SOLUTION 4:   $$    \displaystyle{  \lim_{x \rightarrow 0} \frac{ 3^x-2^x }{ x^2-x }   } = 
\displaystyle{   \frac{ 3^{0}-2^{0} }{ (0)^2-(0) }   } = \displaystyle{   \frac{ 1-1 }{ 0-0 }   } = \frac{"0"}{0} $$ 
(Apply Theorem 1 for l'Hopital's Rule.  Differentiate top and bottom separately.)
$$ =   \displaystyle{  \lim_{x \rightarrow 0} \frac{ 3^x \ln 3 - 2^x \ln 2 }{ 2x-1 }   }  $$
$$ =   \displaystyle{   \frac{ 3^{0} \ln 3 - 2^{0} \ln 2 }{ 2(0)-1 }   }  $$
$$ =   \displaystyle{   \frac{ (1) \ln 3 - (1) \ln 2 }{ -1 }   }  $$
$$ =   \displaystyle{    \ln 2 - \ln 3 }  $$
Click  HERE  to return to the list of problems.