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Introduction: What is Geometric Group Theory?

Historically (in the 19th century), groups appeared as automorphism groups of some structures:

• Polynomials (field extensions) — Galois groups.
• Vector spaces, possibly equipped with a bilinear form— Matrix groups.
• Complex analysis, complex ODEs — Monodromy groups.
• Partial differential equations — Lie groups (possibly infinite-dimensional ones)
• Various geometries — Isometry groups of metric spaces, both discrete and nondiscrete.

A goal of Geometric Group Theory (which I will abbreviate as GGT) is to study finitely-generated
groups G as automorphism groups (symmetry groups) of metric spaces X.

Accordingly, the central question of GGT is: How are the algebraic properties of a group G
reflected in geometric properties of a metric space X and, conversely, how is the geometry of X
reflected in the algebraic structure of G?

This interaction between groups and geometry is a fruitful 2-way road. An inspiration for this
viewpoint is the following (essentially) bijective correspondence (established by E. Cartan):

Simple noncompact connected Lie groups ←→ Irreducible symmetric spaces of noncompact type.

Here the correspondence is between algebraic objects (a Lie group of a certain type) and geo-
metric objects (certain symmetric spaces). Namely, given a Lie group G one constructs a symmetric
space X = G/K (K is a maximal compact subgroup of G) and, conversely, every symmetric space
corresponds to a Lie group G (its isometry group) and this group is unique.

Imitating this correspondence is an (unreachable) goal of GGT.
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LECTURE 1

Groups and Spaces

Convention. Throughout these lectures, I will be working in ZFC: Zermelo–Fraenkel Axioms of the
set theory + Axiom of Choice.

1. Cayley graphs and other metric spaces

Recall that we are looking for a correspondence:

Groups ←→ Metric Spaces

The first step is to associate with a finitely-generated group G a metric space X. Let G be a
group with a finite generating set S = {s1, ..., sk}. Then we construct a graph X, whose vertex set
V (X) is the group G itself and whose edges are

[g, gsi], si ∈ S, g ∈ G.
(If gsi = gsj , i.e., si = sj , then we treat [g, gsi], [g, gsj ] as distinct edges, but this is not very
important.) We do not orient edges.

The resulting graph X = ΓG,S is called a Cayley graph of the group G with respect to the
generating set S. Then the group G acts (by multiplication on the left) on X: Every g ∈ G defines
a map

g(x) = gx, x ∈ V (X) = G.

Clearly, edges are preserved by this action. Since S is a generating set of G, the graph X is connected.

We now define a metric on the graph X = ΓG,S . If X is any connected graph, then we declare
every edge of X to have unit length. Then we have a well-defined notion of length of a path in X.
The distance between vertices in X is the length of the shortest edge-path in X connecting these
points.

Exercise 1.1. Shortest edge-paths always exist.

One can also think of the graph X as a cell complex, which we then conflate with its geometric
realization (a topological space). Then, one can talk about points in X which lie in the interiors of
edges. We then identify each edge with the unit interval and extend the above metric to the entire
X. As we will see, later, this distinction between the metric on V (X) and the metric on the entire
X is not very important. The metric on G = V (X) is called a word-metric on G. Here is why:

Example 1.2. Let X be a Cayley graph of a group G. The distance d(1, g) from 1 ∈ G to g ∈ G
is the same thing as the “norm” |g| of g, the minimal number m of symbols in the decomposition (a
“word in the alphabet S ∪ S−1”)

g = s±1i1 s
±1
i2
...s±1im

of g as a product of generators and their inverses. Note: If g = 1 then m := 0.

Thus, we have a correspondence: Groups −→ Metric spaces,

Cayley : G→ X = A Cayley graph of G.

Is this the only correspondence? Is this map “Cayley” well defined ?

We will see that both questions is negative and our first goal will be to deal with this issue.
(Note that infinite finitely-generated groups G have infinitely many distinct finite generating sets.)
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Definition 1.3. Let X be a metric space and G be a group acting on X. The action G y X is
called geometric if:

1. G acts isometrically on X.

2. G acts properly discontinuously on X (i.e., ∀ compact C ⊂ X, the set
{g ∈ G : gC ∩ C 6= ∅} is finite).

3. G acts cocompactly on X: X/G is compact.

Informally, a group G is a group of (discrete) symmetries of X if G acts geometrically on X.
(Note that there are natural situations in GGT one considers non-geometric actions of groups on
metric spaces, but we will not address this in these lectures.)

Example 1.4. Suppose G is a finitely-generated group and X is its Cayley graph. Then the action
of G on X is geometric. Question: What is the quotient graph X/G?

Other metric spaces which appear naturally in GGT are connected Riemannian manifolds
(M,ds2). In this case, the distance between points is

d(x, y) = inf{
∫
p

ds =

∫ T

0

|p′(t)|dt}

where the infimum is taken over all paths p connecting x to y. When dealing with connected
Riemannian manifolds we will always implicitly assume that they are equipped with the above
distance function.

Example 1.5. Suppose that M is a compact connected Riemannian manifold with the fundamental
group π = π1(M), X = M̃ is the universal cover of M (with lifted Riemannian metric), π acts on
X as the group of covering transformations for the covering X → M . Then π y X is a geometric
action.

More generally, let φ : π → G be an epimorphism, X → M be the covering corresponding to
Ker(φ). Then the group of covering transformations of X → M is isomorphic to G and, thus, G
acts geometrically on X.

Note: For every finitely-generated group G there exists a compact Riemannian manifold M (of
every dimension ≥ 2) with an epimorphism π1(M) → G. Thus, we get another correspondence
Groups −→ Metric Spaces:

Riemann : G→ X = a covering space of some M as above.

Thus, we have a problem on our hands, we have too many candidates for the correspondence
Groups → Spaces and these correspondences are not well-defined. What do different spaces on
which G acts geometrically have in common?

2. Quasi-isometries

Definition 1.6. a. Let X,X ′ be metric spaces. A map f : X → X ′ is called an (L,A)-quasi-
isometry if:

1. f is (L,A)-coarse Lipschitz:

d(f(x), f(y)) ≤ Ld(x, y) +A.

2. There exists an (L,A)-coarse Lipschitz map f̄ : X ′ → X, which is “quasi-inverse” to f :

d(f̄f(x), x) ≤ A, d(ff̄(x′), x′) ≤ A.

b. Spaces X,X ′ are quasi-isometric to each other if there exists a quasi-isometry X → X ′.

When the constants L,A are not important, we will simply say that f is a quasi-isometry.

Note that every (L, 0)-quasi-isometry f is a bilipschitz homeomorphism; if, in addition, L = 1,
then f is an isometry.
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Example 1.7. 1. Every bounded metric space is QI to a point.

2. R is QI to Z.

3. Every metric space is QI to its metric completion.

Here and in what follows I will abbreviate “quasi-isometry” and “quasi-isometric” to QI.

Exercise 1.8. • Every quasi-isometry f : X → X ′ is “quasi-surjective”:
∃C <∞|∀x′ ∈ X ′,∃x ∈ X|d(x′, f(x)) ≤ C.

• Show that a map f : X → X ′ is a quasi-isometry iff it is quasi-surjective and is a “quasi-
isometric embedding”: ∃L,∃A so that ∀x, y ∈ X:

1

L
d(x, y)−A ≤ d(f(x), f(y)) ≤ Ld(x, y) +A.

• Composition of quasi-isometries is again a quasi-isometry.
• Quasi-isometry of metric spaces is an equivalence relation.

Exercise 1.9. 1. Let S, S′ be two finite generating sets for a group G and d, d′ be the corresponding
word metrics. Then the identity map (G, d)→ (G, d′) is an (L, 0)-quasi-isometry for some L.

2. G is QI to its Cayley graph X. The map G→ X is the identity. What is the quasi-inverse?

Give a metric space X, we, thus, have a semigroup Q̂I(X) consisting of quasi-isometries X → X.
This semigroup, of course, is not a group, since quasi-isometries need not be invertible. However,

one can form a group using Q̂I(X) as follows. We define the equivalence relation ∼ on Q̂I(X) by

f ∼ g ⇐⇒ dist(f, g) = sup{d(f(x), g(x)) : x ∈ X} <∞.

Then the quotient QI(X) = QI(X)/∼ is a group: If f̄ is quasi-inverse to f , then

[f ]−1 = [f̄ ]

where [h] denotes the projection of h to QI(X).

Definition 1.10. 1. A geodesic in a metric space X is a distance-preserving map γ of an interval
I ⊂ R to X. A geodesic ray is a geodesic whose domain in a half-line in R. If I = [a, b] then we will
use the notation pq, p = γ(a), q = γ(b), to denote a geodesic connecting p to q. We will frequently
conflate geodesics and their images.

2. A metric space X is called geodesic if for every pair of points x, y ∈ X, there exists a geodesic
γ : [0, T ]→ X, connecting x to y.

3. A metric space X is proper if every closed metric ball in X is compact.

A subset N of a metric space X is called an ε-separated R-net if:

(1) For all x 6= y ∈ N , d(x, y) ≥ ε.
(2) For every x ∈ X there exists y ∈ N so that d(x, y) ≤ R.

Here ε > 0, R <∞.

Exercise 1.11. 1. Let X be a Cayley graph of a group G. Then G is a separated net in X.

2. Every metric space X admits a separated net. (You need Zorn’s lemma to prove this.)

Definition 1.12. Suppose that X is a proper metric space. A sequence (fi) of maps X → Y is said
to coarsely uniformly converge to a map f : X → Y on compacts, if:

There exists a number R <∞ so that for every compact K ⊂ X, there exists an iK so that for
all i > iK ,

∀x ∈ K, d(fi(x), f(x)) ≤ R.
To simplify the notation, we will say that limc

i→∞ fi = f .

Note that the usual uniform convergence on compacts implies coarse convergence.
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Proposition 1.13 (Arzela–Ascoli theorem for coarsely Lipschitz maps). Fix real numbers L,A
and D and let X,Y be proper metric spaces so that X admits a separated R-net. Let fi : X →
Y be a sequence of (L1, A1)-Lipschitz maps, so that for some points x0 ∈ X, y0 ∈ Y we have
d(f(x0), y0) ≤ D. Then there exists a subsequence (fik), and a (L2, A2)–Lipschitz map f : X → Y ,
so that limc

k→∞ fi = f . Furthermore, if the maps fi are (L1, A1) quasi-isometries, then f is also an
(L3, A3)–quasi-isometry for some L3, A3.

Proof. Let N ⊂ X be a separated net. We can assume that x0 ∈ N . Then the restrictions fi|N
are L′-Lipschitz maps and, by the usual Arzela-Ascoli theorem, the sequence (fi|N) subconverges
(uniformly on compacts) to an L′ -Lipschitz map f : N → Y . We extend f to X by the rule:
For x ∈ X pick x′ ∈ N so that d(x, x′) ≤ R and set f(x) := f(x′). Then f : X → Y is an
(L2, A2)–Lipschitz. For a metric ball B(x0, r) ⊂ X, r ≥ R, there exists ir so that for all i ≥ ir and
all x ∈ N ∩B(x0, r), we have d(fi(x), f(x)) ≤ 1. For arbitrary x ∈ K, we find x′ ∈ N ∩B(x0, r+R)
so that d(x′, x) ≤ R. Then

d(fi(x), f(x)) ≤ d(fi(x
′), f(x′)) ≤ L1(R+ 1) +A.

This proves coarse convergence. The argument for quasi-isometries is similar. �

Theorem 1.14 (Milnor–Schwarz lemma). Suppose that G acts geometrically on a proper geodesic
metric space X. Then G is finitely generated and (∀x ∈ X) the orbit map g 7→ g(x), G → X, is a
quasi-isometry, where G is equipped with a word-metric.

Proof. Our proof follows [5, Proposition 10.9]. Let B = B̄R(x0) be the closed R-ball of radius
R in X centered at x0, so that BR−1(x0) projects onto X/G. Since the action of G is properly
discontinuous, there are only finitely many elements si ∈ G such that B ∩ siB 6= ∅. Let S be the
subset of G which consists of the above elements si (it is clear that s−1i belongs to S iff si does). Let

r := inf{d(B, g(B)), g ∈ G \ S}.
Since B is compact and B ∩ g(B) = ∅ for g /∈ S, r > 0. We claim that S is a generating set of G
and that for each g ∈ G
(1.1) |g| ≤ d(x0, g(x0))/r + 1

where | · | is the word length on G (with respect to the generating set S). Let g ∈ G, connect x0 to
g(x0) by a shortest geodesic γ in X. Let m be the smallest integer so that d(x0, g(x0)) ≤ mr + R.
Choose points x1, ..., xm+1 = g(x0) ∈ γ, so that x1 ∈ B, d(xj , xj+1) < r, 1 ≤ j ≤ m. Then each

xj belongs to gj(B) for some gj ∈ G. Let 1 ≤ j ≤ m, then g−1j (xj) ∈ B and d(g−1j (gj+1(B)), B) ≤
d(g−1j (xj), g

−1
j (xj+1)) < r. Thus the balls B, g−1j (gj+1(B)) intersect, which means that gj+1 =

gjsi(j) for some si(j) ∈ S. Therefore

g = si(1)si(2)....si(m).

We conclude that S is indeed a generating set for the group G. Moreover,

|g| ≤ m ≤ (d(x0, g(x0))−R)/r + 1 ≤ d(x0, g(x0))/r + 1.

The word metric on the Cayley graph ΓG,S of the group G is left-invariant, thus for each h ∈ G we
have:

d(h, hg) = d(1, g) ≤ d(x0, g(x0))/r + 1 = d(h(x0), hg(x0))/r + 1.

Hence for any g1, g2 ∈ G
d(g1, g2) ≤ d(f(g1), f(g2))/r + 1.

On the other hand, the triangle inequality implies that

d(x0, g(x0)) ≤ t|g|
where d(x0, s(x0)) ≤ t ≤ 2R for all s ∈ S. Thus

d(f(g1), f(g2))/t ≤ d(g1, g2).

We conclude that the map f : G→ X is a quasi-isometric embedding. Since f(G) is R-dense in X,
it follows that f is a quasi-isometry. �
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Thus, if instead of isometry classes of metric spaces, we use their QI classes, then both Cayley and
Riemann correspondences are well-defined and are equal to each other! Now, we have a well-defined
map

geo : finitely-generated groups −→ QI equivalence classes of metric spaces.

Problem: This map is very far from being 1-1, so our challenge is to “estimate” the fibers of
this map.

Exercise 1.15. Show that half-line is not QI to any Cayley graph. Prove first that every unbounded
Cayley graph contains an isometrically embedded copy of R (hint: use Arzela-Ascoli theorem). Then
show that there is no QI embedding f : R → R+. Hint: Replace f with a continuous (actually,
piecewise-linear) QI embedding h so that d(f, h) ≤ C and then use the intermediate value theorem
to get a contradiction.

Example 1.16. Every finite group is QI to the trivial group.

In particular, from the QI viewpoint, the entire theory of finite groups (with its 150 year-old
history culminating in the classification of finite simple groups) becomes trivial. Is this good news
or is this bad news?

This does not sound too good if we were to recover a group from its geometry (up to an
isomorphism). Is there a natural equivalence relation on groups which can help us here?

3. Virtual isomorphisms and QI rigidity problem

In view of Milnor-Schwarz lemma, the following provide examples of quasi-isometric groups:

1. If G′ < G is a finite-index subgroups then G is QI to G′. (G′ acts on a Cayley graph of G
isometrically and faithfully so that the quotient is a finite graph.)

2. If G′ = G/F , where F is a finite group, then G is QI to G′. (G acts isometrically and
transitively on a Cayley graph of G′ so that the action has finite kernel.)

Combining these two examples we obtain

Definition 1.17. 1. G1 is VI to G2 if there exist finite index subgroups Hi ⊂ Gi and finite normal
subgroups Fi / Hi, i = 1, 2, so that the quotients H1/F1 and H2/F2 are isomorphic.

2. A group G is said to be virtually cyclic if it is VI to a cyclic group. Similarly, one defines
virtually abelian groups, virtually free groups, etc.

Exercise 1.18. VI is an equivalence relation.

To summarize: By Milnor-Schwarz lemma,

V I ⇒ QI.

Thus, if we were to recover groups from their geometry (treated up to QI), then the best we can
hope for is to recover a group up to VI. This is bad news for people in the finite group theory, but
good news for the rest of us.

Remark 1.19. There are some deep and interesting connections between the theory of finite groups
and GGT, but quasi-isometries do not see these.

Informally, quasi-isometric rigidity is the situation when the arrow V I ⇒ QI can be reversed.

Definition 1.20. 1. We say that a group G is QI rigid if every group G′ which is QI to G, is in
fact VI to G.

2. We say that a class C of group is QI rigid if every group G′ which is QI to some G ∈ C,
there exists G′′ ∈ C so that G′ is VI to G′′.

3. A property P of groups is said to be “geometric” or “QI invariant” whenever the class of
groups satisfying P is QI rigid.

Note that studying QI rigidity and QI invariants is by no means the only topic of GGT, but
this will be the topic of my lectures.
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4. Examples and non-examples of QI rigidity

At the first glance, any time QI rigidity holds (in any form), it is a minor miracle: How on earth are
we supposed to recover precise algebraic information from something as sloppy as a quasi-isometry?
Nevertheless, instances of QI rigidity abound. We refer the reader to [3] for proofs and references:

Examples of QI rigid groups/classes/properties (all my groups are finitely-generated, of
course):

• Free groups. (J.Stallings)
• Free abelian groups. (M.Gromov; P.Pansu)
• Class of nilpotent groups. (M.Gromov)
• Class of fundamental groups of closed (compact, without boundary) surfaces. (This is a

combination of work of P.Tukia; D.Gabai; A.Casson and D.Jungreis.)
• Class of fundamental groups of closed (compact, without boundary) 3-dimensional mani-

folds. (This is a combination of work of R.Schwartz; M.Kapovich and B.Leeb; A.Eskin, D.
Fisher and K.Whyte and, most importantly, the solution of the geometrization conjecture
by G.Perelman.)
• Class of finitely-presentable groups.
• Class of hyperbolic groups. (M.Gromov)
• Class of amenable groups.
• Class of fundamental groups of closed n-dimensional hyperbolic manifolds. For n ≥ 3 this

result, due to P. Tukia, will be the central theorem of my lectures.
• Class of discrete cocompact subgroups Γ in a simple noncompact Lie group G. (This is

a combination of work of P.Pansu; P.Tukia; R.Chow; B.Kleiner and B.Leeb; A.Eskin and
B.Farb.)
• Every discrete subgroup Γ in a simple noncompact Lie group G so that G/Γ has finite

volume. For instance, every group which is QI to SL(n,Z) is in fact VI to SL(n,Z). (This
is a combination of work of R.Schwartz; A.Eskin.)
• Solvability of the word problem (say, for finitely-presented groups).
• Cohomological dimension over Q. (R.Sauer)
• Admitting a “geometric” action on a contractible CW-complex (i.e., an action which is

cocompact on each skeleton is cocompact and properly discontinuous).
• Admitting an amalgam decomposition (amalgamated free product or HNN decomposition)

over a finite subgroup. (J.Stallings)
• Admitting an amalgam decomposition over a virtually cyclic subgroup. (P.Papasoglou)

Rule of thumb: The closer a group (or a class of groups) is to a Lie group, the higher are the
odds of QI rigidity.

Examples of failure of QI rigidity:

• Suppose that S is a closed oriented surface of genus ≥ 2 and π = π1(S). Then Z× π is QI
to any Γ which appears in any central extension

1→ Z→ Γ→ π → 1.

(This was independently observed by D.B.A.Epstein, S.Gersten, G.Mess.) For instance,
the fundamental group Γ of the unit tangent bundle of S is realized this way.

• In particular, the property of being the fundamental group of a compact nonpositively
curved Riemannian manifold with convex boundary is not QI invariant.

• There are countably many VI classes of groups which act geometrically on the hyperbolic
3-space. All these groups are QI to each other by Milnor-Schwarz lemma. Same for all
irreducible nonpositively curved symmetric spaces of dimension ≥ 3.

• Class of solvable groups is not QI rigid. (A.Erschler)
• Class of simple groups is not QI rigid: F2 × F2 is QI to a simple group. (M.Burger and

S.Mozes)
• Class of residually-finite groups is not QI rigid. (M.Burger and S.Mozes)
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• Property (T) is not QI invariant. (S.Gersten and M.Ramachandran)

Few open problems:

• Is the class of fundamental groups of closed aspherical n-dimensional orbifolds QI rigid?
• Is the class of polycyclic groups QI rigid? (Conjecturally, yes.)
• Is the class of elementary amenable groups QI rigid?
• Prove QI rigidity for various classes of Right-Angled Artin Groups (RAAGs): It is known

that some of these classes are QI rigid but some are not (e.g., F2 × F2).
• Are random finitely-presented groups QI rigid?
• Construct examples of QI rigid hyperbolic groups whose boundaries are homeomorphic to

the Menger curve.
• Classify up to quasi-isometry fundamental groups of compact 3-dimensional manifolds.
• Verify QI invariance of JSJ decomposition (in the sense of Leeb ad Scott [11]) of closed

nonpositively curved Riemannian manifolds of dimesnion≥ 4. (Note that the 3-dimensional
case was done in [9].)

• Is the Haagerup property (see [2] for the definition) QI invariant?
• Is the Rapid Decay property (see e.g. [10] for the definition) QI invariant?
• Is the property of having uniform exponential growth QI invariant?
• Is the class of hyperbolic free-by-cyclic groups Fn o Z QI rigid (n ≥ 3)?

Where do the tools of GGT come from? From almost everywhere! Here are some examples:

• Group theory (of course)
• Geometry (of course)
• Topology (point-set topology, geometric topology, algebraic topology)
• Lie theory
• Analysis (including PDEs, functional analysis, real analysis, complex analysis, etc.)
• Probability
• Logic
• Dynamical systems
• Homological algebra
• Combinatorics

In these lectures, I will introduce two tools of QI rigidity: Ultralimits (coming from logic) and
quasiconformal maps (whose origin is in geometric analysis and complex analysis).





LECTURE 2

Ultralimits and Morse Lemma

Motivation: Quasi-isometries are not nice maps, they need not be continuous, etc. We will use
ultralimits of metric spaces to convert quasi-isometries to homeomorphisms. Also, in many cases,
ultralimits of sequences of metric spaces are simpler than the original spaces. We will use this to
prove stability of geodesics in hyperbolic space (Morse Lemma).

1. Ultralimits of sequences in topological spaces.

Definition 2.21. An ultrafilter on the set N of natural numbers is a finitely-additive measure ω
defined for all subsets of N and taking only the values 0 and 1.

In other words, ω : 2N → {0, 1} is:

• Finitely-additive: ω(A ∪B) = ω(A) + ω(B)− ω(A ∩B).
• ω(∅) = 0.

We will say that a subset E of N is ω-large if ω(E) = 1. Similarly, we will say that a property
P (n) holds for ω-all natural numbers if ω({n : P (n) is true }) = 1.

Trivial (or, principal) examples of ultrafilters are such that ω({n}) = 1 for some n ∈ N. I will
always assume that ω vanishes on all finite sets, in other words, I will consider only nonprincipal
ultrafilters.

Existence of ultrafilters does not follow from the Zermelo-Fraenkel (ZF) axioms of set theory,
but follows from ZFC.

We will use ultrafilters to define limits of sequences:

Definition 2.22. Let X be a Hausdorff topological space and ω is an ultrafilter (on N). Then, for
a sequence (xn) of points xn ∈ X, we define the ω-limit (ultralimit), limω xn, to be a point a ∈ X
so that:

For every neighborhood U of a, the set {n ∈ N : xn ∈ U} is ω-large.

In other words, xn ∈ U for ω-all n.

As X is assumed to be Hausdorff, limω xn is unique (if it exists).

Exercise 2.23. If limxn = a (in the usual sense) then limω xn = a for every ω.

I will fix an ultrafilter ω once and for all.

Exercise 2.24. If X is compact then every sequence in X has ultralimit. Hint: Use a proof by
contradiction.

In particular, every sequence tn ∈ R+ has ultralimit in [0,∞].

Exercise 2.25. What is the ultralimit of the sequence (−1)n in [−1, 1]?

13
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2. Ultralimits of sequences of metric spaces

Our next goal is to define ultralimit for a sequence of metric spaces (Xn, dn). The definition is
similar to the Cauchy completion of a metric space: Elements of the ultralimit will be equivalence
classes of sequences xn ∈ Xn. For every two sequences xn ∈ Xn, yn ∈ Xn we define

dω((xn), (yn)) := lim
ω
dn(xn, yn) ∈ [0,∞].

Exercise 2.26. Verify that dω is a pseudo-metric. (Use the usual convention ∞+a =∞, for every
a ∈ R ∪ {∞}.)

Of course, some sequences will be within zero distance from each other. As in the definition of
Cauchy completion, we will identify such sequences (this is our equivalence relation). After that, dω
is “almost” a metric: The minor problem is that sometimes dω is infinite. To handle this problem, we
introduce a sequence of “observers”, points pn ∈ Xn. Then, we define limωXn = Xω, the ultralimit
of the sequence of pointed metric spaces (Xn, pn) to be the set of equivalence classes of sequences
xn ∈ Xn so that

dω((xn), (pn)) <∞.
Informally, Xω consists of equivalence classes of sequences which the “observers” can see.

In case (Xn, dn) = (X, d), we will refer to limωXn as a constant ultralimit.

Exercise 2.27. • If X is compact then the constant ultralimit limωX is isometric to X (for
any sequence of observers).

• Suppose that X admits a geometric group action. Then the constant ultralimit limωX does
not depend on the choice of the observers.

• Suppose that X is a proper metric space. Then for every bounded sequence pn ∈ X the
constant ultralimit limωX is isometric to X.

• Show that limω Rk is isometric to Rk.

Let (Xn, pn), (Yn, qn) be pointed metric spaces, fn : Xn → Yn is a sequence of isometries, so
that

lim
ω
dYn

(fn(pn), qn) <∞.

Then the sequence (fn) defines a map

fω : Xω → Yω, fω(xω) = ((fn(xn))).

It is immediate that the map fω is well-defined and is an isometry. In particular, the ultralimit of
a sequence of geodesic metric spaces is again a geodesic metric space.

3. Ultralimits and CAT(0) metric spaces

Recall that a CAT(0) metric space is a geodesic metric space where triangles are “thinner” than
triangles in the plane. One can express this property as a 4-point condition:

Definition 2.28. A geodesic metric space X is said to be CAT(0) if the following holds. Let
x, y, z,m ∈ X be points such that d(x,m) + d(m, y) = d(x, y). Let x′, y′, z′,m′ ∈ R2 be their
“comparison” points, i.e.:

d(x,m) = d(x′,m′), d(m, y) = d(m′, y′), d(x, y) = d(x′, y′), d(y, z) = d(y′, z′), d(z, x) = d(z′, x′).

(Thus, the triangle with vertices x, y,m is degenerate.) Then d(z,m) ≤ d(z′,m′).

For instance, hyperbolic spaces Hn are CAT(0). The important property of CAT(0) spaces
is that they are uniquely geodesic, i.e., for any pair of points x, y ∈ X there is a unique geodesic
connecting x to y.

Exercise 2.29. Ultralimits of sequences of CAT(0) spaces are again CAT(0). Hint: Start with a 4-
point configuration xω, yω, zω,mω ∈ Xω with degenerate triangle with vertices xω, yω,mω. Represent
the points xω, yω, zω by sequences xn, yn, zn ∈ Xn. Use the CAT(0) property to find mn ∈ Xn

representing mω so that the triangle spanned by xn, yn,mn is degenerate.
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4. Asymptotic Cones

The ultralimits that we will be using are not constant. We start with a metric space (X, d) and a
sequence of positive scale factors λn so that limω λn = 0. Then set dn := λnd. Hence, the sequence
(X, dn) consists of rescaled copies of (X, d).

Definition 2.30. An asymptotic cone of X, denoted Cone(X) is the ultralimit of the sequence of
pointed metric spaces: Cone(X) = limω(Xn, λnd, pn).

Note that, in general, the asymptotic cone depends on the choices of ω, (λn) and (pn), so the
notation Cone(X) is ambiguous, but it will be always implicitly understood that ω, (λn) and (pn)
are chosen in the definition of Cone(X).

Exercise 2.31. Let G = Zk be the free abelian group with its standard set of generators. Let X = G
with the word metric. Then Cone(X) is isometric to Rk with the `1-metric corresponding to the
norm

‖(x1, ..., xk)‖ = |x1|+ ...+ |xk|.

Definition 2.32. A (geodesic) triangle T in a metric space X is a concatenation of three geodesic
segments in X: xy, yz, zx, where pq denotes a geodesic segment connecting p to q. We will use the
notation T = [x, y, z] to indicate that x, y, z are the vertices of T . A triangle T is called δ-thin if
every side of T is contained within distance ≤ δ from the union of the two other sides. A geodesic
metric space X is called δ-hyperbolic if every geodesic triangle in X is δ-thin. When we do not want
to specify δ, we will simply say that X is Gromov-hyperbolic.

Lemma 2.33. Suppose that X is the hyperbolic space Hk, k ≥ 2. Then every asymptotic cone
Xω = Cone(X) is a tree. (Note that this tree branches at every point and has infinite (continual)
degree of branching at every point xω: The cardinality of the number of components of Xω − {xω}
is continuum.)

Proof. We need to verify that every geodesic triangle Tω = [xω, yω, zω] ⊂ Xω is 0-thin, i.e.,
every side is contained in the union of two other sides. First of all, we know, that Xω is CAT(0)
and, hence, uniquely geodesic. Thus, the triangle Tω appears as an ultralimit of a sequence of
geodesic triangles Tn = [xn, yn, zn] in Xk = (X,λkdX). Each triangle Tn in (X, dX) is δ-thin, where
δ ≤ 1 (see Appendix 1). Therefore, the triangle Tn, regarded as a triangle in Xk, is λkδ-thin. Since
limω λkδ = 0, we conclude that Tω is 0-thin. �

Exercise 2.34. Show that every closed geodesic m-gon [x1, ..., xm] in a tree T is 0-thin, i.e., the
side [xm, x1] is contained in the union of the other sides.

Lemma 2.35. Suppose that α is a simple topological arc in a tree T . Then α, after a reparameter-
ization, is a geodesic arc.

Proof. Let α : [0, 1] → T be a continuous injective map (a simple topological arc), x =
α(0), y = α(1). Let α∗ = [x, y] be the geodesic connecting x to y. I claim that the image of α
contains the image of α∗. Indeed, we can approximate α by piecewise-geodesic (nonembedded!) arcs

αn = [x0, x1] ∪ ... ∪ [xn−1, xn], x0 = x, xn = y.

Then the above exercise shows that αn contains the image of α∗ for every n. Therefore, the image
of α also contains the image of α∗. Considering the map α−1 ◦ α∗ and applying the intermediate
value theorem, we see that the images of α and α∗ are equal. �

5. Quasi-isometries and asymptotic cones

Suppose that f : X → X ′ is an (L,A)-quasi-isometric embedding:

1

L
d(x, y)−A ≤ d(f(x), f(y)) ≤ Ld(x, y) +A.
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Pick a sequence of scale factors λn, a sequence of observers pn ∈ X and their images qn = f(xn).
Then,

λn
L
d(x, y)− λnA ≤ λnd(f(x), f(y)) ≤ Lλnd(x, y) + λnA.

Let dXn = λndX , dX′n = λndX′ . Hence:

1

L
dXn

(x, y)− λnA ≤ dX′n(f(x), f(y)) ≤ LdXn
(x, y) + λnA.

Thus, after taking the ultralimit:

fω : Xω → X ′ω, fω((xn)) = (f(xn)),

we get:
1

L
dω(x, y) ≤ dω(fω(x), fω(y)) ≤ Ldω(x, y)

for all x, y ∈ Xω. Thus, fω is a bilipschitz embedding, since the additive constant A is gone! Even
better, if f was quasi-surjective, then fω is surjective. Thus, fω : Xω → X ′ω is a homeomorphism!

The same observation applies to sequences of quasi-isometric embeddings/quasi-isometries as
long as the constants L,A are fixed.

Exercise 2.36. Rn is QI to Rm iff n = m.

Exercise 2.37. Suppose that Rn → Rn is a QI embedding. Then f is quasi-surjective. Hint: If
not, then, taking an appropriate sequence of scaling factors and observers, and passing to asymptotic
cones, we get fω : Rn → Rn, a bilipschitz embedding which is not onto. This map has to be open by
the invariance of domain theorem (since dimensions of domain and range are the same), it is also
proper since fω is bilipschitz. Thus, fω is also closed. It follows that fω is onto.

Unfortunately, we cannot tell Hn from Hm (these are real-hyperbolic spaces of dimensions n ≥ 2,
m ≥ 2 respectively) using asymptotic cones since all their asymptotic cones are isometric to the same
tree [4]!

6. Morse Lemma

Let X = Hn be the real-hyperbolic n-space. A quasi-geodesic in X is a QI embedding f : J → X,
where J is an interval in R (either finite or infinite).

Theorem 2.38 (Morse Lemma1). There exists a function D(L,A) so that every (L,A)-quasi-
geodesic α in X is D-Hausdorff close to a geodesic α∗.

Proof. I will first prove the Morse Lemma in the case of finite quasi-geodesics. Here is the idea
behind the proof: If the Morse Lemma fails, a sequence of “counter-examples” αi to its statement
yields a bi-Lipschitz map from an interval to a suitable asymptotic cone Xω of X. Lemma 2.35
then implies that the image of this arc is a geodesic αω in Xω. On the other hand, the sequence of
geodesics α∗i in X connecting the end-points of αi also converges to a geodesic arc in Xω. Since Xω

is uniquely geodesic, the resulting geodesic arcs are equal to αω, contradicting the assumption that
the distances between quasi-geodesics αi and geodesics α∗i diverge to infinity.

Below is the actual proof. For a quasi-geodesic α : J = [0, a] → X, let α∗ : J∗ = [0, a∗] → X
denote the geodesic connecting α(0) to α(a). Define two numbers:

Dα = dist(α, α∗) := sup
t∈I

d(α(t), Im(α∗)), D∗α = dist(α∗, α) := sup
t∈J∗

d(α∗(t), Im(α))

Recall that Hausdorff distance between α, α∗ is max(Dα, D
∗
α). I will prove that the quantities Dα

are uniformly bounded, since the proof of boundedness of D∗α is completely analogous.

Suppose that the Morse Lemma fails. Then there exists a sequence fi : Ji → X of (L,A)-quasi-
geodesics, so that limiDαi = ∞. For each i pick a point xi ∈ αi(Ji) so that d(xi, α

∗
i ) is within 1

i

from Dαi
= Di. Now, rescale metrics on Ji and on X by λi = D−1i and take ultralimits of rescaled

1Maybe this should be called the 2nd Morse lemma, since the 1st, and more famous, Morse lemma appears in theory
of Morse functions.
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intervals and the hyperbolic spaces. Then, quasi-isometric (resp. isometric) embeddings αi (resp.
α∗i ) yield bilipschitz (resp. isometric) embeddings

α : Jω → Xω = Cone(X), α∗ : J∗ω → Cone(X).

By our choice of xi and scaling factors, dist(α, α∗) = 1.

Since the maps αi where (L,A)-quasi-isometric embeddings, it follows that Jω is finite iff J∗ω is
finite. I first consider the case when Jω is finite. Then α, α∗ have common end-points (since the
curves αi, α

∗
i did). Recall that Xω is a tree. By Lemma 2.35, the images of α, α∗ are the same. This

contradicts the fact that dist(α, α∗) = 1.

Suppose that Jω is infinite, i.e., Jω = R+. The semi-infinite arcs α(R+), α∗(R+) are within
unit distance from each other. Let xω = αω(t) be the point represented by the sequence (xi). Let
C = d(α(0), xω). There exists a geodesic arc β ⊂ Xω of length ≤ 1 connecting points x = α(s), x∗ =
α∗(s∗) so that β ∩ Im(α) = x, β ∩ Im(α∗) = x∗ and so that d(x, α(0)) > C. Thus, the simple arc
γ = α([0, s]) ∪ β connects the end-points of the geodesic segment γ∗ = α∗([0, s∗]). On the other
hand, xω ∈ γ \ γ∗. This contradicts Lemma 2.35.

It remains to prove Morse Lemma for infinite quasi-geodesics. Such quasi-geodesics, say, α :
R → X, can be exhausted by finite quasi-geodesics αi : [−i, i] → X. Applying Morse Lemma to
quasi-geodesics αi, we get the desired conclusion for α. �

Morse Lemma also applies to all Gromov-hyperbolic geodesic metric spaces (e.g., Gromov-
hyperbolic groups). On the other hand, Morse Lemma fails completely in the case of quasi-geodesics
in the Euclidean plane.

Exercise 2.39. Let φ : R → R be an L-Lipschitz function. Show that the map f(x) = (x, φ(x)) is
a quasi-geodesic in R2.





LECTURE 3

Boundary extension and quasi-conformal maps

1. Boundary extension of QI maps of hyperbolic spaces

Suppose that X = Hn and f : X → X is a QI map. Then, by Morse Lemma, f sends geodesic rays
uniformly close to geodesic rays: ∀ρ, ∃ρ′ so that

d(f(ρ), ρ′) ≤ D
where ρ, ρ′ are geodesic rays, ρ′ = (f(ρ))∗ (where the notation ∗ is taken from Theorem 2.38). Let
ξ, ξ′ be the limits of the rays ρ, ρ′ on the boundary sphere of Hn. Then we set

f∞(ξ) := ξ′.

Here and in what follows, the limit point of a geodesic ray ρ in Hn is the limit

lim
t→∞

ρ(t) ∈ Sn−1 = ∂Hn.

Exercise 3.40. The point ξ′ depends only on the point ξ and not on the choice of a ray ρ that limits
to ξ.

Thus, we obtain the boundary extension f∞ of the quasi-isometry f of Hn to the boundary
sphere Sn−1.

Exercise 3.41. (f ◦ g)∞ = f∞ ◦ g∞ for all quasi-isometries f, g : X → X.

Exercise 3.42. Suppose that d(f, g) <∞, i.e., there exists C <∞ so that

d(f(x), g(x)) ≤ C
for all x ∈ X. Then f∞ = g∞. In particular, if f̄ is quasi-inverse to f , then (f̄)∞ is inverse to f∞.

Our next goal is to see that the extensions f∞ are continuous, actually, they satisfy some further
regularity properties which will be critical for the proof of Tukia’s theorem.

Let γ be a geodesic ray in Hn and π = πγ : Hn → γ be the orthogonal projection (the
nearest-point projection). Then for all x ∈ γ (except for the initial point), Hx := π−1(x) is an
n − 1-dimensional hyperbolic subspace of Hn, which is orthogonal to γ. The projection π extends
to continuously to a projection

π : Hn ∪ Sn−1 \ {ξ} → γ,

where ξ is the limit point of γ.

Clearly, isometries commute with projections π to geodesic rays. The following lemma is a
“quasification” of the above observation. We leave the proof of the lemma to the reader, since it
amounts to nothing but “chasing triangle inequalities.”

Lemma 3.43. Quasi-isometries quasi-commute with the nearest-point projections. More precisely,
let f : Hn → Hn be an (L,A)-quasi-isometry. Let γ be a geodesic ray, γ′ be a geodesic ray within
distance ≤ D(L,A) from the quasi-geodesic f(γ). Let π : Hn → γ, π′ : Hn → γ′ be nearest-point
projections. Then, for some C = C(L,A), we have:

d(fπ, π′f) ≤ C,
i.e.,

∀x ∈ Hn, d(fπ(x), π′f(x)) ≤ C.

19
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Let ξ be the limit point of γ. Then, for xi ∈ γ converging to ξ, the boundary spheres Σi of the
subspaces Hxi

= π−1(xi), bound round balls Bi ⊂ Sn−1 (containing ξ). These balls form a basis of
topology at the point ξ ∈ Sn−1. Quasi-isometry property of f implies that points yi = f(xi) cannot
form a bounded sequence in Hn, hence, lim yi = ξ. Using the above lemma, we see that f∞(Bi)
are contained in round balls B′i, whose intersection is the point ξ′ = f∞(ξ). Thus, f∞ is continuous
and, hence, a homeomorphism. We thus obtain

Lemma 3.44. For every quasi-isometry f : Hn → Hn, the boundary extension f∞ is a homeomor-
phism.

Corollary 3.45. Hn is QI to Hm if and only if n = m.

2. Quasi-actions

The notion of an action of a group on a space is replaced, in the context of quasi-isometries, by
quasi-action. Recall that an action of a group G on a set X is a homomorphism φ : G → Aut(X),
where Aut(X) is the group of bijections X → X. Since quasi-isometries are defined only up to
“bounded noise”, the concept of a homomorphism has to be modified when we use quasi-isometries.

Definition 3.46. Let G be a group and X be a metric space. An (L,A)–quasi-action of G on X is

a map φ : G→ Q̂I(X), so that:

• φ(g) is an (L,A)-quasi-isometry of X for all g ∈ G.
• d(φ(1), idX) ≤ A.
• d(φ(g1g2), φ(g1)φ(g2)) ≤ A for all g1, g2 ∈ G.

Thus, Parts 2 and 3 say that φ is “almost” a homomorphism with the error A.

In particular, every quasi-action determines a natural homomorphism G→ QI(X).

Example 3.47. Suppose that G is a group and φ : G→ R is a function which determines a quasi-
action of G on R by translations (g ∈ G acts on R by the translation by φ(x)). Such maps φ are
called quasi-morphisms and they appear frequently in GGT. Many interesting groups do not admit
nontrivial homomorphisms of R but admit unbounded quasimorphisms.

Here is how quasi-actions appear in the context of QI rigidity problems. Suppose that G1, G2

are groups acting isometrically on metric spaces X1, X2 and f : X1 → X2 is a quasi-isometry with
quasi-inverse f̄ . We then define a conjugate quasi-action φ of G2 on X1 by

φ(g) = f̄ ◦ g ◦ f.

Exercise 3.48. Show that φ is indeed a quasi-action.

For instance, suppose that X1 = Hn, ψ : G1 y X is a geometric action, and suppose that G2 is
a group which is QI to G1 (and, hence, by Milnor-Schwarz Lemma, G2 is QI to X). We then take
X2 = G2 (with a word metric). Then quasi-isometry f : G1 → G2 yields a quasi-action φf,ψ of G2

on Hn.

We now apply our extension functor (sending quasi-isometries of Hn to homeomorphisms of the
boundary sphere). Then, Exercises 3.40 and 3.41 imply:

Corollary 3.49. Every quasi-action φ of a group G on Hn extends (by g 7→ φ(g)∞) to an action
φ∞ of G on Sn−1 by homeomorphisms.

Lemma 3.50. The kernel for the action φ∞ is finite.

Proof. The kernel of φ∞ consists of the elements g ∈ G such that d(φ(g), id) <∞. Since φ(g)
is an (L,A)-quasi-isometry of Hn, it follows from Morse Lemma that d(φ(g), id) ≤ C = C(L,A).
Thus, such g, as an isometry G→ G moves every point at most by C ′ = C ′(L,A). However, clearly
the set of such elements of G is finite. Hence, Ker(φ∞) is finite as well. �

Geometric quasi-actions. The following three definitions for quasi-actions are direct gener-
alizations of the corresponding definitions for actions.
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A quasi-action φ : G y X of a group G on a metric space X is called properly discontinuous if
for every bounded subset B ⊂ X the set

{g ∈ G : φ(g)(B) ∩B 6= ∅}

is finite. A quasi-action φ : Gy X is cobounded if there exists a bounded subset B ⊂ X so that for
every x ∈ X there exists g ∈ G so that φ(g)(x) ∈ B (this is an analogue of a cocompact isometric
action). Finally, we say that a quasi-action φ : G y X is geometric if it is properly discontinuous
and cobounded.

Exercise 3.51. Suppose that φ2 : G y X2 is a quasi-action, f : X1 → X2 is a quasi-isometry and
φ1 : G y X1 is the conjugate quasi-action. Then φ2 is properly discontinuous (resp. cobounded,
resp. geometric) if and only if φ1 is properly discontinuous (resp. cobounded, resp. geometric).

3. Conical limit points of quasi-actions

Suppose that φ is a quasi-action of a group G on Hn. A point ξ ∈ Sn−1 is called a conical limit
point for the quasi-action φ if the following holds:

For some (equivalently every) geodesic ray γ ⊂ Hn limiting to ξ, and some (equivalently every)
point x ∈ Hn, there exists a constant R <∞ and a sequence gi ∈ G so that:

• limi→∞ φ(gi)(x) = ξ.
• d(φ(gi)(x), γ) ≤ R for all i.

In other words, the sequence φ(gi)(x) converges to ξ in a closed cone (contained in Hn) with
the tip ξ.

Lemma 3.52. Suppose that ψ : Gy X = Hn is a cobounded quasi-action. Then every point of the
boundary sphere Sn−1 is a conical limit point for ψ.

Proof. Consider the sequence xi ∈ X,xi = γ(i), where γ is a ray in X limiting to a point
ξ ∈ Sn−1. Fix a point x0 ∈ X and a ball B = BR(x0) so that for every x ∈ X there exists g ∈ G
so that d(x, φ(g)(x0)) ≤ R. Then, by coboundedness of the quasi-action ψ, there exists a sequence
gi ∈ G so that

d(xi, φ(gi)(x0)) ≤ R.
Thus, ξ is a conical limit point. �

Corollary 3.53. Suppose that G is a group and f : Hn → G is a quasi-isometry. Then every point
of Sn−1 is a conical limit point for the quasi-action ψ : G y Hn which is conjugate to the action
Gy G via f .

Proof. The action G y G by left multiplication is cobounded, hence, the conjugate quasi-
action ψ : Gy Hn is also cobounded. �

If φ∞ is a topological action of a group G on Sn−1 which is obtained by extension of a quasi-
action φ of G on Hn, then we will say that conical limit points of the action G y Sn−1 are the
conical limit points for the quasi-action Gy Hn.

4. Quasiconformality of the boundary extension

Can we get a better conclusion than just a homeomorphism for the maps f∞? Let f : Hn → Hn be
an (L,A)–quasi-isometry. I will work in the upper half-space model of Hn. After composing f with
isometries of Hn, we can (and will) assume that:

• ξ = 0 ∈ Rn−1 and γ is the vertical geodesic above 0.
• 0 = ξ′ = f∞(ξ) ∈ Rn−1.
• f∞(∞) =∞. In particular, the vertical geodesic γ above ξ maps to a quasi-geodesic within

bounded distance from the vertical geodesics γ′ = γ above ξ′ = ξ = 0.
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Consider an annulus A ⊂ Rn−1 given by

A = {x : R1 ≤ |x| ≤ R2}

where 0 < R1 ≤ R2 < ∞. We will refer to the ratio R2

R1
as the eccentricity of A. Then, πγ(A)

is an interval of hyperbolic length d = log(R2/R1) in γ. Recall that f quasi-commutes with the
orthogonal projection (Lemma 3.43):

d(f ◦ πγ , πγ ◦ f) ≤ C = C(L,A).

Thus, πα(A) is an interval of the hyperbolic length ≤ c′ := 2C + Ld+A. Hence, f(A) is contained
in the Euclidean annulus A′:

A′ = {x : R′1 ≤ |x| ≤ R′2},
R′2
R′1
≤ ec

′
.

We now define the function

η(r) = ec
′
, c′ = 2C + L log(r) +A,

η(r) = rLe2C+A.

Note that η(r), r ≥ 1 is a continuous monotonic function of r so that

lim
r→1

η(r) = 1, lim
r→∞

η(r) =∞.

We thus proved,

Lemma 3.54. The topological annulus f∞(A) is contained in an annulus A′, so that eccentricity of
A′ is ≤ η(r), where r is the eccentricity of A. In particular, round spheres (corresponding to r = 1)
map to “quasi–ellipsoids” of eccentricity ≤ e2C+A.

This leads to the definition:

Definition 3.55. Let η : [1,∞)→ [1,∞) be a continuous surjective monotonic function. A homeo-
morphism f : Rn−1 → Rn−1 is called η-quasi-symmetric1, if for all x, y, z ∈ Rn we have

(3.1)
|f(x)− f(y)|
|f(x)− f(z)|

≤ η
(
|x− y|
|x− z|

)
A homeomorphism f is c-weakly quasi-symmetric if

(3.2)
|f(x)− f(y)|
|f(x)− f(z)|

≤ c

for all x, y, z so that |x− y| = |x− z| > 0.

Remark 3.56. It turns out that every weakly quasi-symmetric map is also quasi-symmetric but we
will not dwell on this.

I will now change my notation and will use n to denote the dimension of the boundary sphere
of the hyperbolic n+ 1-dimensional space. I will think of Sn as the 1-point compactification of Rn
and will use letters x, y, z, etc., to denote points on Rn. I will also use the notation f for the maps
Rn → Rn.

We will think of quasi-symmetric maps as homeomorphisms of Sn = Rn ∪∞, which send ∞ to
itself. The following theorem was first proven by Tukia in the case of hyperbolic spaces and then
extended by Paulin in the case of more general Gromov-hyperbolic spaces.

Theorem 3.57 (P.Tukia [17], F.Paulin [12]). Every η-quasi-symmetric homeomorphism f : Rn →
Rn extends to an (A(η), A(η))-quasi-isometric map F of the hyperbolic space Hn+1.

1Quasi-symmetric maps can be also defined for general metric spaces.



LECTURE 3. BOUNDARY EXTENSION AND QUASI-CONFORMAL MAPS 23

Proof. Here is the idea of the proof. Since all ideal triangles in Hn+1 are δ-thin, given a triple
of distinct points x, y, z ∈ Sn we have their center c(x, y, z) ∈ Hn+1, which is a point within distance
≤ δ from every side of the ideal hyperbolic triangle with the vertices x, y, z. The point c is not
uniquely defined, but any two centers are uniformly close to each other. Thus, we can extend the
map f to Hn+1 via the formula

F (c(x, y, z)) = c(F (x), F (y), F (z)).

With this definition, however, it is far from clear why F is coarsely well-defined. For maps f which
fix the point z = ∞ ∈ Sn, it is technically more convenient to work instead with the points πα(x),
where α is the hyperbolic geodesic connecting y and z. (The points πα(x) and c(x, y, z) will be
uniformly close to each other.) This is the approach that we will use below.

We define the extension F as follows. For every p ∈ Hn+1, let α = αp be the complete vertical
geodesic through p. This geodesic limits to points ∞ and x = xp ∈ Rn. Let y ∈ Rn be a point so
that πα(y) = p (the point y is non-unique, of course). Let x′ := f(x), y′ := f(y), let α′ ⊂ Hn+1 be
the vertical geodesic through x′ and let p′ := πα′(y

′). Lastly, set F (p) := p′.

I will prove only that F is an (A,A)–coarse Lipschitz, where A = A(η). The quasi-inverse to F
will be a map F̄ defined via extension of the map f−1 following the same procedure. I will leave it
as an exercise to verify that F̄ is indeed a quasi-inverse to F and to estimate d(F̄ ◦ F, id).

Suppose that d(p1, p2) ≤ 1. We would like to bound d(p′1, p
′
2) from above. Without loss of

generality, we may assume that p1 = en+1 ∈ Hn+1. It suffices to consider two cases:

1. Points p1, p2 belong to the common vertical geodesic α, x1 = x2 = x and d(p1, p2) ≤ 1. I will
assume, for concreteness, that y1 ≤ y2. Hence,

d(p1, p2) = log

(
|y2 − x|
|y1 − x|

)
≤ 1

Since the map f is η-quasi-symmetric,

1

η(e)
≤
(
η

(
|y2 − x|
|y1 − x|

))−1
≤ |y

′
2 − x′|
|y′1 − x′|

≤ η
(
|y2 − x|
|y1 − x|

)
≤ η(e).

In particular,
d(p′1, p

′
2) ≤ C1 = log(η(e)).

2. Suppose that the points p1, p2 have the same last coordinate, which equals 1 since p1 = en+1,
and t = |p1 − p2| ≤ e. The points p′1, p

′
2 belong to vertical lines α′1, α

′
2 limit to points x′1, x

′
2 ∈ Rn.

Without loss of generality (by postcomposing f with an isometry of Hn+1) we may assume that
|x′1 − x′2| = 1. Let yi ∈ Rn, y′i ∈ Rn be points so that

παi
(yi) = pi, πα′i(y

′
i) = p′i.

Then
|yi − xi| = |pi − xi| = Ri = 1, i = 1, 2,

|y′i − x′i| = |p′i − x′i| = R′i i = 1, 2.

We can assume that R′1 ≤ R′2. Then

d(p′1, p
′
2) ≤ 1

R′1
+ log(R′2/R

′
1),

since we can first travel from p′1 to the line α′2 horizontally (along path of the length 1
R′1

) and then

vertically, along α′2 (along path of the length log(R′2/R
′
1)). We then apply the η-quasi-symmetry

condition to the triple of points x1, y1, x2 and get:

1

R′1
≤ η

(
t

R1

)
≤ η(e).

Setting R3 := |x1 − y2|, R′3 := |x′1 − y′2| and applying η-quasi-symmetry condition to the triple of
points x1, y1, y2, we obtain

R′3
R′1
≤ η(

R3

R1
) ≤ η

(
t+ 1

1

)
≤ η(e+ 1).
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Since R′2 ≤ R′3 + 1, we get:
R′2
R′1
≤ R′3 + 1

R′1
≤ η(e+ 1) + η(e).

Putting it all together, we obtain that in Case 2:

d(p′1, p
′
2) ≤ η(e) + log (η(e+ 1) + η(e)) = C2.

Thus, in general, for p1, p2 ∈ Hn+1, d(p1, p2) ≤ 1, we get:

d(F (p1), F (p2)) ≤ C1 + C2 = A. �

Now, for points p, q ∈ Hn+1, so that d(p1, p2) ≥ 1, we find a chain of points p0 = p, ..., pk+1 = q,
where k = bd(p, q)c and d(pi, pi+1) ≤ 1, i = 0, ..., k. Hence,

d(F (p), F (q)) ≤ A(k + 1) ≤ Ad(p, q) +A.

Hence, the map F is (A,A)–coarse Lipschitz, where A depends only on η.

Remark 3.58. One can prove QI rigidity for groups acting geometrically on Hn+1, n ≥ 2, without
using this theorem but the proof would be less cleaner this way.

The drawback of the definition of quasi-symmetric maps is that we are restricted to the maps
of Rn rather than Sn. In particular, we cannot apply this definition to Moebius transformations.

Definition 3.59. A homeomorphism of Sn is called quasi-moebius if it is a composition of a Moebius
transformation with a quasi-symmetric map.

We thus conclude that every (L,A)-quasi-isometry Hn+1 → Hn+1 extends to a quasi-moebius
homeomorphism of the boundary sphere. Unfortunately, this definition of quasi-moebius maps is not
particularly useful. One can define instead quasi-moebius maps by requiring that they quasi-preserve
the cross-ratio, but then the definition becomes quite cumbersome.

What we will do instead is to take the limit in the inequality (3.1) as r → 0. Then for every
c-weakly quasi-symmetric map f we obtain:

(3.3) ∀x, Hf (x) := lim sup
r→0

(
sup
y,z

|f(x)− f(y)|
|f(x)− f(z)|

)
≤ c.

Here, for each r > 0 the supremum is taken over all points y, z so that r = |x− y| = |x− z|.

Definition 3.60. Let U,U ′ be domains in Rn. A homeomorphism f : U → U ′ is called quasicon-
formal if supx∈U Hf (x) <∞. A quasiconformal map f is said to have linear dilatation2 H = H(f),
if

H(f) := ess sup
x∈U

Hf (x).

I will abbreviate quasiconformal to qc.

We say that f is 1-quasiconformal if H(f) = 1.

Thus, everyH-weakly-quasi-symmetric map f is quasiconformal withH(f) ≤ H. The advantage
of quasiconformality is that every Moebius map f : Sn → Sn is 1-quasiconformal on Sn \ f−1(∞).
In particular, all quasi-moebius maps are qc.

Proofs of the converse, which is a much harder theorem (that we will not use), could be found
for instance, in [7] and [18].

We can now reformulate Lemma 3.54 as

Lemma 3.61. Let f : Hn+1 → Hn+1 be an (L,A)-quasi-isometry. Then its boundary extension
h = f∞ : Sn → Sn is quasiconformal with H(h) ≤ c(L,A).

2Usually one uses a different quantify, K(f), to measure the degree of quasiconformality of f , see Appendix 3. However,
we will not use K(f) in these lectures.
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Theorem 3.62. Every quasiconformal map f : Rn → Rn is η-quasi-symmetric for some η =
η(H(f)).

I will assume from now on that n ≥ 2 since for n = 1 the notion of quasiconformality is essentially
useless.

Example 3.63. 1. Every Moebius transformation of Sn is 1-quasiconformal.

2. Every diffeomorphism f : Sn → Sn is quasiconformal.

Here is a non-smooth example of a quasiconformal map of R2. Let (r, θ) be the polar coordinates
in R2 and let φ(θ) denote diffeomorphisms R+ → R+ and S1 → S1. Then the map f : R2 → R2,
given in polar coordinates by the formula:

f(r, θ) = (r, φ(θ)), f(0) = 0,

is quasiconformal but is not smooth (unless φ is a rotation).

Analytic properties of qc maps. Proofs of the following could be found, for instance, in [7]
and [18].

(1) H(f ◦ g) ≤ H(f)H(g), H(f−1) = H(f). These two properties follow directly from the
definition.

(2) (J.Väisälä) Every qc map f is differentiable a.e. in Rn. Furthermore, its partial derivatives
are in Lnloc(Rn). In particular, they are measurable functions.

(3) (J.Väisälä) Jacobian Jf of qc map f does not vanish a.e. in Rn.
(4) Suppose that f is a quasiconformal map. For x where Dxf exists and is invertible, we let

λ1 ≤ ... ≤ λn denote the singular values of the matrix Dxf . Then

λn
λ1

= Hf (x)

Thus, the image of the unit sphere in the tangent space TxS
n under Dxf is an ellipsoid of

eccentricity ≤ H. This is the geometric interpretation of qc maps: They map infinitesimal
spheres to infinitesimal ellipsoids of uniformly bounded eccentricity.

(5) QC Liouville’s theorem (F. Gehring and Y. Reshetnyak). 1-quasiconformal maps
are conformal. (Here and in what follows we do not require that conformal maps preserve
orientation, only that they preserve angles. Thus, from the viewpoint of complex analysis,
we allow holomorphic and antiholomorphic maps of the 2-sphere.)

(6) Convergence property for quasiconformal maps (J.Väisälä). Let x, y, z ∈ Sn be
three distinct points. A sequence of quasiconformal maps (fi) is said to be “normalized at
{x, y, z}” if the limits limi fi(x), limi fi(y), lim fi(z) exist and are all distinct. Then: Every
normalized sequence of quasiconformal maps (fi) with H(fi) ≤ H contains a subsequence
which converges to an quasiconformal map f with H(f) ≤ H.

(7) Semicontinuity of linear dilatation (P. Tukia; T. Iwaniec and G. Martin). Sup-
pose that (fi) is a convergent sequence of quasiconformal maps with H(fi) ≤ H so that
the sequence of functions Hfi converges to a function H in measure:

∀ε > 0, lim
i→∞

mes({x : |Hfi(x)−H(x)| > ε}) = 0.

(Here mes is the Lebesgue measure on Sn.) Then the sequence (fi) converges to a qc map
f so that Hf (x) ≤ H(x) a.e..
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Quasiconformal groups and Tukia’s rigidity theorem

1. Quasiconformal groups

Recall that we abbreviate quasiconformal to qc.

A group G of quasiconformal homeomorphism of Sn is called (uniformly) quasiconformal if there
exists H <∞ so that for every g ∈ G, H(g) ≤ H. We will simply say that such G is a qc group.

Example 4.64. 1. Every conformal (Moebius) group is quasiconformal (take H = 1).

2. Suppose that f : Sn → Sn is quasiconformal with H(f) ≤ H, and G is a group of conformal
transformations of Sn. Then the conjugate group Gf := fGf−1 is uniformly quasiconformal. This
follows from the inequality:

H(fgf−1) ≤ H(f) · 1 ·H = H2.

3. Suppose that φ is a quasi-action of a group G on Hn+1. Then the extension φ∞ defines an
action of G on Sn as a qc group. This follows immediately from Lemma 3.61.

4. Conversely, in view of Theorem 3.57, every qc group action Gy Sn extends to a quasi-action
Gy Hn+1.

D. Sullivan [14] proved that for n = 2, every qc group is qc conjugate to a conformal group.
This fails for n ≥ 3. For instance, there are qc groups acting on S3 which are not isomorphic to any
subgroup of isometries of H4, see [15, 6]. Note that Tukia’s examples are solvable and nondiscrete,
while Isachenko’s examples are discrete and are virtually isomorphic to free products of surface
groups.

Our goal is to prove

Theorem 4.65 (P.Tukia, [16]). Suppose that G is a (countable) qc group acting on Sn, n ≥ 2, so
that (almost) every point of Sn is a conical limit point of G. Then G is qc conjugate to a group
acting conformally on Sn.

Once we have this theorem, we obtain:

Theorem 4.66. Suppose that G = G2 is a group QI to a group G1 acting geometrically on Hn+1

(n ≥ 2). Then G also acts geometrically on Hn+1.

Proof. We already know that a quasi-isometry G1 → G2 yields a quasi-action φ of G on Hn+1.
Every boundary point of Hn+1 is a conical limit point for this quasi-action. We also have a qc
extension of the quasi-action φ to a qc group action G y Sn. Theorem 4.65 yields a qc map h∞
conjugating the group action G y Sn to a conformal action η : G y Sn. Every conformal trans-
formation g of Sn extends to a unique isometry ext(g) of Hn+1. Thus, we obtain a homomorphism
ρ : G → Isom(Hn+1), ρ(g) = ext(η(g)); kernel of ρ has to be finite since the kernel of the action
φ∞ : Gy Sn is finite. We need to verify that the action ρ of G on Hn+1 is geometric.

Let h := ext(h∞) be an extension of h∞ to quasi-isometry of Hn+1. Then

g 7→ h̄ ◦ ρ(g) ◦ h
determines a quasi-action ν of G on Hn+1 whose extension to Sn is the qc action φ∞. Thus, there
exists C so that for every g ∈ G

d(ν(g), φ(g)) ≤ C.
It follows that h quasi-conjugates action ρ and quasi-action φ. Since the latter was geometric, the
former is geometric as well. �

27
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Remark 4.67. Of course, the action ρ can have nontrivial finite kernel.

By taking Ḡ = ρ(G) we obtain:

Corollary 4.68. Let G be a group QI to Hn+1. Then G contains a finite normal subgroup K so
that Ḡ = G/K embeds in Isom(Hn+1) as a properly discontinuous cocompact subgroup.

Thus, our objective now is to prove Theorem 4.65

2. Invariant measurable conformal structure for qc groups

Let Γ be group acting conformally on Sn = Rn ∪ ∞ and let ds2E be the usual Euclidean metric
on Rn. Then conformality of the elements of Γ amounts to saying that for every g ∈ Γ, and every
x ∈ Rn (which does not map to ∞ by g)

(Dxg)
T ·Dxg

is a scalar matrix (scalar multiple of the identity matrix). Here and in what follows, Dxf is the
matrix of partial derivatives of f at x. In other words, the product

(Jg,x)
− 2

n · (Dxg)
T ·Dxg

is the identity matrix I. Here Jg,x = det(Dxg) is the Jacobian of g at x. This equation describes
(in terms of calculus) the fact that the transformation g preserves the conformal structure on Sn.

More generally, suppose that we have a Riemannian metric ds2 on Sn (given by symmetric
positive-definite matrices Ax depending smoothly on x ∈ Rn). A conformal structure on Rn is the
metric ds2 on Rn up to multiplication by a conformal factor. It is convenient to use normalized
Riemannian metrics ds2 on Rn, where we require that det(Ax) = 1 for every x. Geometrically
speaking, this means that the volume of the unit ball in Tx(Rn) with respect to the metric ds2 is
the same as the volume ωn of the unit Euclidean n-ball. Normalization for a general metric Ax is
given by multiplication by det(A)−1/n. We then identify conformal structures on Rn with smooth
matrix-valued function Ax, where Ax is a positive-definite symmetric matrix with unit determinant.

The pull-back g∗(ds2) of ds2 under a diffeomorphism g : Sn → Sn is given by the symmetric
matrices

Mx = (Dxg)
T
AgxDxg

If Ax was normalized, then, in order to have normalized pull-back g•(ds2) we again rescale:

Bx := (Jg,x)
− 1

2n (Dxg)
T ·Agx ·Dxg.

How do we use this in the context of qc maps? Since their partial derivatives are measurable
functions on Rn, it makes sense to work with measurable Riemannian metrics and measurable con-
formal structures on Rn. (One immediate benefit is that we do not have to worry about the point
∞.) We then work with measurable matrix-valued functions Ax, otherwise, nothing changes. Given
a measurable conformal structure µ, we define its linear dilatation H(µ) as the essential supremum
of the ratios

H(x) :=

√
λn(x)√
λ1(x)

,

where λ1(x) ≤ ... ≤ λn(x) are the eigenvalues of Ax. Geometrically speaking, if Ex ⊂ TxRn is the
unit ball with respect to Ax, then H(x) is the eccentricity of the ellipsoid Ex (with respect to the
standard Euclidean metric on Rn).

A measurable conformal structure µ is said to be bounded if H(µ) <∞.

A measurable conformal structure µ on Rn is invariant under a qc group G if

g•µ = µ,∀g ∈ G.
In detail:

∀g ∈ G, (Jg,x)
− 2

n (Dxg)
T ·Agx ·Dxg = Ax

a.e. in Rn.
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Theorem 4.69 (D.Sullivan [14], P.Tukia [16]). Every qc group acting on Sn, n ≥ 2, admits a
bounded invariant measurable conformal structure.

Proof. The idea is to start with an arbitrary conformal structure µ0 on Rn (say, the Euclidean
structure) and then “average” it over g ∈ G. I will prove this only for countable groups G (which is all
we need since we are interested in f.g. groups). Our proof is somewhat different from the one given
by Sullivan and Tukia. Let Ax be the matrix-valued function defining a normalized Riemannian
metric on Rn, for instance, we can take Ax = I for all x. Then, since G is countable, for a.e. x ∈ Rn,
we have a well-defined matrix-valued function corresponding to g•(µ0) on TxRn:

Ag,x := (Jg,x)
− 1

2n (Dxg)
T ·Dxg.

For such x we let Eg,x denote the unit ball in TxRn with respect to g•(µ0). From the Euclidean
viewpoint, Eg,x is an ellipsoid of the volume ωn. This ellipsoid (up to scaling) is the image of the
unit ball under the inverse of the derivative Dxg. Since H(g) ≤ Hfor all g ∈ G, the ellipsoids Eg,x
have uniformly bounded eccentricity, i.e., the ratio of the largest to the smallest axis of this ellipsoid
is uniformly bounded independently of x and g. Since the volume of Eg,x is fixed, it follows that
the diameter of the ellipsoid is uniformly bounded above and below.

Let Ux denote the union of the ellipsoids ⋃
g∈G

Eg,x.

This set has diameter ≤ R for some R independent of x. Note also that Ux is symmetric (about 0).
Note that the family of sets {Ux, x ∈ Rn} is invariant under the group G:

(Jg,x)−1/nDxg(Ux) = Ug(x), ∀g ∈ G.

Lemma 4.70. Given a bounded symmetric subset U of Rn with nonempty interior, there exists a
unique ellipsoid E = EU (centered at 0) of the least volume containing U . The ellipsoid E is called
the John-Loewner ellipsoid of U .

Existence of such an ellipsoid is clear. Uniqueness is not difficult, but not obvious (see Appendix
2). We then let Ex denote the John-Loewner ellipsoid of Ux. This ellipsoid defines a measurable
function of x to the space of positive-definite n×n symmetric matrices. In other words, we obtain a
measurable Riemannian metric ν on Rn. Uniqueness of the John-Loewner ellipsoid and G-invariance
of the sets Ux imply that the action of G preserves νx (up to scaling, of course). One can then get
a normalized conformal structure µ by rescaling ν, so that

g•µ = µ,∀g ∈ G.

It remains to show that µ is bounded. Indeed, the length of the major semi-axis of Ex does not
exceed R while its volume is ≥ V ol(Ux) ≥ ωn (here we are using the fact that all the matrices Ag,x
have unit determinant). Thus, the eccentricity of Ex is uniformly bounded. Hence µ is a bounded
measurable conformal structure. �

3. Proof of Tukia’s theorem

We are now ready to prove Theorem 4.65. As a warm-up, we consider the easiest case, n = 2
(the argument in this case is due to D.Sullivan). In the 2-dimensional case, Theorem 4.65 holds
without the conical limit points assumption. Let µ be a bounded measurable conformal structure
on S2 invariant under the group G. Measurable Riemann mapping theorem for S2 states that every
bounded measurable conformal structure µ on S2 is quasiconformally equivalent to the standard
conformal structure µ0 on S2, i.e., there exists a quasiconformal map f : S2 → S2 which sends µ0

to µ:

f•µ0 = µ.

(Analytically, this theorem amounts to solvability of the Beltrami equation D̄f = µ(z)Df for every
measurable Beltrami differential µ on S2.) Since a quasiconformal group G preserves µ on S2, it
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follows that the group Gf = fgf−1 preserves the structure µ0. Thus, Gf acts as a group of conformal
automorphisms of the round sphere, which proves the theorem for n = 2.

We now consider the case of arbitrary n ≥ 2.

Definition 4.71. A function η : Rn → R is called approximately continuous at a point x ∈ Rn if
for every ε > 0

lim
r→0

mes{y ∈ Br(x) : |η(x)− η(y)| > ε}
mes Br(x)

= 0.

Here mes stands for the Lebesgue measure and Br(x) is the r-ball centered at x. In other words,
as we “zoom into” the point x, “most” points y ∈ Br(x), have value η(y) close to η(x), i.e., the
rescaled functions ηr(x) := η(rx) converge in measure to the constant function.

We will need the following result from real analysis:

Lemma 4.72 (See Theorem 3.37 in [1]). For every L∞ function η on Rn, a.e. point x ∈ Rn is an
approximate continuity point of η.

The functions to which we will apply this lemma are the matrix entries of a (normalized) bounded
measurable conformal structure µ(x) on Rn (which we will identify with a matrix-valued function
Ax). Since µ is bounded and normalized, the matrix entries of µ(x) will be in L∞.

We let µ(x) again denote a bounded normalized measurable conformal structure on Rn invariant
under G. Since a.e. point in Rn is a conical limit point of G, we will find such a point ξ which is
also an approximate continuity point for µ(x).

Then, without loss of generality, we may assume that the point ξ is the origin in Rn and that
µ(0) = µ0(0) is the standard conformal structure on Rn. We will identify Hn+1 with the upper
half-space Rn+1

+ . Let e = en+1 = (0, ..., 0, 1) ∈ Hn+1.

Let φ(g)(x) denote the quasi-action of the elements g ∈ G on Hn+1. Since 0 is a conical limit
point of G, there exists C <∞ and a sequence gi ∈ G so that limi→∞ φ(gi)(e) = 0 and

d(φ(gi)(e), tie) ≤ c

where d is the hyperbolic metric on Hn+1 and ti > 0 is a sequence converging to zero. Let Ti denote
the hyperbolic isometry (Euclidean dilation) given by

x 7→ tix, x ∈ Hn+1.

Set

g̃i := φ(g−1i ) ◦ Ti.
Then

d(φ(g̃i)(e), e) ≤ Lc+A

for all i. Furthermore, each g̃i is an (L,A)-quasi-isometry of Hn+1 for fixed L and A. By applying
coarse Arzela-Ascoli theorem, we conclude that the sequence (g̃i) coarsely subconverges to a quasi-
isometry g̃. Thus, the sequence of quasiconformal maps fi := (g̃i)∞ subconverges to a quasiconformal
map f = (g̃)∞.

We also have:

µi := f•i (µ) = (Ti)
•(gi)

−1•(µ) = (Ti)
•µ,

since g•(µ) = µ,∀g ∈ G. Thus,

µi(x) = µ(Tix) = µ(tix),

in other words, the measurable conformal structure µi is obtained by “zooming into” the point 0.
Since x is an approximate continuity point for µ, the functions µi(x) converge (in measure) to the
constant function µ0 = µ(0). Thus, we have the diagram:

µ
fi−→ µi

↓
µ

f−→ µ0
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If we knew that the derivatives Dfi subconverge (in measure) to the derivative of Df , then we would
conclude that

f•µ = µ0.

Then f would conjugate the group G (preserving µ) to a group Gf preserving µ0 and, hence, acting
conformally on Sn.

However, derivatives of quasiconformal maps (in general), converge only in the “biting” sense
(see [7]), which will not suffice for our purposes. Thus, we have to use a less direct argument below.

We restrict to a certain round ball B in Rn. Since µ is approximately continuous at 0, for every
ε ∈ (0, 12 ),

‖µi(x)− µ(0)‖ < ε

away from a subset Wi ⊂ B of measure < εi, where limi εi = 0. Thus, for x ∈Wi,

1− ε < λ1(x) ≤ ... ≤ λn(x) < 1 + ε,

where λk(x) are the eigenvalues of the matrix Ai,x of the metric µi(x). Thus,

H(µi, x) <

√
1 + ε√
1− ε

≤
√

1 + 4ε ≤ 1 + 2ε.

away from subsets Wi. For every g ∈ G, each map γi := figf
−1
i is conformal with respect to the

structure µi and, hence (1 + 2ε)-quasiconformal away from the set Wi. Since limimes(Wi) = 0,
we conclude, by the semicontinuity property of qc mappings, that each γ := lim γi is (1 + 2ε)-
quasiconformal. Since this holds for arbitrary ε > 0 and arbitrary round ball B, we conclude that
each γ is conformal (with respect to the standard conformal structure on Sn).

Thus, the group Γ = fGf−1 consists of conformal transformations. �

4. QI rigidity for surface groups

The proof of Tukia’s theorem mostly fails for groups QI to the hyperbolic plane. The key reason
is that quasi-symmetric maps of the circle are differentiable a.e. but are not absolutely continuous.
Thus, their derivative could (and, in the interesting cases will) vanish a.e. on the circle.

Nevertheless, the same proof yields: If G is a group QI to the hyperbolic plane, then G acts on
S1 by homeomorphisms with finite kernel K, so that the action is “discrete and cocompact” in the
following sense:

Let T denote the set of ordered triples of distinct points on S1. Thus, T is an open 3-dimensional
manifold, one can compute its fundamental group and see that it is infinite cyclic, furthermore, T
is homeomorphic to D2 × S1. The action Gy S1, of course, yields an action Gy T . Then Gy T
is properly discontinuous and cocompact. The only elements of G that can fix a point in T are the
elements of K. Thus, Γ = G/K acts freely on T and the quotient T/Γ is a closed 3-dimensional
manifold M .

It was proven, in a combination of papers by Tukia, Gabai, Casson and Jungreis in 1988—
1994, that such Γ acts geometrically and faithfully on the hyperbolic plane. Their proof was mostly
topological. One can now also derive this result from Peremlan’s proof of Thurston’s geometrization
conjecture as follows. The infinite cyclic group π1(T ) will be a normal subgroup of π1(M). Then, you
look at the list of closed aspherical 3-dimensional manifolds (given by the Geometrization Conjecture)
and see that such M has to be a Seifert manifold, modelled on one of the geometries H2×R, SL(2,R),
Nil, E3, see [13]. In the case of the geometries Nil, E3, one sees that the quotient of π1 by normal
infinite cyclic subgroup yields a group Γ which is VI to Z2. Such group cannot act on S1 so that
Γ y T is properly discontinuous and cocompact. On the other hand, in the case of the geometries
H2×R, SL(2,R), the quotient by a normal cyclic subgroup will be VI to a group acting geometrically
on H2.





LECTURE 5

Appendix

1. Appendix 1: Hyperbolic space

The upper half-space model of the hyperbolic n-space Hn is

Rn+ = {(x1, ...xn) : xn > 0}

equipped with the Riemannian metric

ds2 =
|dx|2

x2n
.

Thus, the length of a smooth path p(t), t ∈ [0, T ] in Hn is given by∫
p

ds =

∫ T

0

|p′(t)|e
pn(t)

dt.

Here |v|e is the Euclidean norm of a vector v and pn(t) denotes the n-th coordinate of the point p(t).

The (ideal) boundary sphere of Hn is the sphere Sn−1 = Rn−1 ∪ ∞, where Rn−1 consists of
points in Rn with vanishing last coordinate xn.

Complete geodesics in Hn are Euclidean semicircles orthogonal to Rn−1 as well as vertical
straight lines. For instance, if p, q ∈ Hn are points on a common vertical line, then their hyperbolic
distance is

d(p, q) = | log(pn/qn)|

The group of isometries of Hn is denoted Isom(Hn). Every isometry of Hn extends uniquely
to a Moebius transformation of the boundary sphere Sn−1. The latter are the conformal diffeomor-
phisms of Sn−1 in the sense that they preserve (Euclidean) angles. (I do not assume that conformal
transformations preserve orientation.) Conversely, every Moebius transformation of Sn−1 extends
to a unique isometry of Hn.

The group Mobn−1 of Moebius transformations of Sn−1 contains all inversions, all Euclidean
isometries of Rn−1 and all dilations. (Compositions of Euclidean isometries and dilations are called
similarities.) In fact, a single inversion together with all similarities of Rn−1 generate the full group
of Moebius transformations. Furthermore, in every similarity of Rn−1 extends to a similarity of Rn+

T
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σ

Figure 1. Hyperbolic triangles S and T .
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Figure 2. Thinness estimate for the ideal hyperbolic triangle T .

in the obvious fashion, so that the extension is an isometry of Hn. Similarly, inversions extend to
inversions which are also isometries of Hn.

Exercise 5.73. Show that the group Mobn−1 acts transitively on the set of triples of distinct points
in Sn−1.

The key fact of hyperbolic geometry that we will need is that all triangles in Hn are δ-thin, for
δ ≤ 1. Here is an outline of the proof. First, every geodesic triangle in Hn lies in a 2-dimensional
hyperbolic subspace H2 ⊂ Hn, so it suffices to consider the case n = 2. Next, consider a geodesic
triangle S ⊂ H2 with the sides σ1, σ2, σ3. Then S can be “enlarged” to an ideal hyperbolic triangle
T ⊂ H2, i.e., a triangle all whose vertices belong to the boundary circle S1 of H2, see Figure 1. For
every point p which belongs to a side σ1 of the triangle S, every geodesic in H2 connecting p to the
union of the two opposite sides (τ2 ∪ τ3) of T , will have to cross σ2 ∪ σ3. Thus, S is “thinner” than
the triangle T , so it suffices to estimate thinness of T . Since Mob1 acts transitively on triples of
distinct points in S1, it suffices to consider the case where the ideal vertices of the triangle T are
the points A1 = ∞, A2 = −1, A3 = 1 in S1 = R ∪ {∞}. Now, consider points on the side τ1 of T
connecting A2 to A3. Let p denote the top-most point of the Euclidean semicircle τ1, i.e., p = (0, 1).
Then, considering the horizontal Euclidean segment γ connecting p to the point q = (−1, 1) ∈ τ3,
we see that hyperbolic length of γ equals 1 and, hence, d(p, q) ≤ 1. Consider points p′ ∈ τ1, so that
the first coordinate of p′ is negative. (See Figure 2.)

Exercise 5.74. The (hyperbolic) length of the horizontal Euclidean segment connecting p′ to q′ ∈ τ3
is < 1.

The same argument applies to points p′ with positive first coordinate. We thus conclude that
for every point in τ1, the distance to τ2 ∪ τ3 is ≤ 1. Therefore, every hyperbolic triangle is δ-thin for
δ ≤ 1.

Remark 5.75. The optimal thinness constant for hyperbolic triangles is arccosh(
√

2), see e.g. [3,
Proposition 6.42].
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2. Appendix 2: Least volume ellipsoids

Recall that a closed ellipsoid (with nonempty interior) centered at 0 in Rn can be described as

E = EA = {x ∈ Rn : ϕA(x) = xTAx ≤ 1}

where A is some positive-definite symmetric n× n matrix. Volume of such ellipsoid is given by the
formula

V ol(EA) = ωn (det(A))
−1/2

where ωn is the volume of the unit ball in Rn. Recall that a subset X ⊂ Rn is centrally-symmetric
if X = −X.

Theorem 5.76 (F. John). For every compact centrally-symmetric subset X ⊂ Rn with nonempty
interior, there exists a unique ellipsoid E(X) of the least volume containing X. The ellipsoid E(X)
is called the John-Loewner ellipsoid of X.

Proof. The existence of E(X) is clear by compactness. We need to prove uniqueness. Consider
the function f on the space S+

n of positive definite symmetric n× n matrices, given by

f(A) = −1

2
log det(A).

Lemma 5.77. The function f is strictly convex.

Proof. Take A,B ∈ S+
n and consider the family of matrices Ct = tA + (1 − t)B, 0 ≤ t ≤ 1.

Strict convexity of f is equivalent to strict convexity of f on such line segments of matrices. Since
A and B can be simultaneously diagonalized by a matrix M , we obtain:

f(Dt) = f(MCtM
T ) = − log det(M)− 1

2
log det(Ct) = − log det(M) + f(Ct),

where Dt is a segment in the space of positive-definite diagonal matrices. Thus, it suffices to prove
strict convexity of f on the space of positive-definite diagonal matrices D = Diag(x1, ..., xn). Then,

f(D) = −1

2

n∑
i=1

log(xi)

is strictly convex since log is strictly concave. �

In particular, whenever V ⊂ S+
n is a convex subset and f |V is proper, f attains a unique

minimum on V . Since log is a strictly increasing function, the same uniqueness assertion holds for

the function det−1/2 on S+
n . Let V = VX denote the set of matrices C ∈ S+

n so that X ⊂ EC . Since
ϕA(x) is linear as a function of A for any fixed x ∈ X, it follows that V convex. Thus, the least
volume ellipsoid containing X is unique. �

3. Appendix 3: Different measures of quasiconformality

Let M be an n×n invertible matrix with singular values λ1 ≤ ... ≤ λn. Equivalently, these numbers
are the square roots of eigenvalues of the matrix MMT . The singular value decomposition yields:

M = UDiag(λ1, ..., λn)V

where U, V are orthogonal matrices.

We define the following distortion quantities for the matrix M :

• Linear dilatation:

H(M) :=
λn
λ1

= ‖M‖ · ‖M−1‖,

where ‖A‖ is the operator norm of the n× n matrix A:

max
v∈Rn\0

|Av|
|v|

.
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• Inner dilatation:

HI(M) :=
λ1....λn
λn1

=
|det(M)|
‖M−1‖−n

• Outer dilatation

HO(M) :=
λnn

λ1....λn
=
‖M‖n

|det(M)|
• Maximal dilatation

K(M) := max(HI(M), HO(M)).

Exercise 5.78.
(H(M))

n/2 ≤ K(M) ≤ (H(M))
n−1

Hint: It suffices to consider the case when M = Diag(λ1, ...λn) is a diagonal matrix.

As we saw, qc homeomorphisms are the ones which send infinitesimal spheres to infinitesimal
ellipsoids of uniformly bounded eccentricity. The usual measure of quasiconformality of a qc map f
is its maximal distortion (or maximal dilatation) K(f), defined as

K(f) := ess sup
x
K(Dx(f))

where the essential supremum is taken over all x in the domain of f . Here Dxf is the derivative of
f at x (Jacobian matrix). See e.g. J.Väisälä’s book [18]. A map f is called K-quasiconformal if
K(f) ≤ K.

In contrast, the measure of quasiconformality used in these lectures is:

H(f) := ess sup
x
H(Dxf).

To relate the two definitions we observe that

1 ≤ (H(f))
n/2 ≤ K(f) ≤ (H(f))

n−1
.

In particular, K(f) = 1 if and only if H(f) = 1.
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