all P € P,L € L. The anisotropic condition defines Zariski open subschemes of the
arrangement varieties to be denoted R(A, P3), BR(A,P2) and BRy(A,P%) respectively.
Now a point P in P2 determines the Cartan involution op in PO(3) around this point
or the rotation 8p of order 3 having this point as neutral fixed point (i.e. a point where the
differential of rotation has the determinant 1). There are two such rotations of order 3, we
choose one of them. Since 1 is based, ¥ (v11) = (1,1) for all ¢, hence the choice of rotation
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is harmless (see [KM6, §12.1]). Similarly a line L € (P3)" uniquely determines the reflection
or, which keeps L pointwise fixed. Finally one can encode the incidence relation between
points and lines in P? using algebra: two involutions generate the subgroup Z/2 x Z/2 in
PO(3) iff the neutral fixed point of one belongs to the fixed line of another, rotations o, 6
of orders 2 and 3 anticommute (i.e. 0fcf = 1) iff the neutral fixed point of the rotation
6 belongs to the fixed line of the involution o, etc. Let G% denote the Shephard group
corresponding to the arrangement A. We get the algebraization morphism

alg : based anisotropic arrangements — representations of G

alg: ¢y — p,p(gu) = Oy(v) ¥ € V(A) - {Ull}ap(gvn) = 91#(1111)’
p € Hom(G?%, PO(3)),¢¥ € BR(A)
If T is a finitely-generated group and G is an algebraic Lie group then
X(T,G) :=Hom(T',G)//G

will denote the character variety of representations I' — G.

Theorem 13.1 The mapping alg : BR(A,P3) — X (G, PO(3)) is an isomorphism onto
a Zariski open and closed subvariety to be denoted Hom}'(Gjt,PO(?)))//PO(?)).

Remark 13.2 In [KM6] we give an ezplicit description of Hom}f(Gth,PO(?))).

The mapping alg has the following important property: Let X be an affine scheme
defined over Z and O € X be an integer point. Choose an embedding (defined over Z)
X — A™ into affine space such that O goes to the origin. Let A be an arrangement
corresponding to X C A™ as in Lemma 10.1 and ¢y € BRy(A) correspond to the origin
under the isomorphism 7 : BRy(A) — X given by Theorem E.

Lemma 13.3 The image of G under py = alg(¢o) is finite.

Proof: Tt follows from Lemma 10.1 that ¢g(A) = ¢¢ o i(T). Then it is straightforward
to verify that the group po(G%) = po(G%) is isomorphic to the alternating group on four
letters. O

It remains to examine the morphism

p : Hom{ (G%, PO(3))//PO(3) — X(G%, PO(3))
given by pull-back of homomorphisms.

Theorem 13.4 Suppose that A is an admissible based arrangement. Then the morphism
W is an isomorphism onto a union of Zariski connected components.

Proof: See [KM6, Theorem 12.26]. O

Corollary 13.5 The character variety X (G%, PO(3)) inherits all the singularities of the
character variety X (G%, PO(3)) corresponding to points of BR(A,P3).
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14 Examples of Artin Groups That Are Not Fundamental
Groups of Smooth Complex Algebraic Varieties

Theorem 14.1 There are infinitely many mutually nonisomorphic Artin (and Shephard)
groups which are not isomorphic to the fundamental groups of smooth connected complex
algebraic varieties'®.

To prove this theorem we apply our version of a theorem of R. Hain [Hali].

Theorem 14.2 Suppose M is a (not necessarily compact) smooth connected complex alge-
braic variety, G is a reductive algebraic Lie group defined over R and p : w1 (M) — G is a rep-
resentation with finite image. Then the germ (Hom(m (M), G),p) is a quasi-homogeneous
cone with generators of weights 1 and 2 and relations of weights 2,3 and 4. Suppose further
that there is a local cross-section through p to the Ad(G)-orbits in Hom(wy (M), G). Then
the quotient germ (Hom(m (M), G)//G, |[p]) is a quasi-homogeneous cone with generators of
weights 1 and 2 and relations of weights 2,3 and 4.

Proof: See [KM6, Theorem 15.1]. O

Remark 14.3 The reader will find a discussion of Hain’s unpublished work in [KM6, §14].
We give two different proofs of Theorem 14.2: one based on Hain’s work and the other based
on the results of Morgan [Mo].

In Theorem 14.2 we use the following definitions:

Definition 14.4 Let X be a real or complex analytic space x € X and G a Lie group acting
on X. We say that there is a local cross-section through x to the G-orbits if there is a
G-invariant open neighborhood U of x and a closed analytic subspace S C U such that the
natural map G x S — U is an isomorphism of analytic spaces.

Suppose that we have a collection of polynomials F' = (fi,..., fr,) of n variables, we
assume that all these polynomials have trivial linear parts. The polynomial f; is said to be
weighted homogeneous if there is a collection of positive integers (weights) wy > 0, ..., w, > 0
and a number u; > 0 so that

fj((mltwl), ey (xntwn)) = tujfj(xla ,~Tn)

for all ¢. Let Y denote the scheme given by the system of equations

{f1=0,ccc, fm = 0}

We say that (Y,0) is a quasi-homogeneous if we can choose generators fi,..., f, for its
defining ideal such that all the polynomials f; are weighted homogeneous with the same
weights w1, ..., w, (we do not require u; to be equal for distinct j = 1,...,m). We will call
the numbers w; the weights of generators and the numbers u; the weights of relations.

To prove Theorem 14.1 we use the (nonreduced) singularities V,, := {2P = 0} where
p > 5 are prime numbers. They correspond to arrangements A, so that BRy(A,) =V}, (as in
Lemma 10.1). Then take the corresponding Shephard and Artin groups Gf4p, fal,,- It follows
that the point 0 € V;, corresponds in the character varieties X (G% , PO(3)), X(G% , PO(3))
to (the equivalence classes of) the finite representations p*, p® of the groups Gf4p, G?At,,' The

OWhich are not necessarily compact.
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singularities of these character varieties near p°, p are analytically isomorphic to V,. Now
Theorem 14.1 follows from Theorem 14.2.

Below is a specific example. Consider the labelled graph on Figure 17 where:

(1) All vertices labelled by the same letter are identified.

(2) The unlabeled edges are to be labelled by 2.
The Artin group GY% associated to this graph has the property that the singularity of the
character variety X (G% ,PO(3)) at the equivalence class of the representation y o alg(¢o)
is analytically equivalent to V5 = {z° = 0}. Hence by Theorem 14.2 the group G is not
the fundamental group of a smooth complex algebraic variety.

| 4
x1

Figure 17: Labelled graph of an Artin group.
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15 Relation Between the Two Universality Theorems

The goal of this section is to outline a relation between the two universality theorems for
realizability of real algebraic sets (Theorems B and F), the details can be found in [KMS].
Consider a based arrangement A. We construct a metric graph L corresponding to A as
follows. As in §12 we identify the point-vertex vy with the line-vertex /o, the point-vertex
vy with the line-vertex l, and the point-vertex v, with the line-vertex [, in the standard
triangle T'. We introduce the new edges

[vi0voo], [vo1voo], [viovz], [vo1vy]

Let L be the resulting graph. We construct a length-function £ on £(L) as follows:

1) We assign the length 7/4 to the new edges.

2) We assign the length 7/2 to the rest of the edges.

We choose vgg, vz, vy, v01,v10 as the distinguished vertices of the corresponding metric
graph L. Let £ denote the marked metric graph L with the distinguished set of vertices as
above. Let X be either S% or RP? with the standard metric d (so that the standard projection
S? — RP? is a local isometry). Define the configuration space C(L,X) of realizations of £
in X to be the collection of mappings ¢ from the vertex-set V(L) of £ to X such that

d((v), p(w))* = ({low])?
for all vertices v, w of £ connected by an edge.

Remark 15.1 Notice that if a,b € RP? have distance 7/2 between them then there are two
minimal geodesics connecting a to b. This is the reason to define C(L,X) as the set of maps

from V(L) rather than from L itself.

One can easily see that C(L, X) has a natural structure of a real algebraic set. The
subsets

M(L,RP?) := {¢ € C(L,RP?) : (vgo) = (0,0),%(vz) = (00,0),
P(vio) = (1,0),%(vor) = (0,1)}
M(L,S?) :=={p € C(L,S?) : ¢(voo) = (0,0,1),%(vy) = (0,1,0),
P(vg) = (1,0,0),%(vi0) = (1,0,1),%(vor) = (0,1,1)}

form cross-sections to the actions of the groups of isometries PO(3,R),O(3,R) of X on
C(L, X). We call M(L, X), the moduli spaces of realizations of £ in X (where X = S? RP?).

Remark 15.2 Now it is convenient to use the full group of isometries of S? instead of the
group of orientation-preserving isometries that we used for planar linkages.

The next lemma follows from the fact that a point P € RP? is incident to a line
L € (RP?)V iff
d(P,LY) = /2

Lemma 15.3 The moduli space M (L, RP?) is algebraically isomorphic to the real algebraic
set BR(A, RP?).
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Let Mo(L,RP?) be the image of BRy(Ag, RP?) under the isomorphism given by the
previous lemma. Consider the standard 2-fold covering S? — RP?. It induces a (locally

trivial) analytical covering

a: M(L,S?%) = M(L,RP?)

The group of automorphisms of « is (Z3)", where r is the number of (point) vertices in
[L —P(T)] U {v11}. The generators of this group are indexed by the vertices v € [L —

P(T)] U {’011}:
g —(()1 g3 Yhihyw # v

Proposition 15.4 For each arrangement A as in Theorem F, the covering « is analytically
trivial over Mo(L, RP?).

Proof: The following fact implies the proposition:

Let v be a vertex of £. Then there is a projective line X in P? (if v is a point-vertex) or
in (P2)V (if v is a line-vertex) so that ¢(v) ¢ A for all $ € BRy(A, RP?).

It is enough to verify the above property for the arrangements A4, Ay, for the addition
and multiplication which is straightforward. O

Now we identify the moduli space of spherical linkages M (£, S?) with a moduli space
of Euclidean linkages in R? as follows:

Add an extra vertex vy to the graph £ and connect it to each vertex of £ by edge of
the unit length. Modify the other side-lengths as follows:

Oe) ==/ 2 —2cos(l(e)), ee€&(L)

Let £’ be the resulting metric graph with the distinguished set of vertices [P(T) — {v11}] U
{vo}. Define the configuration space

C(LR?) = {1 V(L) = B : [9p(v) — p(w)|?> = £'[vw]’}
Again is is clear that
ML, R) := {1 € C(L',R®) : 9p(wg) = (0,0,0),
and the same normalization on P(T) — {v11} as we used for M(L,S?)}
is a real-algebraic set which is a cross-section for the action of Isom(R?) on C(L',R3).
Obviously we have an algebraic isomorphism
M(L,S?) = M(L' R?)
of real-algebraic sets. We let My(L',R3) be the subset of M(L',R3) corresponding to
Mg(£L,RP?) under the isomorphism
M(L,RP?) =2 M(L,S?) = M(L',R?)
We obtain

Theorem 15.5 Let S be a compact real-algebraic set defined over Z. Then there are link-
ages L, L' so that:

(1) Mo(L,RP?) is entirely isomorphic to S.

(2) Mo(L',R3) is an (analytically) trivial entire rational covering of S.
Both My(L,RP?), Mo(L',R?) are Zariski open and closed subsets in the moduli spaces
M(L,RP?), M(L',R3) respectively.

Corollary 15.6 Suppose that M is a smooth compact manifold. Then there are linkages
L, L' so that M is diffeomorphic to unions of components in M(L,RP?), M(L',R?).
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