SOLUTION 20: $$ \displaystyle{ \lim_{x \to 0^+} \ { \ln x \cdot \tan x } } = \displaystyle{ `` \ \ln 0 \cdot \tan 0 \ " } = \displaystyle{ `` \ (-\infty) \cdot 0 \ " } $$ (Rewrite the expression to circumvent this indeterminate form. Recall that $ \cot x = 1/\tan x $ and $ \cot x = \cos x/\sin x$.) $$ \displaystyle{ \lim_{x \to 0^+} \ { \ln x \cdot \tan x } } = \displaystyle{ \lim_{x \to 0^+} \ { \ln x \over 1/\tan x } } $$ $$ = \displaystyle{ \lim_{x \to 0^+} \ { \ln x \over \cot x } } = \displaystyle{ `` \ \ln 0 \ " \over \cot 0 } = \displaystyle{ `` \ -\infty \ " \over \cos 0^+/\sin 0^+ } = \displaystyle{ `` \ -\infty \ " \over 1/0^+ } = \displaystyle{ `` \ - \infty \ " \over \infty } $$ (Apply Theorem 2 for l'Hopital's Rule. Recall that $D\{ \cot x\} = -\csc^2x$.) $$ = \displaystyle{ \lim_{x \to 0^+} \ { 1/x \over -\csc^2 x } } $$ (Recall that $ \csc x = 1/ \sin x $.) $$ = \displaystyle{ \lim_{x \to 0^+} \ { 1/x \over -1/ \sin^2 x } } $$ $$ = \displaystyle{ \lim_{x \to 0^+} \ { 1 \over x} \cdot { \sin^2 x \over -1 } } $$ $$ = \displaystyle{ \lim_{x \to 0^+} \ { - \sin^2 x \over x } } = \displaystyle{{ `` \ - \sin^2 0 \ " \over 0 } } = \displaystyle{{`` \ (0)^2 \ " \over 0 } } = \displaystyle{{`` \ 0 \ " \over 0 } } $$ (Apply Theorem 1 for l'Hopital's Rule. Use the Chain Rule in the top.) $$ = \displaystyle{ \lim_{x \to 0^+} \ { - 2 \sin x \cos x \over 1 } } $$ $$ = \displaystyle{ - 2 \sin 0 \cdot \cos 0 } $$ $$ = \displaystyle{ - 2 (0) (1) } $$ $$ = \displaystyle{ 0 } $$

Click HERE to return to the list of problems.