
PROBLEMS ON BOUNDARIES OF GROUPS AND KLEINIAN
GROUPS

MISHA KAPOVICH

Most problems in this list were collected during the workshop “Boundaries in
Geometric Group Theory”, in AIM, 2005.

1. Background

Ideal boundaries of hyperbolic spaces. Suppose that X is a hyperbolic metric
space. Pick a base-point o ∈ X. This defines the Gromov product (x, y)o ∈ R+ for
points x, y ∈ X. The ideal boundary ∂∞X of X is the collection of equivalence classes
[xi] of sequences (xi) in X where (xi) ∼ (yi) if and only if

lim
i→∞

(xi, yi)o = ∞.

The topology on ∂∞X is defined as follows. Let ξ ∈ ∂∞X. Define r-neighborhood of
ξ to be

U(ξ, r) := {η ∈ ∂∞X : ∃(xi), (yi) with ξ = [xi], η = [yi], lim inf
i,j→∞

(xi, yj)o ≥ r}.
Then the basis of topology at ξ consists of {U(ξ, r), r ≥ 0}. We will refer to the
resulting ideal boundary ∂∞X as the Gromov–boundary of X. One can check that
the topology on ∂∞X is independent of the choice of the base-point. Moreover, if
f : X → Y is a quasi-isometry then it induces a homeomorphism ∂∞f : ∂∞X → ∂∞Y .
The Gromov product extends to a continuous function

(ξ, η)o : ∂∞X × ∂∞X → [0,∞].

The geodesic boundary of X admits a family of visual metrics da
∞ defined as

follows. Pick a positive parameter a. Given points ξ, η ∈ ∂∞X consider various
chains c = (ξ1, ..., ξm) (where m varies) so that ξ1 = ξ, ξm = η. Given such a chain,
define

dc(ξ, η) :=
m−1∑
i=1

e−a(ξi,ξi+1)o ,

where e−∞ := 0. Finally,
da
∞(x, y) := inf

c
dc(ξ, η)

where the infimum is taken over all chains connecting ξ and η. Taking different
values of a results in Hölder–equivalent metrics. Each quasi-isometry X → Y yields
a quasi-symmetric homeomorphism (see section 8 for the definition)

(∂∞X, da
∞) → (∂∞Y, da

∞).

Conversely, each quasi-symmetric homeomorphism as above extends to a quasi-iso-
metry X → Y , see [51].
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Then the ideal boundary of a Gromov–hyperbolic group G is defined as

∂∞ΓG,

where ΓG is a Cayley graph of G. Hence ΓG is well-defined up to a quasi-symmetric
homeomorphism.

Ideal boundaries of CAT (0) spaces. Consider a CAT (0) space X. Two geodesic
rays α, β : R+ → X are said to be equivalent if there exists a constant C ∈ R such
that

d(α(t), β(t)) ≤ C, ∀t ∈ R+.

The geodesic boundary ∂∞X of X is defined to be the set of equivalence classes [α]
of geodesic rays α in X. Fix a base-point o ∈ X. If X is locally compact (which
we will assume from now on), then there exists a unique a representative α in each
equivalence class [α] so that α(0) = o. With this convention the visual topology on
∂∞X is defined as the compact-open topology on the space of maps R+ → X. One
can check that this topology is independent of the choice of the base-point and that
isometries X → Y induce homeomorphisms ∂∞X → ∂∞Y .

Example. If X = Rn then ∂∞X is homeomorphic to Sn−1.

If X is a CAT (−1) space then it is also Gromov-hyperbolic. Then the two ideal
boundaries of X (one defined via sequences and the other defined via geodesic rays)
are canonically homeomorphic to each other. More specifically, each geodesic ray
α defines sequences xi = α(ti), for ti ∈ R+ diverging to infinity. The equivalence
class of such (xi) is independent of (ti) and one gets a homeomorphism from the
CAT (0)-boundary to the Gromov-boundary.

In general, quasi-isometries of CAT (0) spaces to not extend to the ideal boundaries
in any sense. Moreover, Bruce Kleiner and Chris Croke constructed examples [22]
of pairs of CAT (0) spaces X,X ′ which admit geometric (i.e. isometric, discrete,
cocompact) actions by the same group G so that ∂∞X, ∂∞X ′ are not homeomorphic.

Therefore, given a CAT (0)–group G one can talk only of the collection of CAT (0)
boundaries of G, i.e. the set

{∂∞X : ∃G y X}
where the actions G y X are geometric.

2. Topology of boundaries of hyperbolic groups

Problem 1 (Misha Kapovich). What spaces can arise as boundaries of hyperbolic
groups? As a sub-problem: For which k do k-dimensional stable Menger spaces
appear as boundaries?

Example 1 (Damian Osajda). Let X be a thick right-angled hyperbolic building of
rank n + 1, i.e. with apartments isometric to Hn+1. Then the ideal boundary of X
is a stable Menger space Mn,k. However n + 1-dimensional right-angled hyperbolic
reflection groups exist only for n ≤ 3.

Problem 2. Can one remove the “right-angled” assumption in Osajda result?

Background: The Menger space Mk,n is obtained by iteratively subdividing an
n-cube into 3n subcubes and removing those that do not touch the k-skeleton, see [4]
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for a detailed discussion of the topology of these spaces. Below are few properties of
Mk,n:

• Mk,n has topological dimension k.
• Mk,n is stable when n ≥ 2k +1 (that is, replacing n by a larger value does not

change Mk,n).
• Any k-dimensional compact metric space embeds in some stable Mk,n.

Problem 3 (Panos Papasoglu). What 2-dimensional spaces arise as boundaries of
hyperbolic groups? Can restrict to cases with no virtual splitting, no local cut points
or cut arcs, and no Cantor set that separates.

Background: 2-dimensional Pontryagin surfaces and 2-dimensional Menger spa-
ces M2,5 appear as boundaries of hyperbolic Coxeter groups, see [27]. According to
work of Misha Kapovich and Bruce Kleiner [37]: if ∂∞G is 1-dimensional, connected
and has no local cut points, then ∂∞G is homeomorphic to a Sierpinski carpet (M1,2)
or the Menger space M1,3.

Problem 4 (Mike Davis). Are there torsion-free hyperbolic groups G with

cdQ(G)/cdZ(G) < 2/3 ?

Background: Here cdR is the cohomological dimension over a ring R. Mladen
Bestvina and Geoff Mess [6] have shown that:

a. For torsion-free hyperbolic groups cdR(G) = cdR(∂∞G) + 1.
b. There are hyperbolic groups G such that cdZ(G) = 3 and cdQ(G) = 2.

Problem 5 (Nadia Benakli). What can be said about boundaries arising from strict
hyperbolization constructions of Charney and Davis, [18]?

Problem 6 (Ilia Kapovich). Is there an example of a group G which is hyperbolic
relative to some parabolic subgroups that are nilpotent of class ≥ 3 whose Bowditch
boundary is homeomorphic to some n-sphere?

Remark 1 (Tadeusz Januszkiewicz). Strict hyperbolization of piecewise linear mani-
folds gives many examples of hyperbolic groups G with ∂∞G homeomorphic to Sn.

Problem 7 (Misha Kapovich). Suppose that Z is a compact metrizable topological
space, G y Z is a convergence action which is topologically transitive, i.e. each G–
orbit is dense in Z. Is there a Gromov-hyperbolic space X with the ideal boundary
Z so that the action G y Z extends to a uniformly quasi-isometric quasi-action
G y X?

Background: Suppose that Z is a topological space, Z(3) is the set of triples
of distinct points in Z. The space Z(3) has a natural topology induced from Z3.
A topological group action G y Z is called a convergence action if the induced
action G y Z(3) is properly discontinuous. A convergence action G y Z is called
uniform if Z(3)/G is compact. Examples of convergence group actions are given by
uniformly quasi-Moebius actions G y Z, e.g. are induced on Z = ∂∞X by uniformly
quasi-isometric quasi-actions G y X. Brian Bowditch [12] proved that each uniform
convergence action G y Z is equivalent to the action of a hyperbolic group on its
ideal boundary.
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Problem 8 (Tadeusz Januszkiewicz). Find topological restrictions on the ideal bound-
aries of CAT (−1) cubical complexes.

Background. A CAT (−1) cubical complex is a CAT (−1) complex X where
every n-cell is a combinatorial cube, isometric to a polytope in Hn, so that the isom-
etry preserves the combinatorial structure. For instance, such a complex can cover
closed hyperbolic 3-manifold. It was proven by Januszkiewicz and Światkowski [35]
that ∂∞X cannot be homeomorphic to S4. Moreover, ∂∞X cannot contain an essen-
tial k-sphere for k ≥ 4.

3. Boundaries of Coxeter groups

Let G be a finitely-generated Coxeter group with Coxeter presentation 〈S|R〉.
This presentation determines a Davis-Vinberg complex X (see [24]), whose dimension
equals rank of the maximal finite special subgroup of G with respect to the above
presentation. The complex X admits a natural piecewise-Euclidean CAT (0) metric.
The group G acts on X properly discontinuously and cocompactly. Hence, X has
visual boundary ∂X, which we can regard as a boundary of G. Topology of ∂X
was studied in [27, 28]. For instance, [27] constructs examples of hyperbolic Coxeter
groups whose boundaries are both orientable and non-orientable Pontryagin surfaces
and 2-dimensional Menger compacta. Recall that a Pontryagin surface is obtained
as follows. Let K be a connected, compact (without boundary) triangulated surface.
Define P (K) by replacing each closed 2-simplex σ in K with a copy Kσ of the closure
of K \ σ. We get the map

P (K) → K

by sending each Kσ to σ. Set Pn := P (Pn−1). Then the corresponding Pontryagin
surface P∞ based on P0 is inverse limit of the sequence

....Pn → Pn−1 → ... → P1 → P0.

It turns out that P∞ can have only three distinct topological types:
1. If P0

∼= S2, then P∞ ∼= S2.
2. If P0 is oriented but has genus ≥ 1, then P∞ is oriented (i.e. H2(P∞,Z) ∼= Z)

but not homeomorphic to S2.
3. If P0 is not oriented then P∞ is unoriented. In this case, the rational homological

dimension of P∞ equals 1.

Problem 9 (Alexander Dranishnikov). Is it true that isomorphic Coxeter groups
have homeomorphic boundaries?

Remark 2. It appears that the answer is positive provided that all labels are powers
of 2. REFERENCE?

Problem 10 (Alexander Dranishnikov). Does there exist a Coxeter group Gn with
n-dimensional boundary ∂Gn, so that the rational homological dimension of ∂Gn

equals 1?

Problem 11 (Alexander Dranishnikov). Under which conditions on the Coxeter dia-
gram of G, the boundary of a Coxeter group is n-connected and locally n-connected?
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Partial results in this direction are obtained in [26]. The main motivation for this
problem comes from the problem of realizing Menger spaces as boundaries of Coxeter
groups.

Problem 12 (Misha Kapovich). Can exotic homology manifolds as in [14] appear as
ideal boundaries of Coxeter groups?

4. Universality phenomena

The term universality loosely describes the following situation:
There is a class C of groups (spaces) of different nature, whose ideal boundaries

are all homeomorphic.
Usually such results come from topological rigidity results for certain families of

compacta.

Examples of universality phenomena.
1. Consider the class of all 2-dimensional hyperbolic groups which are 1-ended,

do not split over virtually cyclic groups, are not commensurable to surface groups,
are not relative PD(3) groups. Then the ideal boundaries of all groups in this class
are homeomorphic to the Menger curve. See [37].

2. The boundaries of the right angled rank n+1 hyperbolic buildings in Example
1 are all homeomorphic (since they are all homeomorphic to the stable Menger space
Mn,k).

3. Let N be a closed n-manifold, ∆ be its triangulation. Then ∆ determines a
right-angled Coxeter graph Cox(N, ∆) and n+1-dimensional David-Vinberg complex
C(N, ∆). We assume, in addition, that ∆ is a flag-complex, satisfying the no-square
condition (which guarantees hyperbolicity of the resulting Coxeter group).

Suppose ∆1, ∆2 are two such triangulations of N , which admit a common subdi-
vision. Let Ci := C(N, ∆i). Then (H. Fischer [32]):

∂∞C1 = ∂∞C2.

Note that

∂∞C(N, ∆) = ∂∞C(N#N, ∆#∆).

In particular, the boundaries which appear in case n = 2 are of three types: S2,
oriented Pontryagin surface, non-orientable Pontryagin surface.

Problem 13 (Tadeusz Januszkiewicz). Find more universality phenomena.

Problem 14 (Misha Kapovich). Is it true that ∂∞C(N, ∆) is a topological invariant
of N?

Problem 15 (Misha Kapovich, Tadeusz Januszkiewicz). Suppose that (N1, ∆1) and
(N2, ∆2) are closed 3-manifolds equipped with flag-triangulations, so that

∂∞C(N1, ∆1) = ∂∞C(N2, ∆2).

Does it follow that every prime connected sum summand of Ni appears as a connected
sum summand of Ni+1, i = 1, 2? What can be said in higher dimensions?
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5. Markov compacta

The notion of Markov compactum is a generalization of the boundary of a group.
Let K := {Ki, φ

i+1
i , i ≥ 0} be an inverse system of finite simplicial complexes

φi+1
i : Ki+1 → Ki.

For a simplex σ ∈ Kj let φ−1(σ) denote the inverse subsystem Kσ formed by the
subcomplexes (building blocks)

Ki+1,σ := (φi+1
i )−1(Ki,σ), j ≥ i, Kj,σ := σ.

The inverse system K is called Markov if it contains only finitely many isomor-
phism classes of inverse subsystems Kσ. A Markov compactum is a compactum ob-
tained as the inverse limit of a Markov inverse system.

Thus K is obtained from K0 by inductively replacing simplices σ in Ki with the
building blocks Ki+1,σ using only finitely many “replacement rules”. For instance,
the Pontryagin surfaces are Markov compacta. Markov compacta appear naturally
as boundaries of hyperbolic and Coxeter groups.

For every compactum Z either

dim Zn = n dim(Z)

or

dim Zn = (n− 1) dim(Z) + 1.

In the latter case, Z is called a Boltyansky compactum.

Problem 16 (Alexander Dranishnikov). Let Z be a compactum which is a Z-boundary
of a group G. Then Z is never a Boltyansky compactum.

In the special case when Z is an Markov compactum, so that all building blocks

Kσ → σ

are isomorphic, it was proven in [29] that Z cannot be a Boltyansky compactum.

6. Boundaries of CAT (0) spaces

Problem 17 (Kim Ruane). Examples of Kleiner and Croke [22], [23] of non-unique
boundaries are badly non-locally-connected. Is that essential in having the “flexibil-
ity” to have many boundaries? That is, does local connectedness imply uniqueness
of the boundary (in the 1-ended case) for CAT(0) groups?

Background: Suppose that X,Y are Gromov-hyperbolic spaces and f : X → Y
is a quasi-isometry. Then f extends naturally to a homeomorphism ∂∞f : ∂∞X →
∂∞Y . In particular, the ideal boundaries of X and Y are not homeomorphic. The
situation for the CAT (0) spaces is quite different.

Definition 1. A group action G y X on a metric space X is called geometric if it
is isometric, properly discontinuous and cocompact.

For a CAT(0) group G acting geometrically on spaces Xi, there is an induced
action of G on the boundary ∂∞Xi. For G-spaces X1 and X2, the boundaries may be
(a) non-homeomorphic, or (b) homeomorphic, but not G-equivariantly.
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The Croke-Kleiner examples are torus complexes which are “combinatorially” the
same but where the angle α between the principal circles varies. [23], [22] showed that
these complexes Kα, which all have the same fundamental group (a right-angled Artin
group, in particular), have universal covers whose boundaries are not homeomorphic
when α = π/2 and α 6= π/2. Julia Wilson showed that any two distinct values of α
give non-homeomorphic boundaries.

Problem 18 (Dani Wise). Suppose that G is a CAT (0) group which does not split
over a small subgroup. Does it follow that ∂∞G is unique?

Problem 19 (Dani Wise). Is the boundary well-defined for groups acting geomet-
rically on CAT (0)-cube complexes? More precisely, suppose that X1, X2 are cube
complexes which admit geometric actions of a group G. Does it follow that ∂∞X1 =
∂∞X2?

Problem 20 (Ross Geoghegan). What topological invariants distinguish boundaries?
In particular, what topological properties of boundaries are quasi-isometry invariants?
Does something coarser than the topology stay invariant?

Remark 3. All boundaries for a given group are shape equivalent, so cannot be dis-
tinguished by their Čech cohomology. See [30] for the definition of shape equivalence.

It was shown by Eric Swenson [57] that for a proper cocompact CAT (0) space
X, the ideal boundary ∂∞X has finite topological dimension. It was shown by Ross
Geoghegan and Pedro Ontaneda [33] that the topological dimension of ∂∞X is a
quasi-isometry invariant of X.

Here and below a space X is called cocompact if Isom(X) acts cocompactly on
X.

A useful class of maps is called cell-like: inverse images of points are compact
metrizable and each is shape equivalent to a point. (For a finite-dimensional compact
subset Y of Rn (or of any ANR) “shape equivalent to a point” is equivalent to saying
“Y can be contracted to a point in any of its neighborhoods.”)

Remark 4. Cell-like maps are simple homotopy equivalences.

Problem 21 (Ross Geoghegan). If G acts geometrically on two CAT(0) spaces, are
the resulting boundaries cell-like equivalent? (That is, does there exist a space Z
with cell-like maps to each of the two spaces?)

Remark 5. Ric Ancel, Craig Guilbault, and Julia Wilson have some examples when
the answer is positive: they showed that the complexes Kα (see Croke-Kleiner exam-
ples above) are all cell-like equivalent.

Suppose that G y Xi, i = 1, 2 are isometric cocompact properly discontinuous
actions of G on two CAT(0) spaces.

Problem 22 (Thomas Delzant). Is there a convex core for the diagonal action of
G on X1 × X2? (A special case is surface groups G with X1 and X2 corresponding
to different hyperbolic structures.) If there is a convex core, can Z (the space with
cell-like maps to X1 and X2) be taken to be the boundary of the core?

Remark 6 (Bruce Kleiner). Convex sets are actually rare (see Remark 31), so maybe
there is a different problem with better prospects.
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Danny Calegari: One can try to define a new ideal boundary for CAT (0) spaces
(which is different from the visual boundary ∂∞X) by looking at the space of all
quasi-geodesics in X. For example, in R2, consider all (equivalence classes of) K-
quasi geodesics, with the compact-open topology. Varying K gives a filtration of the
space of all quasi geodesics. Can one do interesting analysis on such a space?

Problem 23 (Danny Calegari). Define a topology on the set of quasi geodesics in a
(proper geodesic, or coarsely homogeneous, or cocompact) CAT (0) space which

(1) has a description as an increasing union of compact metrizable spaces
(2) has an inclusion of its visual boundary ∂∞X into it
(3) is quasi-isometry invariant
(4) has reasonable measure classes which are quasipreserved

According to a theorem by Brian Bowditch and Gadde Swarup [13, 56], if G is a
1-ended hyperbolic group then ∂∞G has no cut points.

For G a CAT(0) group, a theorem of Eric Swenson says that if c ∈ ∂∞G is a cut
point, then there is an infinite-torsion subgroup of G fixing c.

Problem 24 (Conjecture: Eric Swenson). Any CAT (0) group has no infinite-torsion
subgroups.

A Euclidean retract is a compact space that embeds into some Rn as a retract.
A compact metrizable space Z is a Z-set in X̃ if it is “homotopically negligible” (for
every open U ⊂ X̃, the inclusion U \Z in U is a homotopy equivalence). A Z-structure
on a group G is a pair (X̃, Z) such that

• X̃ is a Euclidean retract,
• Z is a Z-set in X̃,
• X := X̃ \ Z admits a covering space action of G with X/G compact,
• the set of translates of any compact set K ⊂ X is a null sequence in X̃ (that

is, for each ε > 0 there are only finitely many translates with diam > ε).

Finally, Z is a boundary of G (or Z-structure boundary) if there exists a Z-structure
(X̃, Z) on G.

The above notion boundary of G was generalized by T. Farrell and J. Lafont as
follows:

An EZ-boundary of a group G is a boundary Z = ∂EZG so that the action of G
on X extends to topological action of G on Z.

Problem 25 (Misha Kapovich). Let G be a hyperbolic group and ∂EZG be its
EZ boundary. Is it true that ∂EZG is equivariantly homeomorphic to the Gromov
boundary of G?

Problem 26 (Mladen Bestvina). Can there be two different boundaries in the sense
of Z-structures for a group G that are not cell-like equivalent?

Remark 7. Note that this problem is even open for Zn. For CAT(0) spaces, the visual
boundaries are Z-structure boundaries, so Problem 21 is a special case.

Problem 27 (Bruce Kleiner). Is the property of splitting over a 2-ended subgroup
an invariant of Bestvina boundaries?
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Some necessary conditions are known for compact, metrizable spaces X to be the
boundary of some proper cocompact CAT (0) space:

(1) X should have 1,2, or infinitely many components
(2) X is finite dimensional (Theorem of Swenson)
(3) X has nontrivial top Čech cohomology (Geoghegan-Ontaneda)

In the case when X admits a cocompact free(?) action by a discrete subgroup
of isometries, one necessary condition is due to Bestvina: the dimension of every
nonempty open set U ⊂ X is equal to the dimension of X.

Problem 28 (Ross Geoghegan). Extend these lists, or give a complete classification.

Problem 29 (Kevin Whyte). Does every CAT(0) group have finite asymptotic di-
mension?

7. Asymptotic topology

Problems below are mostly motivated by the following rigidity results of Panos
Papasoglu, [50]:

Theorem 1. Suppose that G is a finitely-presented 1-ended group. Then:
1. The JSJ decomposition of G is invariant under quasi-isometries.
2. A quasiline coarsely separates Cayley graph of G iff G splits over virtually-Z

or G is virtually a surface group.
3. No quasi-ray coarsely separates the Cayley graph of G.

Problem 30 (Panos Papasoglu). Do these results hold for general finitely generated
groups?

Problem 31 (Panos Papasoglu). Are splittings over Z2 (or Zn) invariant under quasi-
isometry? The analogous problem also makes sense for the JSJ decompositions.

Problem 32 (Panos Papasoglu). Suppose G is finitely generated and there is a
sequence of quasicircles that separate its Cayley graph. Is G virtually a surface
group?

Problem 33 (Conjecture of Panos Papasoglu). If G is finitely generated with as-
ymptotic dimension ≥ n, and X is a subset of the Cayley graph with asymptotic
dimension ≤ n− 2 that coarsely separates the Cayley graph, then G splits over some
subgroup H ≤ G with asymptotic dimension ≤ n− 1.

A homogeneous continuum is a locally connected compact metric space whose
group of homeomorphisms acts transitively. Papasoglu showed that every simply
connected homogeneous continuum has the property that no simple arc separates it.

Problem 34 (Panos Papasoglu). Do all homogeneous continua (with dimension
greater than 2) have this property?

8. Analytical aspects of boundaries of groups

We begin with the basic definitions of the quasiconformal analysis. For a quadru-
ple of points x, y, z, w in a metric space X, [x, y, z, w] denotes their cross-ratio, i.e.

[x, y, z, w] =
d(x, y)

d(y, z)

d(z, w)

d(w, x)
.
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• Quasiconformal (analytic definition): A homeomorphism f : Rn → Rn is
quasiconformal iff
(1) f ∈ W 1,n

loc (Rn) and
(2) There exists K = Kf (x) < ∞ so that ||Df(x)||n ≤ KJf (x) a.e. (here Jf

is the Jacobian of f).
The essential supremum K(f) of Kf (x) on Rn is called the coefficient of qua-
siconformality of f . A mapping f is called K-quasiconformal if K(f) ≤ K.

Note: The map f is differentiable almost everywhere, so the derivative and Jacobian
in (2) make sense pointwise a.e.. The assumption (1) can be replaced by the assump-
tion that f is ACL, i.e., that f is absolutely continuous on a.e. line parallel to the n
coordinate directions. The above analytical definition of quasiconformality for maps
of Rn turns out to be equivalent to four other definitions given below.

(1) Quasiconformal (metric definition): Let f : Rn → Rn be a homeomorphism.
For r ∈ R+, define the following:

Lf (x, r) := sup{|f(y)− f(x)| : |y − x| = r}
`f (x, r) := inf{|f(y)− f(x)| : |y − x| = r}

Hf (x) := lim sup
r→0

Lf (x, r)

`f (x, r)
(the metric dilatation of f)

Then, f is quasiconformal iff Hf (x) is uniformly bounded by some H =
H(f) ≥ 1.

(2) Quasiconformal (geometric definition): Let Γ be a family of paths in Rn. We
say a Borel function ρ : Rn → [0,∞) is admissible for Γ iff for every γ ∈ Γ, we
have

∫
γ
ρ ds ≥ 1.

Define modn(Γ) := inf
{∫
Rn ρn(x) dx : ρ is admissible for Γ

}
. A homeomor-

phism f : Rn → Rn is quasiconformal iff there is some constant K = K(f) ≥ 1
such that for every path family Γ, we have

1

K
modn(Γ) ≤ modn(f(Γ)) ≤ Kmodn(Γ).

(3) A homeomorphism f : X → Y between metric spaces X and Y is quasisym-
metric iff there exists a homeomorphism η : (0,∞) → (0,∞) such that for all
triples of distinct points x, y, z ∈ X, the following inequality holds:

|f(x)− f(y)|
|f(x)− f(z)| ≤ η

( |x− y|
|x− z|

)
.

(4) A homeomorphism f : X → Y between metric spaces X and Y is quasi-
Moebius iff there exists a homeomorphism η : (0,∞) → (0,∞) such that for
all quadruples of distinct points x, y, z, w ∈ X, the following inequality holds:

[f(x), f(y), f(z), f(w)] ≤ η ([x, y, z, w]) .

Note that Definitions 1–4 make sense in the context of general metric spaces, see
below for details. If X is noncompact then quasi-symmetric maps are the same as
quasi-Moebius maps. However, for compact metric spaces quasi-Moebius is a more
appropriate (although more cumbersome) definition. One can rectify this problem
by redefining quasi-symmetric maps for compact metric spaces as follows. A map
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f : X → Y is quasi-symmetric if X admits a finite covering by open spaces Ui ⊂ X
so that the restriction f |Ui is quasi-symmetric in the above sense for each i.

One defines a quasi-symmetric equivalence for metric spaces by

X ∼qs Y

if there exists a quasisymmetric homeomorphism X → Y .

Let (X, d, µ) be a metric measure space, where µ is a Borel measure. Then X is
called Ahlfors Q-regular, if there exists C ≥ 1 so that

C−1RQ ≤ µ(BR(x)) ≤ CRQ

for each R ≤ diam(X).

Remark 8. Let X be a metric space with the Hausdorff dimension Hdim(X) = Q.
Then the most natural measure to use is the Q-Hausdorff measure on X. This is the
measure to be used for the boundaries of hyperbolic groups. Then (X, d) is called
Ahlfors regular if it is Ahlfors Q-regular with Q = Hdim(X).

Given two compact continua E, F in a metric space X define their relative distance

∆(E,F ) :=
d(E, F )

min(diam(E), diam(F ))
.

Here d(E, F ) := min{d(x, y) : x ∈ E, y ∈ F}.
Given an Ahlfors Q-regular metric measure space X, define modQ(E, F ) to be

modQ(Γ)

where Γ is the set of all curves in X connecting E to F .

Definition 2. A metric space X is called Q-Loewner if it satisfies the inequality

modQ(E, F ) ≤ φ(∆(E, F )),

for a certain function ψ.

Problem 35 (Mario Bonk). Are diffeomorphisms Rn → Rn dense in the space of all
quasiconformal maps?

Remark 9 (Juha Heinonen). The answer is known to be “yes” for n = 2, 3 due to
Moise’s theorem.

Remark 10 (Misha Kapovich). In fact, the answer is also known to be ”yes” for qua-
siconformal diffeomorphisms of Rn, n > 4. This was proven by Connell [20] for stable
homeomorphisms of Rn, n ≥ 7, improved by Bing [7] to cover dimensions ≥ 5. Lastly,
it was shown by Kirby [39] that all orientation-preserving homeomorphisms of Rn are
stable for n ≥ 5. Note that the proof in the case of quasiconformal homeomorphisms
is easier since quasi-conformal homeomorphisms are differentiable a.e. and the stable
homeomorphism conjecture was known for n ≥ 5 prior to Kirby’s work. However
the problem appears to be open in the case n = 4. On the other hand, Kirby ob-
served that for sufficiently large n there are open connected subsets Ω1, Ω2 ⊂ Rn and
a homeomorphism f : Ω1 → Ω2, which cannot be approximated by diffeomorphisms
fj : Ω1 → Ω2.
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The problem becomes more subtle if we require approximating diffeomorphisms
to be globally quasiconformal:

Problem 36 (Misha Kapovich). Let f : Bn → Bn be a quasiconformal home-
omorphism. Can f be approximated by globally quasiconformal diffeomorphisms
fj : Bn → Bn? Can this be done so that fj’s are K-quasiconformal for all j?

Note that all the maps in problem will extend quasiconformally to the closed
n-ball.

Problem 37 (Mario Bonk). Find good classes of spaces such that the infinitesimal
metric condition (for quasiconformality) implies the local condition. (This is generally
true in Loewner spaces.)

Problem 38 (Kim Ruane). Outside of the boundaries of Fuchsian buildings, what
boundaries have the Loewner property?

Remark 11. Loewner spaces are good for analytic tools: have a cotangent bundle, so
can “do calculus”; also, can do PDEs, etc.

Problem 39 (Juha Heinonen). Let X be a non-smoothable closed simply connected
4-manifold. Does it admit an Ahlfors 4-regular linearly locally contractible metric?
This is wide open; unknown even for examples, like E8.

Remark 12. The non-smoothable closed simply-connected 4-manifolds like E8 are
known not to admit a quasiconformal atlas, [25]. In dimensions ≥ 5 Sullivan [55]
proved that every topological manifold admits a quasiconformal atlas and, moreover,
quasiconformal structure is unique. An alternative proof of Sullivan’s theorem and its
generalization was given by J. Luukkainen in [42], his proof avoids the construction
of almost parallelizable hyperbolic manifolds; see also [59]. It was observed by Tom
Farrell that a detailed proof of the fact that all closed hyperbolic n-manifolds are
virtually almost parallelizable (and much more) is contained in the paper by B. Okun
[48].

Hence in dimension n ≥ 5 one would ask for Ahlfors n-regular linearly locally
contractible metrics on the unresolvable homology manifolds, see [14]. The broad goal
here is to find an analytic framework for studying exotic topological and homology
manifolds.

Problem 40 (Uri Bader). Develop a theory for analysis on the ideal boundaries of
relatively hyperbolic groups, as it is done for hyperbolic groups.

Problem 41 (Bruce Kleiner). In what generality does quasiconformal imply qua-
sisymmetric? (Specifically, of interest are self-similar spaces which are connected,
without local cut points; or visual boundaries of hyperbolic groups.)

Definition. Call a metric space X quasi-isometrically cohopfian if each quasi-
isometric embedding f : X → X is a quasi-isometry. (Examples include Poincaré
duality groups, solvable groups, Baumslag-Solitar groups.) X is quasisymmetrically
cohopfian if every quasisymmetric embedding X → X is onto.

The above definition is a coarse analogue of the notion of cohopfian groups from
group theory.
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Fact: a hyperbolic group G is quasi-isometrically cohopfian iff ∂∞G is quasisym-
metrically cohopfian, cf. [51].

Problem 42 (Ilia Kapovich). Take your favorite metric fractal. Is it quasisymmet-
rically cohopfian? What about the boundaries of hyperbolic groups?

Subproblem: What about the case of (round) Sierpinski carpets and Menger
spaces which appear as boundaries of hyperbolic groups.

Background. Round Sierpinski carpets are the ones which are bounded by round
circles. Such sets arise as the ideal boundaries of fundamental groups of compact
hyperbolic manifolds with nonempty totally geodesic boundary. It is known that if
G, G′ are such groups which are not commensurable then their ideal boundaries are
not quasisymmetric to each other. There is a similar rigidity theorem (due to Marc
Bourdon and Herve Pajot [10]) for a certain class of Menger curves, i.e. the ones which
appear as visual boundaries of 2-dimensional Fuchsian buildings. Quasisymmetric
cohopfian property is open in both cases.

Remark 13 (Danny Calegari). As an example for the previous problem: the limit
set L of a leaf of a taut foliation of a hyperbolic 3-manifold with 1-sided branching
is a dendrite in S2 which is nowhere dense, has Assouad dimension 2, and for any
point p in L and any neighborhood U of p in S2, L can be embedded by a conformal
automorphism of S2 into L ∩ U .

Remark 14 (Juha Heinonen). If X is the standard “square” Menger space Mk,n then
it is clearly not quasisymmetrically cohopfian.

Problem 43 (Conjecture: Juha Heinonen). If ∂∞G is Loewner, then it is quasisym-
metrically cohopfian. (Boundaries of Fuchsian buildings provide a good test case for
this conjecture.)

Problem 44 (Bruce Kleiner). If G is a hyperbolic group and ∂∞G is connected
with no local cut points, is there a natural measure class which is quasisymmetrically
invariant? (That is, invariant under quasisymmetric homeomorphisms ∂∞G → ∂∞G.)

Motivation: rigidity theorems rely on absolute continuity of quasisymmetric maps
as a foundational ingredient.

Remark 15. If ∂∞G is Loewner, then the answer is “yes.” But there are examples
of Bourdon and Pajot [11] whose boundary is not Loewner for each metric which is
quasisymmetric to a Gromov-type metric.

In Bourdon—Pajot examples, Patterson-Sullivan measure works because there are
relatively few quasisymmetric maps.

Problem 45 (Kim Ruane). Can you do analysis on CAT(0) boundaries? With no
natural metric, is there any structure beyond topology?

Remark 16 (Bruce Kleiner). “Pushing in” the visual sphere gives pseudo-metrics on
∂∞X, where X is the CAT(0) space acted on by G. Consider the radial projection
∂∞X → SR(0) to spheres of radius R; then dR = Pr−1(dX |SR(0)) are the pseudo-
metrics. But then for a function φ going quickly enough to zero,∑

R∈N
φ(R)dR

is a metric on ∂∞X.



14 MISHA KAPOVICH

Remark 17 (Damian Osajda). One can define a family dA of metrics on ∂∞X as
follows. Pick A > 0 and choose a base-point o ∈ X. Let α, β be geodesic rays
emanating from o and asymptotic to points ξ, η ∈ ∂∞X. Let a be such that

d(α(a), β(a)) = A.

If such a does not exists (i.e. α = β), then set a := ∞. Finally, set

dA(ξ, η) :=
1

a
.

Problem 46 (Bruce Kleiner). G = Isom(X) acts on ∂∞(X). Is this action “nice”
with respect to the metrics in the previous remark?

Problem 47 (Marc Bourdon). If D is the boundary of a hyperbolic group and D is
connected, has no local cut points, and is not Loewner, is there a quasisymmetrically
invariant nontrivial closed equivalence relation ∼ on D so that D/ ∼ is Hausdorff
and is a boundary of G relative to a collection of parabolic subgroups?

Remark 18. In Bourdon–Pajot examples [11], the answer to the above problem is
positive.

Problem 48 (Jeremy Tyson). Study relationships between different notions of con-
formal structure on ∂∞(G) for hyperbolic G. Here is an (incomplete) list of such
notions:

(1) 1-quasiconformal in the metric sense, i.e. H(f) = 1 .
(2) preserving modulus of curves joining two compacta .
(3) η-quasisymmetric with η as close to linear as we like. (η are functions of the

point x ∈ ∂∞G where we test f for conformality)
(4) if Poincaré inequality holds for ∂∞G, then, using Cheeger cotangent bundle

T ∗∂∞G, can give a notion of measurable bounded conformal structure µ such
that

Conf(∂∞G,µ)

is a convergence group.

Remark 19. Good notions of quasiconformality should have the convergence property,
and metric notion does not, so its usefulness would be if (1) =⇒ (2), since (1) is
checkable and (2) is not.

Recall that if f : Rn → Rn is a homeomorphism for n ≥ 2, then

k − quasiconformal =⇒ quasisymmetric =⇒ (balls 7→ quasiballs)

Problem 49 (Juha Heinonen). Is the same true for Hilbert spaces? (All known
proofs of above type use geometry, not analysis.)

It follows from work of Mario Bonk and Oded Schramm that there are quasi-
isometric embeddings of HHn (quaternionic hyperbolic space) into HHm which are
very far from isometric embeddings. (One can construct such examples with m ≈ c ·n
for a constant c which is no less than 16.)
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Problem 50 (David Fisher). Can one do this with smaller m? Say m = n + 1?
(Same problem valid for complex hyperbolic space.)

Subproblem (Misha Kapovich): Consider X = ∂∞HHn sitting inside of Y =
∂∞HHn+1. Is X locally quasi-symmetrically rigid in Y ? More precisely, is it true that
each quasisymmetric embedding f : X → Y which is sufficiently close to the identity
is induced by an isometry of HHn+1?

Remark 20. This subproblem might be easier to settle than Problem 50, since one
can try to use infinitesimal tools like quasiconformal vector-fields.

David Fisher and Kevin Whyte have constructed some “exotic” quasi-isometric
embeddings for higher-rank symmetric spaces that are “algebraic,” in the sense that
π : A1N1 → A2N2.

Problem 51 (David Fisher). Are all quasi-isometric embeddings between higher-rank
symmetric spaces either isometries or algebraic in this way?

Problem 52 (Misha Kapovich). Let G be a hyperbolic group. Is it true that G
admit a uniformly quasiconformal discrete action on Sn (for some n)?

The answer is probably negative. It is reasonable to expect that every group
satisfying Property (T) which admits such an action must be finite. However the
usual proofs that infinite discrete subgroups of Isom(Hn+1) never satisfy Property
(T) do not work in the quasiconformal category.

9. Problems related to Cannon’s Conjecture

Problem 53 (Cannon’s Conjecture, Version I). If G is a (Gromov) hyperbolic group
with ∂∞G homeomorphic to S2, then G acts geometrically on H3.

Problem 54 (Cannon’s Conjecture, Version II). Under the same assumptions on G,

(∂∞G, visual metric) ∼qs (S2, standard).

Remark 21. Perelman’s proof of Thurston’s geometrization conjecture implies that
the Cannon’s conjecture is equivalent to the finding that such G is commensurable
to a 3-manifold group: There exists an exact sequence

1 → F → G0 → π1(M
3) → 1

with F finite and [G : G0] < ∞.

Remark 22. If G is hyperbolic and torsion-free then ∂∞G ∼= S2 iff G is a PD3 group
(a 3-dimensional Poincaré duality group), see [6].

Problem 55 (Conjecture of C.T.C. Wall). Every PD3 group is a 3-manifold group.

Problem 56 (Cannon’s Conjecture, Relative Version I). If G is hyperbolic and ∂∞G
is homeomorphic to the Sierpinski carpet, then G acts geometrically on a convex
subset of H3.

Remark 23. This follows from the Cannon’s Conjecture by doubling.
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Problem 57 (Cannon’s Conjecture, Relative Version II). For G hyperbolic relative to
{H1, . . . , Hk} for a collection of virtually-Z2 subgroups Hi, if the Bowditch boundary
∂BowG is S2, then G is commensurable to the fundamental group of a hyperbolic
3-manifold of finite volume.

Remark 24. The same problem could be posed allowing the boundary to be S2 or
Sierpinski carpet.

Problem 58 (Cannon’s Conjecture, Analytic Version). If G is a hyperbolic group
with ∂∞G homeomorphic to the Sierpinski carpet, then the visual metric on ∂∞G is
quasisymmetric to some round Sierpinski metric:

(∂∞G, visual metric) ∼qs (Sierpinski, round).

Recent work of Mario Bonk gives simplifications and partial answers here.

Problem 59. Prove Cannon’s conjecture under additional assumptions, such as

• G = π1(M
3), in Haken case (without appealing to Thurston’s proof of the

hyperbolization theorem)
• G a PD3 group that splits over a surface group
• G acts on a CAT(0) cube complex
• . . .

Remark 25. Cannon’s Conjecture is known for Coxeter groups G (a work by Mario
Bonk and Bruce Kleiner). This follows of course from Andreev’s theorem, but the
point here is to give a proof which only uses the geometry of the ideal boundary of
G.

Problem 60 (Misha Kapovich). Give positive solution to Problem 57 assuming
the absolute case by doing “hyperbolic Dehn surgery” (see Groves–Manning, Osin).
Namely, add relators Ri, i = 1, ..., k, where Ri ∈ Hi. For sufficiently long elements
Ri the quotient G := Γ/ << R1, ..., Rk >> are known to be hyperbolic.

a. Prove that if Ri’s are sufficiently long then G is an (absolute) PD3 group, by,
say, computing H∗(G,ZG).

b. Assuming that each G is a 3-manifold group, show that Γ is a 3-manifold group
as well.

To motivate a possible approach to Cannon’s conjecture recall the following:

Theorem 2 (M. Bonk, B. Kleiner, [8]). Suppose that G is a hyperbolic group, G y Z
is a uniformly quasi-Moebius action on a metric space which is topologically conjugate
to the action of G on its ideal boundary. Assume that Z is Ahlfors n-regular and
has topological dimension n. Then Z is quasi-symmetric to the round n-sphere. In
particular, G acts geometrically on Hn+1.

Therefore, given a hyperbolic group G with Z = ∂∞G homeomorphic to S2 one
would like to replace the visual metric d on ∂∞G with a quasisymmetrically equivalent
one, which has Hausdorff dimension 2. Since Hausdorff dimension (Hdim) of a metric
compact homeomorphic to S2 is ≥ 2, one could try to minimize Hausdorff dimension
in the quasi-conformal gauge of (Z, d), i.e. the collection G(Z, d) of metric spaces
(Z, d′) which are quasisymmetric to (Z, d). This motivates the following:
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Definition 3. For a metric space Z, define its Pansu conformal dimension

PCD(Z) := inf{Hdim(Y ) : Y ∈ G(Z)}.
Likewise, Ahlfors regular Pansu conformal dimension of X is

ACD(Z) := inf{Hdim(Y ) : Y ∈ G(Z), Y is Ahlfors regular}.
The importance of the latter comes from

Theorem 3 (M. Bonk, B. Kleiner, [9]). Suppose that G is a hyperbolic group, Z =
∂∞G is homeomorphic to S2. If the ACD(Z) is attained then G acts geometrically
on H3.

Remark 26. Bourdon–Pajot examples [11] show that the ACD for the boundaries of
hyperbolic groups is not always attained.

Generally, ACD(Z) attained iff there is a Loewner metric in G(Z) (which is then
minimizing).

Problem 61 (Conjecture of Bruce Kleiner). For a hyperbolic group G,

ACD(∂∞G) = inf
GyX

{Hdim(∂∞X, visual)},
where the infimum is taken over all geometric actions of G on metric spaces X. A
bolder conjecture would be that, when the infimum is attained, it is attained by a
visual metric.

Problem 62. What is ACD of the standard Sierpinski carpet? In particular, does
the above conjecture hold?

Problem 63 (Juha Heinonen). Under what assumptions on hyperbolic groups G with
Q-Loewner boundary ∂∞G does it admit a 1-Poincaré inequality for the boundary?

Cannon’s conjecture has a generalization to nonuniform convergence group actions
on compacts. Here is one of such

Suppose L is the support of a measured lamination on a surface S and S \ L
consists of topological disks. Lift this lamination to a lamination Λ in the unit disk
D ⊂ S2 and define the following equivalence relation ∼:

1. The closure of each component of D \Λ in the closed disk D̄ is an equivalence
class.

2. If γ ⊂ Λ is a geodesic which is not on the boundary of a component of D \ Λ,
then the closure of γ in D̄ is an equivalence class. The rest of the points of S2 are
equivalent only to themselves.

Note that ∼ is G-invariant and that the equivalence classes are cells. Therefore
the quotient S2/ ∼ is homeomorphic to S2 and the group G acts on S2/ ∼ by
homeomorphisms. One can check that this is a convergence group action.

More generally, one can form an equivalence relation using a pair of transversal
laminations and make the corresponding G–invariant quotient.

Problem 64. [Cannon–Thurston] Is this action conjugate to a conformal action?

The situation here is, in many ways, more complicated than in Cannon’s conjec-
ture since there is no a priori a useful metric structure on Z = S2/ ∼. It is not even
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clear that there exists a Gromov-hyperbolic space X with the ideal boundary Z so
that the action G y Z extends to a uniformly quasi-isometric quasi-action G y X.

One can reformulate this problem using theory of Kleinian groups as follows.
According to the Ending Lamination Conjecture, there exists a discrete embedding
ι(G) ⊂ Isom(H3) so that the ending lamination of G is L.

Problem 65. The limit set of the Kleinian group ι(G) is locally connected.

In the presence of two geodesic laminations, the limit set of ι(G) is the entire
2-sphere, so local connectedness is meaningless. Then the correct reformulation is as
follows:

Problem 66. Is there an equivariant continuous map (called Cannon–Thurston map)
from the unit circle S1 (the ideal boundary of G as an abstract group) to S2?

Then Problem 64 is equivalent to 66.

Remark 27. Positive solution of Problem 66 is known in certain cases. For instance,
Jim Cannon and Bill Thurston showed this for laminations which are stable for a
pseudo-Anosov homeomorphism. Yair Minsky [45] proved this under the assumption
that the injectivity radius of H3/ι(G) is bounded away from zero. Curt McMullen
proved this in the case when G is the fundamental group of once punctured torus of
quadruply punctured sphere, [44]. A complete solution of this problem is claimed in
the recent preprint of Mahan Mj (Mahan Mitra) [47].

Problem 67 (Mahan Mitra). Let H ⊂ G be a hyperbolic subgroup of a hyperbolic
group (we do not assume that H is quasiconvex). Is it true that there exists an
equivariant continuous map

∂∞H → ∂∞G.

See [46] for partial results in this direction.

10. Poisson boundary

Problem 68 (Vadim Kaimanovich). What is the Poisson boundary of the free group
with an arbitrary measure?

Let (Y, d) be a metric space and let C(Y ) denote the space of continuous functions
on Y equipped with the topology of uniform convergence on bounded subsets. Fixing
a basepoint y ∈ Y , the space Y is continuously injected into C(Y ) by

Φ : z 7→ d(z, ·)− d(z, y).

If Y is proper, then Φ(Y ) is compact. The points on the boundary Φ(Y ) \ Φ(Y ) are
called horofunctions (or Busemann functions).

Problem 69 (Conjecture of Anders Karlsson). There almost surely exists a horo-
function h such that

lim
n→∞

− 1

n
h(xn) = A,

where A = lim
n→∞

1
n
d(x0, xn).
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A theorem of Karlsson states that ∀ε > 0 there exists a horofunction hε such that

A− ε ≤ − 1

n
hε(xn) ≤ A + ε

for all n ≥ N(ε).

Remark 28. This works for any finitely generated group.

Problem 70 (Anders Karlsson). For any proper metric space it is possible to as-
sociate a kind of incidence geometry at infinity via horofunctions, halfspaces and
their limits called stars. For the CAT(0) case, this structure is intimately connected
with the Tits geometry, and for Teichmüller space it should relate well with the curve
complex. In which situations do homomorphisms induce “incidence preserving” maps
between these geometries at infinity? Same problem for quasi-isometries.

Problem 71 (Anders Karlsson). Consider the compactification of a finitely generated
group constructed in the usual Stone-Čech way using the first l2 (or some other func-
tion space) cohomology. Is the associated incidence geometry at infinity always trivial
(i.e., hyperbolic)? (This is related to problems of Gromov in Asymptotic invariants
in the chapter on lp cohomology.)

Kaimanovich and Masur proved the following: for a measure µ on the mapping
class group Γ (µ can be any finite first moment, finite entropy probability measure such
that the group generated by its support is non-elementary), there exists a measure ν
on PMF so that

Poiss(Γ, µ) = (PMF , ν).

The measure ν is called a µ-stationary measure on PMF , this measure is unique.
Here Poiss(Γ, µ) is the Poisson boundary.

Problem 72 (Moon Duchin). Characterize the hitting measure ν on PMF obtained
from the random walk by mapping classes on Teichmüller space. Is it absolutely
continuous with respect to visual measure (that is, Lebesgue measure on the visual
sphere of directions)?

Problem 73 (Moon Duchin). What is the Poisson boundary of Outer space?

11. Asymptotic cones

A geodesic metric space X (e.g. Cayley graph of a finitely-generated group) is
Gromov-hyperbolic if and only if all asymptotic cones of X are trees. There are
examples of finitely generated1 groups G so that some asymptotic cones of G are
trees but G is not Gromov-hyperbolic, see [58]. Call such groups lacunary hyperbolic
following Olshansky, Osin and Sapir see [49]. All such groups are limits of hyperbolic
groups in the sense that G admits an infinite presentation

G =< x1, ..., xn|R1, R2, R3, ... >

so that each Gk =< x1, ..., xn|R1, ...Rk > is hyperbolic.

Problem 74 (Misha Kapovich). Is there are meaningful structure theory for lacunary
hyperbolic groups? Can one define a useful boundary for such groups? Is it true that
either Out(G) is finite or G splits over a virtually cyclic subgroup?

1Such groups are never finitely-presented
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Remark 29. A counter-example to the last problem is known to M. Sapir.

It is known that for each relatively hyperbolic group G, all asymptotic cones of G
have cut points.

Problem 75 (Cornelia Drutu). To what extent is the reverse implication true?

Remark 30. Some counterexamples are known; for instance, the mapping class group
and fundamental groups of graph manifolds are weakly relatively hyperbolic but not
strongly.

Problem 76 (Mario Bonk). The study of asymptotic cones has been non-analytic
(they have been studied up to homeomorphism). What analytic tools could be de-
veloped?

12. Kleinian groups

Problem 77 (Misha Kapovich). For the fundamental group G of a closed hyperbolic
n-manifold consider a short exact sequence

1 → Zp → Γ → G → 1.

Is the group Γ residually finite? In other words, is there a finite-index subgroup G′

in G so that the restriction map

H2(G,Zp) → H2(G′,Zp)

is zero? Remarkably, positive answer is presently known only for n = 2. Same
problem makes sense also for the fundamental groups of complex-hyperbolic and
quaternionic-hyperbolic manifolds.

Problem 78 (Misha Kapovich). Let G be as above. Is there a finite-index subgroup
G′ ⊂ G so that the restriction map

H3(G,Z2) → H3(G′,Z2)

is zero?

This problem is interesting because H3(G,Z2) classifies PL structures on the hy-
perbolic manifold Hn/G.

Problem 79 (Misha Kapovich). Let G be a Gromov-hyperbolic Coxeter group. Does
G admit a discrete embedding in Isom(Hn) for large n?

Note that the Coxeter generators are not assumed to act as reflections on Hn.
Otherwise, there are counter-examples, see [31].

Problem 80. (Misha Kapovich) Let G ⊂ PU(2, 1) be a convex-cocompact subgroup
of isometries of complex-hyperbolic 2-space. Can the limit set of G be homeomorphic
to the Sierpinski carpet?

Problem 81 (Misha Kapovich). Let G ⊂ Isom(Hn) be a discrete torsion-free finitely-
generated subgroup without abelian subgroups of rank ≥ 2. Is it true that

(a)

cdZ(G) ≤ Hdim(Λc(G)) + 1 ?
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Here Λc is the conical limit set. The answer is known [36] to be positive if one
considers homological rather than cohomological dimension.

(b) In the case of equality, is it true that the limit set of G is the round sphere
and G? This is known to be true in the case when G is geometrically finite [36].

(c) If Hdim(Λc(G)) < 2, is it true that G is geometrically finite?
(d) If Hdim(Λc(G)) < 1, does it follow that G is a classical Schottky-type group?

(I.e. the one whose fundamental domain is bounded by round spheres.) See [34] for
partial results.

Problem 82 (Lewis Bowen). Let G ⊂ Isom(H4) be a Schottky group (or, more
generally, a free convex-cocompact group). Can Hausdorff dimension of the limit set
of G be arbitrarily close to 3?

Problem 83 (Misha Kapovich). Let G be a finitely-generated discrete group of
isometries of a Gromov-hyperbolic space X so that the limit set of G is connected.
Is it true that the limit set of G is locally connected?

Consider a representation ρ : G → Isom(Hn). This action of G on the hyperbolic
space determines a class function

`ρ : G → R+,

so that `ρ(g) is the displacement for the isometry ρ(g) of Hn, i.e.,

`ρ(g) = inf
x∈Hn

d(ρ(g)(x), x).

Problem 84. Suppose that ρ1, ρ2 are discrete and faithful representations as above
so that there exists C > 0 for which we have

C−1 ≤ `ρ1(g)

`ρ2(g)
) ≤ C, ∀g ∈ G.

Does it follow that there exists a quasiconformal map f : Λ(ρ1(G)) → Λ(ρ2(G)) which
is equivariant with respect to the isomorphism ρ2 ◦ ρ−1

1 ? Can one choose f which is
K-quasiconformal for K = K(C)?

If n = 3 and G is finitely generated, then the answer to the first part of the
problem is positive and follows from the solution of the ending lamination conjecture.

A constructive proof of Rips compactness theorem. Let G be a finitely-
presented group which does not split as a graph of groups with virtually abelian edge
groups. For every n define the space

Dn(G)

of conjugacy classes of discrete and faithful representations of G into Isom(Hn). We
assume that G is not virtually abelian itself. Then Rips’ theory of group actions on
trees implies that Dn(G) is compact.

Problem 85. Find a “constructive” proof of the above theorem. More precisely,
consider a finite presentation 〈g1, .., gk|R1, .., Rm〉 of G. Given [ρ] ∈ Dn(G) define

Bn([ρ]) := inf
x∈Hn

max
i=1,...,k

d(x, ρ(gi)(x)).

Find an explicit constant C, which depends on n, k, m and the lengths of the words
Ri, so that the function Bn : Dn(G) → R is bounded from above by C.
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Remark 1. Y. Lai [41] found such an explicit constant C can be for Coxeter groups;
moreover, in this case C depends only on n and the number of Coxeter generators.

One possible application of the solution of Problem 85 is in producing nontrivial
algebraic restrictions on Kleinian groups.

An abstract Kleinian group is a group which admits a discrete embedding in
Isom(Hn) for some n.

All currently known algebraic restrictions on finitely-generated Kleinian groups
can be traced to the following:

1. Every Kleinian group has the Haagerup property: They admit isometric prop-
erly discontinuous actions on some Hilbert space. See for instance [19].

2. If π is the fundamental group of a compact Kähler manifold, then every ho-
momorphism ρ : π → Isom(Hn) wither factors through a group commensurable to a
surface group or ρ(π) preserves a point or a pair of points in Hn ∪ ∂∞Hn. See [17].

Problem 86. Find new restrictions on Kleinian groups.

Recall that a group G is called coherent if every finitely-generated subgroup of G
is finitely-presented.

Problem 87 (M. Kapovich, L. Potyagailo, E.B. Vinberg). Prove that every arith-
metic lattice in Isom(Hn) (n ≥ 4) is non-coherent.

See [38] for some partial results in this direction.

It is well-known that every lattice in Isom(HHn) (n ≥ 2) has Property T.

Problem 88. Suppose that G ⊂ Isom(HHn) is a discrete subgroup satisfying Prop-
erty T. Does it follow that G preserves a totally-geodesic subspace H in HHn and
acts on H as a lattice?

The main motivation for this problem comes from the fact that the obvious con-
strictions of discrete groups of isometries are by various graphs of groups and hence
these groups do not have Property T. One can try to use triangles of groups:

Problem 89. Suppose that ∆ is a developable triangle of groups, where all the cell-
groups have Property T and so that all the links in the universal cover of T have
λ1 > 1/2. Does it follow that π1(∆) has Property T?

Problem 90. Generalize Bestvina-Feighn combination theorem from graphs of gro-
ups to complexes of groups.

Background: Let G be a graph of groups, so that vertex and edge groups are
hyperbolic and the edge subgroup are quasiconvex in the vertex groups. Bestvina and
Feighn [5] found some sufficient conditions for π1(G) to be hyperbolic. Hammenstädt
has some partial results towards solving this problem.

Discrete subgroups in other Lie groups.
A reflection in a complex-hyperbolic space CHn is an isometry of finite order

which fixes a (complex) codimension 1 hyperplane. A reflection group in CHn is a
subgroup of PU(n, 1) generated by reflections. These concepts generalize the notion
of reflections and reflection groups acting on Hn. Vinberg [60] proved that there for
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n ≥ 30 there are no uniform lattices in O(n, 1) which are reflection groups. This
result was extended by Prokhorov [52] who proved nonexistence of reflection lattices
in O(n, 1) for n ≥ 996.

Problem 91. Generalize Vinberg’s finiteness theorem for reflection groups to com-
plex-hyperbolic reflection groups, i.e., prove that there exists a number N such that
for n ≥ N , there are no lattices in PU(n, 1) which are generated by reflections.

Problem 92 (Misha Kapovich). There is a theory of quasi-convex groups acting
on Gromov hyperbolic spaces, generalizing the theory of convex-compact groups of
isometries of the real hyperbolic space. Develop a theory of geometric finiteness in
CAT(0) spaces.

Remark 31. It is a priori unclear what to take as the definition of geometric finiteness
in the context of CAT(0) spaces (even in the case of symmetric spaces). Taking
quotients of the convex hull is a bad idea, as shown by a theorem of Bruce Kleiner
and Bernhard Leeb: There are only few convex subsets in symmetric spaces of rank
≥ 2.

A better definition replacing convex-cocompactness could be:
A finitely-generated group G ⊂ Isom(X) is undistorted if the induced map from

the Cayley graph of G to X is a quasi-isometric embedding.
In the case of Gromov hyperbolic spaces, undistorted is equivalent to quasi-convex.
There are examples of undistorted free Zariski dense subgroups of SL(n,R), gen-

eralizing the Schottky construction.
Is there an interpretation of the notion of undistorted groups in terms of the group

actions on limit sets?

F. Labourie [40] introduced another notion of convex-cocompactness that he calls
an Anosov structure, for group representations ρ : Γ → G, where G is a semisimple
Lie group. In the case when Γ is a surface group and G = SL(n + 1,R), this notion
can be reformulated in terms of action of ρ(Γ) on its limit set in RP n, i.e. existence
of a ρ(Γ)-invariant hyperconvex curve in RP n.

Problem 93 (Anna Wienhard). Extend this relation of Anosov structure and dy-
namics on the limit set to representations of other hyperbolic groups.

Problem 94 (Anna Wienhard). Generalize holomorphic chain patterns in ∂∞CHn

in order to prove rigidity results for embeddings of lattices in PU(n, 1) into other
higher rank Lie groups.

Background. Ideal boundaries of totally-geodesic subspaces CH1 ⊂ CHn define
holomorphic chains in ∂∞CHn. These circles are characterized by the property that
three points belong to such a chain if and only if they span an ideal triangle in CHn

of maximal (symplectic) area. The incidence relation between holomorphic chains
in ∂∞CHn determines a “building-like” structure where chains serve as apartments:
Every two points belong to a chain. Given a measurable map

∂∞CHn → ∂∞CHm,m ≥ n,
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which induces a measurable morphism of these “building-like” structures, is induced
by a holomorphic embedding CHn → CHm. This, in turn, can be used to reprove Cor-
lette’s rigidity theorem [21] for representations of lattices in PU(n, 1) into PU(m, 1).
The motivation for the Problem 94 is to extend Corlette’s rigidity result to represen-
tations of PU(n, 1) to other Lie groups.

Problem 95 (Anna Wienhard). Obtain new rigidity results for embeddings of real-
hyperbolic lattices into higher-rank semisimple Lie groups in terms of the boundary
maps.

13. Miscellaneous problems in geometric group theory

Problem 96 (Kevin Whyte: Homotopy Nielsen realization). If X is a compact poly-
hedron and G is a discrete group of simple homotopy equivalences X → X, is there a
compact space X ′, homotopy equivalent to X, such that G can be realized as a group
of homeomorphisms of X ′.

Remark 32. It is a long-standing open problem to determine if the exact sequence

1 → Homeo0(S) → Homeo(S) → Mod(S) → 1

is split. Here S is a compact surface of genus ≥ 2 and Homeo0(S) denotes the
connected component of the identity in the group of homeomorphisms.

Moreover, there are examples due to George Cooke of spaces X and finite groups
G of simple homotopy-equivalences of X for which the answer to Problem 96 is “No.”
However all known examples occur in dimensions ≥ 5 and require the group to have
torsion.

Problem 97 (Ilia Kapovich). Consider finite cell complexes X. Is there an algorithm
to determine if X is contractible?

Remark 33. The triviality problem is known to be unsolvable for finitely presented
groups. However, their presentation complexes are never contractible, since the pre-
sentation is unbalanced. On the other hand, for complexes of dimension n ≥ 4, there
is no algorithm to determine contractibility (S. Weinberger [62]). Indeed, take a trian-
gulated closed n-manifold M for which it is impossible to decide if M is homeomorphic
to Sn. Let X be the complement to an open n-simplex in M . Then contractibility of
X is undecidable, since it is equivalent to M being a homotopy sphere.

Remark 34 (Daniel Groves). It is an open problem if the triviality of a group is
algorithmically solvable for groups with balanced presentation. (A presentation is
called balanced if the number of generators equals the number of relators.)

Problem 98 (Kevin Whyte). For a word-hyperbolic G not splitting over any vir-
tually cyclic group, can an infinite-index subgroup and a finite-index subgroup be
isomorphic?

Remark 35. This asks for something slightly stronger than the cohopfian property.

Problem 99 (Misha Kapovich). Consider Teichmüller space T (S) with Teichmüller
metric. Does it have quadratic isoperimetric inequality?
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Background: If dimC(T (S)) ≥ 2, T (S) is known to be non-hyperbolic. How-
ever the Mapping Class Group is bi-automatic, therefore the “thick part” of T (S) is
semihyperbolic. One can ask a similar question for the outer space.

Curt McMullen defined “inflexibility” for Kleinian groups, [43].

Problem 100 (Danny Calegari). Is there a similar statement to this inflexibility
result this with no group specified—that is, for subsets Λ ⊂ S2 of the boundary
sphere of H3?

Here is a possible setup for such problem: Define a random Beltrami differential as
follows. Let τ be the tessellation of H2 by regular right-angled hyperbolic pentagons.
(All such pentagons are isometric to a model pentagon P .) Let M be a compact
(perhaps finite or even a singleton) set of Beltrami differentials on P having norm 1/2
(or any fixed number < 1). For concreteness, suppose that M = {µ0} is a singleton.
For each pentagon P ′ ∈ τ choose a random isometry g : P → P ′. (There are 10
such isometries.) Then push-forward µ0 from P to P ′ via g. This defines a random
Beltrami differential µ on H2. Given a closed connected set Λ ⊂ S2 observe that
each complementary component Ω ⊂ S2 \ Λ is simply-connected. Choose a Riemann
mapping R : H2 → Ω; push-forward the random Beltrami differential µ from H2 to
Ω. Repeat this for each component of S2 \ Λ and extend the resulting differential to
Λ by zero. This defines a Beltrami differential µΛ on S2. Let q = qΛ : S2 → S2 be
the quasiconformal map which is a solution of the Beltrami equation

qz̄ = µΛqz.

Such a quasiconformal map has a natural Thurston-Reimann biLipschitz extension
QΛ : H3 → H3, [53].

Problem 101. Given p ∈ H3, estimate the biLipschitz constant of QΛ near p in
terms of the distance d from p to the exterior of the convex hull of Λ.

More concretely: if Λ is a quasicircle, is the decay exponential in d? That is, are
there positive constants C1, C2 such that

L(QΛ, p) ≤ 1 + C1exp(−C2d(p, ∂∞K))

where L is the bilipschitz constant of QΛ restricted to the ball of some fixed radius
(say radius 1) about p, K is the convex hull of Λ, and p is a point in the interior of
K.

Problem 102 (Mladen Bestvina). Are braid groups CAT(0)?

Remark 36. It is conjectured that all Artin groups are CAT(0).

Problem 103. Extend Rips’ theory to higher-dimensional buildings, e.g. products
of R-trees.

Rank rigidity. Let X be a CAT (0) metric space. The space X is said to be or
rank ≥ n if every geodesic segment in X is contained in a subset E which is isometric
to a flat n-dimensional parallelepiped. If Y is a locally CAT (0) metric space, then
Y is said to have rank ≥ n if its universal cover is of rank ≥ n. The rank rigidity
theorem proven by Ballmann [1] and by Burns and Spatzier [15, 16] states that:
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If M is a compact nonpositively curved Riemannian manifold of rank ≥ 2, then
either M admits a finite cover the universal cover of M splits (nontrivially) as a
Riemannian direct product or M is a locally symmetric space.

Problem 104 (Werner Ballmann, Misha Brin). Suppose that Y is a compact finite-
dimensional locally CAT (0) metric space of rank n ≥ 2. Then either the universal
cover of Y splits (nontrivially) as a Riemannian direct product or it is isometric to a
Euclidean building.

This problem is most natural in the context of piecewise-Euclidean metric cell
complexes. The conjecture was proven in the case of 2-dimensional and 3-dimensional
complexes by Ballmann and Brin [2, 3].

Cogrowth. Let H ⊂ G be a subgroup of a finitely-generated group G. The
cogrowth of H in G is the growth of the Shreier graph ΓG/H, where ΓG is a Cayley
graph of G.

Problem 105. Compute cogrowth for “interesting” subgroups. For instance:
1. Show that the cogrowth of SL(n,Z) in SL(n + 1,Z) is exponential.
2. Compute cogrowth of special subgroups in Coxeter groups. (See [61] for partial

results.)
3. Suppose that ΓG/H is Gromov-hyperbolic. Is it true that the cogrowth is

either constant, linear or exponential?

Coarse Whitehead Conjecture.

Problem 106 (Whitehead Conjecture). Let X be an aspherical (i.e. with con-
tractible universal cover) 2-dimensional complex. Is it true that every subcomplex of
X is also aspherical? (See [?].)

A metric space Z is said to be coarsely trivial πm if the following holds: There
exists a function φ(R) so that for each R ≥ 0 the map

RipsR(Z) → Ripsφ(R)(Z)

induces zero map of the m-th homotopy groups. For instance, suppose that Z is the
0-skeleton of an m-connected simplicial complex X, which admits a cocompact free
group action. Metrize Z by declaring each edge of X to have unit length. Then Z has
coarsely trivial πj for all j ≤ m. Given a 2-dimensional contractible complex X as
above and a connected subgraph Y ⊂ X(1), metrize Y (0) using the above path-metric
on Y .

Problem 107 (“Coarse Whitehead Conjecture”, Misha Kapovich). Under the above
assumptions, is it true that Y has coarsely trivial πm for m ≥ 2?

More restrictively one can consider the case when X is the Cayley complex of a
finitely-presented group G and H is finitely-generated subgroup of G, identified with
Y (0). (Then the metric on Y (0) is quasi-isometric to the word metric on H.) Note
that if H is finitely-presented then (since its cohomological dimension ≤ 2) it has
finite type and, thus H necessarily has coarsely trivial πm for all m.
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Problem 108. Does the Coarse Whitehead Conjecture hold if G is hyperbolic?

Note that there is an abundant supply of finitely generated non-finitely presented
subgroups of 2-dimensional hyperbolic groups, given by the Rips construction [54].
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École Norm. Sup. (4), 33 (2000), pp. 647–669.
[38] M. Kapovich, L. Potyagailo, and E. Vinberg, Non-coherence of some non-uniform lat-

tices in Isom(Hn). Preprint. To appear in Geometry and Topology, 2006.
[39] R. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math., (1969), pp. 575–

583.
[40] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math., 165

(2006), pp. 51–114.
[41] Y. Lai, Effective compactness theorem for Coxeter groups. In preparation.
[42] J. Luukkainen, Lipschitz and quasiconformal approximation of homeomorphism pairs, Topol-

ogy Appl., 109 (2001), pp. 1–40.
[43] C. McMullen, Renormalization and 3-manifolds which fiber over the circle, vol. 142 of Annals

of Mathematics Studies, Princeton University Press, 1996.
[44] , Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent.

Math., 146 (2001), pp. 35–91.
[45] Y. Minsky, On rigidity, limit sets and invariants of hyperbolic 3-manifolds, Journal of the

AMS, 7 (1994), pp. 539–588.
[46] M. Mitra, Cannon-Thurston maps for hyperbolic group extensions, Topology, 37 (1998),

pp. 527–538.
[47] M. Mj, Ending laminations and Cannon-Thurston maps. Preprint, math.GT/0701725, 2007.
[48] B. Okun.
[49] A. Y. Olshanskii, D. Osin, and M. Sapir, Lacunary hyperbolic groups. Preprint, 2007.
[50] P. Papasoglu, Quasi-isometry invariance of group splittings, Ann. of Math. (2), 161 (2005),

pp. 759–830.
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