Processing math: 100%


SOLUTION 20: Begin with the function
f(x)=11x
and choose
xvalues:0h2
so that
Δx=h20=h2
The derivative of  y=f(x)  is
f(x)=D{11x}=D{(1x)1/2}=12(1x)3/2(1)=12(1x)3/2
The exact change of yvalues is
Δy=f(h2)f(0) =11(h2)11(0) =11h211 =11h21
The Differential is
dy=f(0) Δx =12(1(0))3/2(h2) =12(1)3/2(h2) =12(1)(h2) =12h2
Since h is "small" we will assume that
Δydy     11h2112h2     11h21+12h2    

Click HERE to return to the list of problems.