SOLUTION 27: $$ \displaystyle{ \lim_{x \to 0^+} \ x^{x^x} } = \displaystyle{ `` \ 0^{ \ 0^{ \ 0}} \ " } $$ (Rewrite the problem to circumvent this indeterminate form. Recall that $ \displaystyle{ e^{\ln z} = z }. $) $$ \displaystyle{ \lim_{x \to 0^+} \ x^{x^x} } = \displaystyle{ \lim_{x \to 0^+ } \ e^{ \ \displaystyle \ln x^{x^x} } } $$ $$ = \displaystyle{ \lim_{x \to 0^+ } \ e^{ \ \displaystyle x^x \ln x } } $$ $$ = \displaystyle{ e^{ \ \displaystyle{ \lim_{x \to 0^+ } \ x^x \ln x }}} $$ $$ = \displaystyle{ e^{ \ \displaystyle{ (\lim_{x \to 0^+ } \ x^x)( \lim_{x \to 0^+ } \ \ln x) }}} $$ (See Example 4 in the material preceeding this problem set.) $$ = \displaystyle{ e^{ \ \displaystyle{ `` \ (1)(\ln 0) \ " }}} $$ $$ = \displaystyle{ e^{ \ \displaystyle{ `` \ (1)(-\infty) \ " }}} $$ $$ = \displaystyle{ `` \ e^{- \infty} \ " } $$ $$ = \displaystyle{ `` \ 1/ e^{\infty} \ " } $$ $$ = \displaystyle{ `` \ 1/ \infty \ " } $$ $$ = \displaystyle{ 0 } $$

Click HERE to return to the list of problems.