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Abstract

We prove that the discreteness problem for 2-generated nonelementary subgroups of

SLp2,Cq is undecidable in the BSS computability model.

This paper is motivated by the following basic question in the theory of discrete subgroups

of Lie groups:

Question 1. Let G be a connected Lie group and let A “ pA1, . . . , Akq be a finite ordered

subset of G. Is the discreteness problem for the subgroup ΓA :“ xA1, . . . , Aky ă G decidable?

This question, in the case of G “ PSLp2,Cq, was raised, most recently, in the paper [7] by

J. Gilman and L. Keen, who noted that “it is a challenging problem that has been investigated

for more than a century and is still open.” The decidability problem was solved in the case

G “ PSLp2,Rq in the work of J. Gilman and B. Maskit [8] and [6], in the form of a discreteness

algorithm.

To make the general decidability question more precise one has to specify the model of

computability. There are several computability models over the real numbers; we refer the

reader to [1] and [19] for summaries of these and in-depth treatment of the BSS and the bit-

computability approaches respectively. In this paper we address decidability of the discreteness

problem in the real-RAM or BSS (which stands for Blum–Shub–Smale) computability model

as it is the closest in spirit to the papers by Gilman, Maskit and Keen mentioned above. We

will address decidability of the discreteness problem in the bit-computabulity model in another

paper, [12].

Briefly, computations in the BSS model over the real numbers are performed by a BSS

machine, which is an analogue of a Turing machine except that a BSS machine can store finite

lists of real numbers and do elementary algebraic and order operation with real numbers: Such

a machine can add, subtract, multiply and divide, as well as verify inequalities and equalities

a ă b, a “ b for real numbers. (BSS machines are also defined for computations in other rings,

but, in this paper we will use only real numbers.) We refer to [1] for the details.

A subset E Ă Rn is BSS-semicomputable (or the membership problem for E is BSS-

semidecidable) if E is the halting set of a BSS machine: There exists a BSS machine which,

given an input vector x P Rn, stops iff x P E. A membership problem for E is BSS-decidable
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iff both E and Ec “ Rn ´ E are BSS-semicomputable. We refer the reader to the book [1] for

more details.

Remark 2. In our paper, the input for a BSS machine is a tuple A of 2ˆ 2 complex matrices.

The main result about BSS machines needed for our paper is the following theorem due to

Blum, Shub and Smale, see [1, Theorem 1, Chapter 2]:

Theorem 3. The halting set for a BSS machine is a (computable) countable union of real

semialgebraic subsets of Rn.

Remark 4. We note that the proof of this theorem in [1] actually shows more: Allow a

generalized BSS machine to do boolean operations with inequalities, as well as to compute not

only rational functions, but also real algebraic functions, i.e., functions whose graphs are given

by finite sets of polynomial equations and inequalities, e.g.
?
x. Then the halting set of such a

machine is still a countable union of real semialgebraic subsets.

Before stating our main results, we note that the nondiscreteness problem for 1-generator

subgroups of G “ S1 Ă C˚ is not semidecidable, since a subgroup xAy ă S1 is nondiscrete if

and only if A has infinite order, i.e., is not a root of unity. The complement in S1 of the set

of roots of unity is clearly not a countable union of acrs, therefore, it cannot be a halting set

of a BSS machine. Thus, the discreteness problem, strictly speaking, is undecidable already

in G “ PSLp2,Rq. To make it decidable in G “ PSLp2,Rq one has to exclude from Gk the

algebraic subvariety consisting of tuples of matrices generating abelian subgroups. Regarding

subgroups of G “ PSLp2,Cq with two (or more) generators, one has to exclude, for a similar

reason, dihedral subgroups (both finite and infinite). In line with the work of Gilman, Keen and

Maskit, we will, moreover, exclude from consideration all tuples A which generate elementary

subgroups of G “ SLp2,Cq. (This exclusion allows for a clean discussion of the character

variety, which is a quotient of HompFk, Gq by the group G acting via conjugation.) The space

Gk of k-tuples of matrices A, Aj P G, is naturally identified with the representation variety,

which is the algebraic variety HompFk, Gq, via the map

φ ÞÑ pA1, . . . , Akq, Aj “ φpxjq, j “ 1, ..., k,

where Fk “ xx1, ..., xky is the free group of rank k. The variety HompFk, Gq contains a (closed)

real semialgebraic subvariety HomepFk, Gq consisting of representations φ whose images are

elementary subgroups of G, i.e., subgroups which either fix a point in the hyperbolic 3-space or

on its ideal boundary sphere or preserve a geodesic in the hyperbolic 3-space. The complement

HomnepFk, Gq “ HompFk, Gq ´HomepFk, Gq

is the space of nonelementary representations. This space is the main object of our study. We

let

HomdpFk, Gq Ă HomnepFk, Gq

denote the subset consisting of nonelementary representations with discrete images. Since

elementary representations are excluded, the subset HomdpFk, Gq is known to be closed (in
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the classical topology), see the paper of T. Jorgensen and P. Klein [9], as well as [10] for

generalizations.

In this paper we prove:

Theorem 5. The subset HomdpF2, SLp2,Cqq is not BSS-semicomputable.

Thus, at least in the BSS-computability model, the discreteness problem for 2-generated

subgroups of SLp2,Cq is undecidable. Our proof is modeled on the undecidability result for

the Mandelbrot set M: The membership problem for M is BSS-undecidable according to [1,

Chapter 2]. The proof of Theorem 5 is not difficult, but it relies upon three deep results:

• Description of BSS-computable sets by Blum, Shub and Smale, see [1].

• Minsky’s solution of the ending lamination conjecture for punctured tori [14].1

• Miyachi’s theorem [16], proving non-smoothness (at the “cusps”) of the boundary of the

Maskit slice in the character variety of the punctured torus.

The undecidability theorem in this paper should be contrasted with the semidecidability

result for convex-cocompact faithful representations into PSLp2,Cq proven by J. Gilman and

L. Keen in [7]. We note that a similar semidecidability result for Morse (Anosov) representations

to higher rank Lie groups is proven in the work of the author with B. Leeb and J. Porti [11].

Proof of Theorem 5. Set G “ SLp2,Cq. We will show that the set in Theorem 5 is not a

countable union of real semialgebraic subsets of HomnepF2, Gq, where we regard G as a real

algebraic group. First of all, instead of working in HompF2, Gq, it suffices to work with the

character variety

X “ XpF2, Gq “ HompF2, Gq{{G.

The reason is that there is a polynomial map τ : HompF2, Gq Ñ X whose fibers are the

extended G-orbits in HompF2, Gq, where G acts via composition of representations F2 Ñ G

with inner automorphisms of G. Discreteness, of course, is invariant under conjugation. We

will avoid discussion of the extended orbit equivalence and only note that for representations

in HomnepF2, Gq extended orbit equivalence is the same as the orbit equivalence. Therefore, it

suffices to work with the character variety. Concretely, the map τ is given by

τpA,Bq “ ptrpAq, trpBq, trpABqq P C3.

Our next reduction is to the Maskit slice XM in X, i.e., the complex-algebraic subset given by

the following trace conditions:

trprA,Bsq “ ´2, trpAq “ 2.

1Minsky’s work used here was one of the many papers leading, eventually, to the solution of the full Ending

Lamination Conjecture by Minsky, Brock and Canary, [15, 3].
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Since the Maskit slice is algebraic, the problem now reduces to the one in the Maskit slice. The

Maskit slice of X is complex 1-dimensional, it is biregularly isomorphic to the complex line C
via the map

ptrpAq, trpBq, trpABqq ÞÑ trpBq P C.

We, therefore, identify XM with C via this map. Recall that geometrically finite representa-

tions are dense among all discrete and faithful representations Γ Ñ SLp2,Cq (for any finitely

generated group Γ). This was proven first by Y. Minsky [14] for representations of punctured

torus groups, and, hence, in the Maskit slice, which suffices for our purposes. The general case

is due to the work of many people, most notably, K. Bromberg [4], J. Brock and K. Bromberg

[2], H. Namazi and J. Souto [17], and K. Ohshika [18]. We, thus, have:

Proposition 6. The space D Ă C of equivalence classes of discrete representations rρs P XM “

C has the following structure:

D “ DF \ C,

where C is a countable subset of non-faithful geometrically finite representations and DF is the

set of equivalence classes rρs P XM such that ρ : F2 Ñ G is discrete and faithful.

Thus, it suffices to show that DF is not a countable union of real semialgebraic subsets.

Due to the work of Y. Minsky [14], the topological boundary of DF is a topological arc α

properly embedded in C. The complement to DF in C is also diffeomorphic to R2.

Before proving the next lemma, we recall that an accidental parabolic element of a repre-

sentation

ρ : F2 “ π1pT
2
´ pointq Ñ SLp2,Cq

is an element of F2 represented by a (necessarily simple) nonperipheral loop γ (not representing

the conjugacy class of the generator A of F2) on the punctured torus T 2 ´ point, such that

π1pγq is a parabolic element of SLp2,Cq. The equivalence class rρs P DF of a representation

ρ is called a cusp if ρ has an accidental parabolic element. It again follows from Minsky’s

work (Theorem B in [14]) that cusps are dense in the boundary of DF (cf. the earlier work of

C. McMullen [13]).

Lemma 7. The arc α contains no smooth subarcs (which are not singletons).

Proof. H. Miyachi proved [16] the arc α is not smooth at each cusp, which are dense in α.

Therefore, α does not contain nondegenerate smooth subarcs.

We now can conclude the proof of Theorem 5. Suppose that DF is a countable union

ď

jPJ

Ej

of real algebraic subsets Ej of C. Each Ej is either finite or its topological frontier BEj in

C is a finite union of real-algebraic arcs. Since, as noted above, the arc α does not contain
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real-algebraic subarcs, each Ej intersects α in a nowhere dense (in α) subset. By the Baire

Theorem, the union
ď

jPJ

BEj X α

has empty interior in α. Therefore, the union of subsets Ej cannot be equal to DF . This

contradiction concludes the proof of Theorem 5.
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