SOLUTION 5:   $$    \displaystyle{  \lim_{x \rightarrow 3} \frac{ 1/x - 1/3 }{ x^2-9 }   } = 
\displaystyle{   \frac{ 1/(3) - 1/3 }{ (3)^2-9 }   } = \displaystyle{   \frac{ 0 }{ 9-9 }   } = \frac{"0"}{0} $$ 
(Apply Theorem 1 for l'Hopital's Rule.  Differentiate top and bottom separately.)
$$ =   \displaystyle{  \lim_{x \rightarrow 3} \frac{ -1/x^2 - 0 }{ 2x-0 }   }  $$
$$ =   \displaystyle{  \lim_{x \rightarrow 3}  \Big( \frac{ -1 }{ x^2 } \cdot \frac{ 1 }{ 2x }   \Big)   } $$
$$ =   \displaystyle{   \lim_{x \rightarrow 3}  \frac{ -1 }{ 2x^3 } } $$
$$ =   \displaystyle{   \frac{ -1 }{ 2(3)^3 } } $$
$$ =   \displaystyle{   \frac{ -1 }{ 54 } } $$
Click  HERE  to return to the list of problems.