SOLUTION 10: $$ \displaystyle{ \lim_{x \to 0} \ {  e^{-1/x^2} \over x^2 } } 
 = \displaystyle{ `` \  e^{-1/0^2}  \ " \over (0)^2  }   = \displaystyle{ `` \ e^{-\infty}  \ " \over 0  }   = \displaystyle{ `` \ { 1 / e^{\infty} }  \ " \over 0  }  = \displaystyle{ `` \ { 1 / \infty } \ " \over 0  }  = \displaystyle{ `` \ 0 \ " \over 0  }  $$
(Apply Theorem 1 for l'Hopital's Rule. Differentiate the top using the chain rule and the bottom. Recall that 
$ D \{ e^{f(x)} \} = e^{f(x)} \cdot f'(x) $ .) 
$$ =  \displaystyle{ \lim_{x \to 0} \ {  e^{-1/x^2} \cdot 2/x^3 \over 2x } } $$
$$ =  \displaystyle{ \lim_{x \to 0} \ {  2e^{-1/x^2} \over x^3} \cdot { 1 \over 2x } } $$
$$ = \displaystyle{ \lim_{x \to 0} \ {  e^{-1/x^2} \over x^4 } } = \displaystyle{ `` \ 0 \ " \over 0  }  $$
(Applying Theorem 1 for l'Hopital's Rule again leads to $ \displaystyle{ \lim_{x \to 0} \ {  e^{-1/x^2} \over 2x^6 } } $.  Stop and think.  This is getting nowhere.  Go back to the beginning and algebraically rewrite the problem by ``flipping" both numerator and denominator.)
$$ = \displaystyle{ \lim_{x \to 0} \ {  e^{-1/x^2} \over x^2 } } $$
$$ = \displaystyle{ \lim_{x \to 0} \ { 1/x^2 \over  e^{1/x^2} } }  = \displaystyle{ { `` \ 1/0^2 \ " \over  e^{1/0^2} } }  = \displaystyle{ { `` \ \infty \ " \over  e^{\infty} } }  = \displaystyle{ `` \ \infty \ " \over \infty  }  $$
(Apply Theorem 2 for l'Hopital's Rule.)
$$ = \displaystyle{ \lim_{x \to 0} \ { -2/x^3 \over  e^{1/x^2} \cdot -2/x^3 } } $$
$$ = \displaystyle{ \lim_{x \to 0} \ { { 1 \over  e^{1/x^2} } } } $$
$$ = \displaystyle{ \lim_{x \to 0} \ { { 1 \over  e^{1/(0)^2} } } } $$
$$ = \displaystyle{ \lim_{x \to 0} \ { { 1 \over  e^{\infty} } } } $$
$$ = \displaystyle{ `` \ 1 \ " \over \infty  }  $$
$$ = 0 $$
Click  HERE  to return to the list of problems.