SOLUTIONS TO DIFFFERENTIATION OF FUNCTIONS USING THE PRODUCT RULE



SOLUTION 13 : Consider the function tex2html_wrap_inline572 . For what values of x is f'(x) = 0 ? Begin by differentiating the function using the product rule. Then

tex2html_wrap_inline578

tex2html_wrap_inline580

tex2html_wrap_inline582

tex2html_wrap_inline584

tex2html_wrap_inline586

tex2html_wrap_inline588

tex2html_wrap_inline590

tex2html_wrap_inline592

= 0 .

It follows that

tex2html_wrap_inline596 or 4x+3 = 0 .

Thus, the values of x which solve f'(x) = 0 are

tex2html_wrap_inline604 or tex2html_wrap_inline606 .

Click HERE to return to the list of problems.




SOLUTION 14 : Consider the function tex2html_wrap_inline608 . For what values of x is f'(x)=0 ? Begin by differentiating the function using the product rule. Then

tex2html_wrap_inline614

tex2html_wrap_inline616

tex2html_wrap_inline618

tex2html_wrap_inline620

= 0 .

It follows that

tex2html_wrap_inline624 or -x+1 = 0 .

But tex2html_wrap_inline628 can never be zero since an exponential is always positive. Thus, the only values of x which solve f'(x) = 0 are

x = 0 or x = 1 .

Click HERE to return to the list of problems.




SOLUTION 15 : Consider the function tex2html_wrap_inline638 . For what values of x is f'(x)=0 ? Begin by differentiating the function using the product rule. Then

tex2html_wrap_inline644

tex2html_wrap_inline646

tex2html_wrap_inline648

tex2html_wrap_inline650

tex2html_wrap_inline652

= 0 .

It follows that

x = 0 or tex2html_wrap_inline658 .

But x = 0 is not in the domain of function f since tex2html_wrap_inline664 is not defined. Thus, the only possibility is

tex2html_wrap_inline658

iff

tex2html_wrap_inline668

iff

tex2html_wrap_inline670

iff

tex2html_wrap_inline672

iff

tex2html_wrap_inline674 .

Click HERE to return to the list of problems.




SOLUTION 16 : Prove that

tex2html_wrap_inline676 .

Group functions f and g and apply the ordinary product rule twice. Then

tex2html_wrap_inline682

tex2html_wrap_inline684

tex2html_wrap_inline686

= f'(x) g(x) h(x) + f(x) g'(x) h(x) + f(x) g(x) h'(x) .

Here is an easy way to remember the triple product rule. Each time differentiate a different function in the product. Then add the three new products together.

Click HERE to return to the list of problems.




SOLUTION 17 : Differentiate tex2html_wrap_inline690 . Differentiate y using the triple product rule. Then

tex2html_wrap_inline694

tex2html_wrap_inline696

tex2html_wrap_inline698

tex2html_wrap_inline700

tex2html_wrap_inline702 .

Click HERE to return to the list of problems.




SOLUTION 18 : Consider the function tex2html_wrap_inline704 . For what values of x is f'(x)=0 ? Begin by differentiating f using the triple product rule. Then

tex2html_wrap_inline712

tex2html_wrap_inline714

(Now factor out the common terms of tex2html_wrap_inline716, and tex2html_wrap_inline718 .)

tex2html_wrap_inline720

tex2html_wrap_inline722

tex2html_wrap_inline724 .

It follows that

tex2html_wrap_inline726 or tex2html_wrap_inline728 .

But tex2html_wrap_inline718 is never zero since exponentials are always positive. Thus, the values of x which solve f'(x)=0 are

tex2html_wrap_inline736 or (using the quadratic formula) tex2html_wrap_inline738 .

Click HERE to return to the list of problems.




SOLUTION 19 : Find an equation of the line tangent to the graph of tex2html_wrap_inline740 at tex2html_wrap_inline742. If tex2html_wrap_inline742 then tex2html_wrap_inline746 so that the tangent line passes through the point tex2html_wrap_inline748 . The slope of the tangent line follows from the derivative of y . Then

tex2html_wrap_inline752

tex2html_wrap_inline754

tex2html_wrap_inline756 .

The slope of the line tangent to the graph at tex2html_wrap_inline742 is

tex2html_wrap_inline760 .

Thus, an equation of the tangent line is

tex2html_wrap_inline762 or y=x .

Click HERE to return to the list of problems.




SOLUTION 20 : Find an equation of the line perpendicular to the graph of tex2html_wrap_inline766 at tex2html_wrap_inline768. If tex2html_wrap_inline768 then tex2html_wrap_inline772 so that the tangent line passes through the point tex2html_wrap_inline774. The slope of the line perpendicular to the graph of f will be perpendicular to the line tangent to the graph of f . Thus, we need to first compute the derivative of f . Then

tex2html_wrap_inline782

tex2html_wrap_inline784

tex2html_wrap_inline786 .

Thus, the slope of the line tangent to the graph at tex2html_wrap_inline768 is

tex2html_wrap_inline790

tex2html_wrap_inline792

tex2html_wrap_inline794

tex2html_wrap_inline796

tex2html_wrap_inline798 .

Thus, the slope of the line perpendicular to the graph at tex2html_wrap_inline768 is

tex2html_wrap_inline802

and an equation of this line is

tex2html_wrap_inline804 .

Click HERE to return to the list of problems.




SOLUTION 21 : Find all points (x, y) on the graph of tex2html_wrap_inline808 with tangent lines parallel to the line y + x = 12 . The slope of the given line y = 12-x is y'=-1 . Thus, we need to find all values x in the domain of f which satisfy f'(x)=-1 . The derivative of f is

tex2html_wrap_inline824

tex2html_wrap_inline826

tex2html_wrap_inline828

tex2html_wrap_inline830

tex2html_wrap_inline832

tex2html_wrap_inline834 .

If tex2html_wrap_inline836 then tex2html_wrap_inline838 . It follows that

tex2html_wrap_inline840

iff

tex2html_wrap_inline842

iff

tex2html_wrap_inline844

iff

tex2html_wrap_inline846

iff

x(9x + 8) = 0 .

Thus,

x = 0 or 9x + 8 = 0

so that

x = 0 or tex2html_wrap_inline856 .

But x=0 cannot be a solution since tex2html_wrap_inline860 . Therefore, the only solution is the point

tex2html_wrap_inline856

and

tex2html_wrap_inline864 .

Click HERE to return to the list of problems.






Duane Kouba
Fri May 9 12:13:55 PDT 1997