SOLUTION 20: $$ \displaystyle{ \lim_{x \to 0^+} \ { \ln x \cdot \tan x } } 
=  \displaystyle{   `` \ \ln 0 \cdot \tan 0  \ "  } 
=  \displaystyle{ `` \ (-\infty) \cdot 0 \ "  }  $$
(Rewrite the expression to circumvent this indeterminate form.  Recall that $ \cot x = 1/\tan x $ and $ \cot x = \cos x/\sin x$.)
$$ \displaystyle{ \lim_{x \to 0^+} \ { \ln x \cdot \tan x } } = \displaystyle{ \lim_{x \to 0^+} \ { \ln x \over 1/\tan x } } $$  
$$ = \displaystyle{ \lim_{x \to 0^+} \ { \ln x \over \cot x } } 
=  \displaystyle{  `` \ \ln 0  \ " \over \cot 0  } 
=  \displaystyle{  `` \ -\infty  \ " \over \cos 0^+/\sin 0^+  }
=  \displaystyle{  `` \ -\infty  \ " \over 1/0^+  }    
=  \displaystyle{ `` \ - \infty  \ " \over \infty }  $$
(Apply Theorem 2 for l'Hopital's Rule.  Recall that $D\{ \cot x\} = -\csc^2x$.)
$$ = \displaystyle{ \lim_{x \to 0^+} \ { 1/x \over -\csc^2 x }  } $$
(Recall that $ \csc x = 1/ \sin x $.)
$$ = \displaystyle{ \lim_{x \to 0^+} \ { 1/x \over -1/ \sin^2 x }  } $$
$$ = \displaystyle{ \lim_{x \to 0^+} \ { 1 \over x} \cdot {  \sin^2 x \over -1 }  } $$
$$ = \displaystyle{ \lim_{x \to 0^+} \ { - \sin^2 x \over x }  } 
=  \displaystyle{{ `` \ - \sin^2 0 \ " \over 0 }  }   
=  \displaystyle{{`` \ (0)^2 \ " \over 0 }  }  
=  \displaystyle{{`` \ 0 \ " \over 0 }  } $$
(Apply Theorem 1 for l'Hopital's Rule.  Use the Chain Rule in the top.)
$$ = \displaystyle{ \lim_{x \to 0^+} \ { - 2 \sin x \cos x \over 1 }  } $$
$$ = \displaystyle{ - 2 \sin  0 \cdot \cos 0 } $$
$$ = \displaystyle{ - 2 (0) (1) } $$
$$ = \displaystyle{ 0 } $$
Click  HERE  to return to the list of problems.