SOLUTION 21: $$ \displaystyle{ \lim_{x \to 0^+} \ x^{ \ \sin x } } 
=  \displaystyle{ `` \ 0^{ \ \sin 0  } \ "  }  
=  \displaystyle{ `` \ 0^{ \ 0  } \ "  }  $$
(Rewrite the problem to circumvent this indeterminate form. Recall that $ \displaystyle{ e^{\ln z} = z }. $)
$$ \displaystyle{ \lim_{x \to 0^+} \ x^{ \ \sin x } } = \displaystyle{ \lim_{x \to 0^+ } \ e^{ \ \ln  x^{ \ \sin x } } } $$ 
$$ = \displaystyle{ \lim_{x \to 0^+  } \ e^{ \ { \sin x \cdot \ln x } } } $$
$$ = \displaystyle{  \ e^ { \ \displaystyle{ \lim_{x \to 0^+  } \ { \sin x \ln x }}}}  =  \displaystyle{  \ e^ { \ \displaystyle{ `` \ \sin 0 \cdot \ln 0 \ "  } } }  
=  \displaystyle{  \ e^ { \ \displaystyle{ `` \ 0 \cdot (-\infty) \ "  } } } $$
(``Flip" $ \sin x$ to circumvent this indeterminate form.  Recall that $ \csc x = 1/\sin x $.)
$$ = \displaystyle{  \ e^ { \ \displaystyle{ \lim_{x \to 0^+  } \ { \ln x \over {1/ \sin x} } } } } $$
$$ = \displaystyle{  \ e^ { \ \displaystyle{ \lim_{x \to 0^+  } \ { \ln x \over \csc x } } } }  
=  \displaystyle{  \ e^ { \ \displaystyle{ `` \ \ln 0 / \csc 0 \ " } } } 
=  \displaystyle{  \ e^ { \ \displaystyle{ `` \ -\infty / (\cos 0/\sin 0^+) \ " } } }  
=  \displaystyle{  \ e^ { \ \displaystyle{ `` \ -\infty / (1/0^+) \ " } } }   
=  \displaystyle{  \ e^ { \ \displaystyle{ { ``  -\infty / \infty \ "   } } } } $$
(Apply Theorem 2 for l'Hopital's Rule.  Recall that $ D\{ \csc x\} = - \csc x \cot x $ and $ \cot x = \cos x/\sin x $.)
$$ = \displaystyle{  \ e^ { \ \displaystyle{ \lim_{x \to 0^+  } \ { {1/x} \over {-\csc x \cot x} } } } } $$
$$ = \displaystyle{  \ e^ { \ \displaystyle{ \lim_{x \to 0^+  } \ 
{ {1/x} \over {-1 \over \sin x} \cdot { \cos x \over \sin x  } } } } } $$
$$ = \displaystyle{  \ e^ { \ \displaystyle{ \lim_{x \to 0^+  } \ {1 \over x} \cdot
{ - \sin^2 x \over  \cos x } } } }  
= \displaystyle{  \ e^ { \ \displaystyle{ \lim_{x \to 0^+  } \ 
{ - \sin^2 x \over x \cos x } } } }  
=  \displaystyle{  \ e^ { \ \displaystyle{  `` \ -\sin^2 0  \ "  \over 0 \cdot \cos 0 } } }  
=  \displaystyle{  \ e^ { \ \displaystyle{  `` \ -(0)^2  \ "  \over (0)(1)   } } }   
=  e^{\displaystyle{ `` \ 0/0 \ " }} $$
(Apply Theorem 1 for l'Hopital's Rule.  Use the Chain Rule in the top and the Product Rule in the bottom.)
$$ = \displaystyle{  \ e^ { \ \displaystyle{ \lim_{x \to 0^+  } \ 
{ -2\sin x \cdot \cos x \over  \cos x - x \sin x } } } } $$
$$ = \displaystyle{  \ e^ { \ \displaystyle{ 
{ -2 \sin 0 \cdot \cos 0 \over  \cos 0 - 0 \cdot \sin 0 } } } } $$
$$ = \displaystyle{  \ e^ { \ \displaystyle{ 
{ -2(0)(1) \over  (1) - (0)(0) } } } } $$
$$ = \displaystyle{  \ e^ { \ \displaystyle{ 
{ 0} } } } $$
$$ = 1 $$
Click  HERE  to return to the list of problems.